
A ~~ SPACE ~
CAPTURE

A • HEXPAWNii -
HANGMAN]

IIILII-.
1l1][D@[r •••. ,

Ille ~
~'8008'TOOeOr

~ I(II~I (OMlI>IJI"III
." (ONIIJII"IN(i IN(.

SCELBI'S FIRST BOOK OF COMPUTER GAMES
for the

'8008/8080'

AUTHORS:

Nat Wadsworth
and

Robert Findley

© Copyright 1976
Scelbi Computer Consulting, Inc .

1322 Rear - Boston Post Road
Milford, CT. 06460

ALL RIGHTS RESERVED

IMPORTANT NOTICE

Other than using the information detailed herein on the purchaser's
individual computer system, no part of this pUblication may be re
produced, transmitted, stored in a retrieval system, or otherwise
duplicated in any form or by any means electronic, mechanical,
photocopying, recording, or otherwise, without the prior express
written consent of the copyright owner.

The information in this manual has been carefully reviewed and is
believed to be entirely reliable. However, no responsibility is
assumed for inaccuracies or for the success or failure of various
applications to which the information contained herein might be
applied.

SP ACE CAPTURE

Space Capture is a game of skill and chance. The object of the
game is to capture an imaginary space ship by destroying all the po s
sible sectors that it might attempt to travel in. The game as presented
herein utilizes a game board consisting of a grid containing 64
Equares or sectors. The sectors are identified by X and Y
coordinates. A pictorial of the playing board is illustrated below.

8

7

6

5

Y

4

3

2

1

1 2 3 4 5 6 7 8

X

To start the game, the computer informs the player of a location

1 - 1

where the space ship was last observed. The player is then allowed to
take one PHASOR SHOT by giving the X and Y coordinates of a
SECTOR. The phasor shot will destroy the sector specified thereby
preventing the space ship from traveling therein in the future. How
ever, the player must be careful! If the space ship happens to be re
siding in a sector at the time it is destroyed by a phasor shot, then
the space ship itself is considered destroyed. Since the object of the
game is to CAPTURE the ship (for its cargo of course!), destroying
the vessel is a losing move for the player.

The space ship is limited to moving only one sector at a time. As
already mentioned, it may not move into an area that has been pre
viously hit by a phasor shot. The ship's movement is also restricted
to the boundaries of the eight by eight grid on which the game is
played.

The maximum number of different moves the space ship has to
choose from at any given time is thus eight. This is illustrated in the
diagram shown below. This maximum number of possible moves,
for instance, would be the case at the start of a game before a player
had destroyed any sectors.

Y + 1

Y

Y -1

X-I X X+ 1

However, once the game is underway, the number of possible
directions in which the space ship may move can be reduced. The
example illustrated next shows the space ship in a position where
only two moves are possible. This is because it is bounded on two
sides by the edges of the playing grid. Additionally, the diagram

1 - 2

shows several sectors marked by aD. These represent sectors that
have been destroyed by the phasor shots of the player. The space
ship may not enter into those areas. Thus, in the example, the space
ship is only able to move up to the position X = 1 and Y = 2 or to
the right into the position X = 2 and Y = 1. The space ship would be
CAPTURED in the illustration if those two sectors had also been
destroyed so that it could not move out of the indicated position
X = 1 and Y = 1.

3
\~
C/~ , ,

Y 2 t
1 dI-

1

I ".

~\
0
-.

2
X

:B:

3

The game is relatively simple as far as computer games go, but it
is a lot of fun because the moves of the space ship are made essen
tially random by the program. One may create strategies to attempt
to use to capture the space ship. but one can never be certain where
the next move will be until the space ship is captured. Also, if one
does not take care where one shoots the phasor shots, the elements
of chance can again enter the game. Remember, destroying a sector
with the space ship traveling in it at the time ends the game!

The program for the game as it will be presented here will reside
with room to spare in about 5 pages (256 bytes per page) of an
'8008' or '8080' microcomputer system. If a person has even less
memory available, the program can readily be compacted by the
removal of some non-essential text messages. More room could be
saved by more effective subroutining and attention to the program's
organization to reduce the number of times pointers are altered.
These techniq11es would allow the program to fit easily in less than
three pages of memory. The reader should remember that the follow-

1 - 3

ing program was designed so that the operation of the program
could be easily followed. It was definitely not designed to minimize
memory usage other than in the sense that this machine language
version is many times more compact that would be required if the
program utilized a higher level language for compilation or interpre
tation!

The fundamental operation of the program is outlined in the flow
chart that appears on the next page. A brief verbal explanation of
that chart will follow. Then the various portions of the program
will be presented and discussed in detail.

OUTLINE OF THE PROGRAM'S OPERATION

At the start of the program, a brief message is presented to
explain the game to a new player. Next, the program determines
if the operator desires to playa game. If not, a closing message is
displayed and the program ends.

Assuming that a person elects to playa game, the program pro
ceeds to select a semi-random starting point as the initial position
of the space ship that is to be captured. The position of the space
ship is then displayed as the WAS position to the operator. That
is, the operator is informed of the LAST POSITION in which the
space ship was observed. The operator then knows one position
in which the space ship cannot be because the actual current
position of the ship when the player fires a phasor shot will be in
a sector adjacent to its last announced position. (Unless, of course,
the ship has been captured.)

Once the WAS position has been displayed, the program pro
ceeds to calculate a new position for the space ship to move into
using an essentially random method. Whenever a calculation to
move into a new sector has been made, the program must perform
several tests. It must make sure that the new sector is within the
bounds of the playing grid. And, it must make sure that it is not
moving into a sector that has been destroyed by a player's phasor
shot. If either of these tests fail, a new calculation is made to try

1-4

CAPTURED!!

NO

ERASE SECTOR NO
----f FROM SECTOR ~E---~

MAP

1-5

YES PLAYER
>-----4 LOSES

GAME!

YES PLAYER
>--------4 LOSES

GAME!

another one of the eight possible adjacent sectors. If the program
finds that all eight possible moves are blocked, the player wins.
An appropriate message is then displayed.

Assuming that the space ship does have a valid move, the new
position that it occupies is saved temporarily. If the player has not
already expended an allotted number of shots, the program allows
the operator to enter the coordinates of the sector that is to be.
eliminated from further occupation by the space ship. Once the
coordinates have been entered, a test is made to see whether the
space ship is presently in that sector. If so, the player loses as the
space ship was destroyed versus being captured. If the space ship
was not hit by the phasor shot, then the sector area is erased from
a SECTOR MAP. Once an entry in the sector map has been erased,
the space ship will be prevented from entering that sector in the
future.

The game continues until the player uses up the allotted number
of phasor shots, hits the space ship, or obtains a CAPTURE. At the
conclusion of a game, the program queries the player as to whether
a new game is to be played. Appropriate action is then taken as
indicated above.

TEXT MESSAGES USED BY THE PROGRAM

Close to a third of the memory space utilized by the program is
for storing the ASCII code for various messages that are displayed
during the program's operation. These messages are of esthetic value
particularly if the game is to be enjoyed by those who may not be
familiar with the operation of a computer. The contents of these
messages may be altered by the reader as desired, including complete
deletion in many instances if one desires to conserve memory space.
The various message strings that are used in the" program being pre
sented are listed next.

1 - 6

"SPACESHIP CAPTURE. YOU HAVE 15 PHASOR
SHOTS WITH WHICH TO DESTROY MY TRAVEL
SECTORS. IF ALL MY ADJACENT SECTORS
ARE DESTROYED I AM CAPTURED. IF YOU
HIT ME OR RUN OUT OF PHASOR ENERGY,
THEN YOU LOSE!"

"WANT TO PLAY?"

"POOR SPORT!"

"MY LAST POSITION WAS: X = "

", y = "

"YOU ARE FIRING TO: X = "

YOU HIT ME!! YOU LOSE!"

YOU ARE OUT OF PHASOR ENERGY, YOU LOSE!"

"#!O:# DARN! YOU HAVE ME CAP T U RED !!"

The introductory message in particular takes almost a page of stor
age in memory and may readily be deleted if memory is at a pre
mium in the user's system. The reader who wants to reduce the
memory requirements some more can abbreviate the other messages
if desired.

The text messages shown above are all stored in one continuous
section in memory in the form of ASCII codes for the various charac
ters in each string. (Note: In this manual the standard seven bit
ASCII code will be shown with the code augmented by an eighth bit
commonly referred to as the PARITY bit. The parity bit will always
be assumed to be in the logic one or marking condition unless other
wise noted.)

A subroutine frequently referred to by the game program is shown

1 - 7

below. It is labeled MSG.

MSG, LAM
NDA
RTZ
CAL PRINT
INL
JFZ MSG
INH
JMP MSG

Fetch a character
Set flags
Finished if have zero byte
Else print character
Advance low addr pointer
Continue display
Or adv page addr pointer
And then continue display

The MSG subroutine is quite simple. The calling program simply
sets up the Hand L memory pointing registers to the starting ad
dress of a string of characters that are to pe outputted. Then, when
the MSG subroutine is executed, the routine proceeds to fetch the
characters from memory and output them until a zero byte is en
countered. The subroutine itself calls on a subroutine labeled PRINT
which must be provided by the program user. The PRINT subroutine
must be an actual device operating routine that will cause the ASCII
character in the accumulator to be transmitted to the output device
being used by the system. The PRINT subroutine provided by the
user may use the CPU registers B through E if required but it should
not alter the contents of the Hand L CPU registers. (Unless, of
course, in doing so it is able to restore them to their original values
before returning to the calling program.)

The reader will see that the MSG subroutine is used through-out
the program being described. Prior to calling the subroutine, the
main program will always setup the Hand L registers to the starting
address of the character string that is to be displayed. The charac
ter strings that will be used in the example program have been pre
sented previously. It hardly goes without saying, that if a reader
desires to modify the text messages, and by doing so alters their
starting addresses, that appropriate modifications must be made to
the setup address values whenever the MSG subroutine is used. This
is also the case if the user decides to store the text messages at loca
tions other than those shown in the program provided herein.

1 - 8

THE SPACE CAPTURE PROGRAM

The reader may refer to the flow chart presented earlier as the dis
cussion of the actual operating portions of the program proceeds.

The first few procedures in the program consist of merely dis
playing the introductory message and then asking the prospective
player if the playing of a game is desired.

Following the WANT TO PLAY query, the program then waits
for a response from the system's input device which must be in the
form of a letter Y for YES or N for NO. If a NO response is received
at this point, then no game is to be played. The program will display
the closing message and end the program. These first few operations
are illustrated in the program listing below.

START, LHIOOO Pointer to introductory
LLIOOO Message
CALMSG Display introductory message

OVER, LHIOOO Pointer to WANT TO PLAY
LLI325 Message
CAL MSG Display message

INAGN, CAL CKINP See if have input
NDA Set flags
CFSINPUTN Fetch character if ready
INL Increment RANDOM cntr
CPI316 If input, was it N?
JFZ NOTNO Jump ahead if not N
LHIOOO Pointer to POOR SPORT
LLI350 Message
CAL MSG Display message
HLT End of session

There are several instructions in the above routine that require
elaboration. The reader may observe that there are references to two
input subroutines. One is labeled CKINP. The other is designated

1-9

INPUTN. The subroutine labeled INPUTN is a user created subrou
tine that will accept a character from the system's input device.
Typically, this would be an ASCII encoded keyboard. The subrou
tine is expected to return the inputted character in the accumulator.
This subroutine is free to use CPU registers B through E in perfor
ming its function. The INPUTN subroutine should also provide an
echo capability by sending the character inputted out to the system's
display device. This is done so the operator may verify the character
inputted. (This might be accomplished by simply calling the pre
viously mentioned PRINT SUbroutine.)

The CKINP subroutine is a user provided routine that simply per
forms a check to see if the input device has a character waiting to be
inputted. If so, the subroutine must return with the MSB of the
accumulator set to '0.' If a character is not ready, the subroutine
should return with the most significant bit of the accumulator set to
a logic '1' state.

The importance of having a separate subroutine (CKINP) that
merely ascertains if a character is waiting will be explained here. The
reader can see in the previous routine that if a character is ready to
be received, the INPUTN subroutine will be called to actually obtain
the data. However, whether or not a character is received, CPU
register L will be incremented. CPU register L is actually used as a
sort of random counter. The final value in register L will be deter
mined by how long it takes for the player to respond with an input
after a query from the program. This is because if there is no input
the first time the instruction sequence is executed, the routine will
eventually loop back to the point in the program labeled INAGN.
Each time the program has to wait and goes back through the loop,
the contents of register L are incremented. Naturally, this looping
operation is being performed at a many-thousands-per-second rate.

How the final value in register L is used to form an essentially
random number (when a valid input finally occurs) will be illustrated
shortly. It is important to note that the inclusion of the separate
CKINP subroutine is vital to the proper operation of the program
being described. To reiterate, the CKINP subroutine must only as
certain if the input device has a character for the computer! It does
not itself form a waiting loop for such a signal. That is accomplished

1 - 10

by the previous routine in the manner described!

The program continues with a portion to be illustrated next
starting with the label NOTNO. The first part of this sequence com
pletes the test of the player's response to the WANT TOPLA Y?
query. This is done by testing to see if the character Y for YES was
inputted. If not, the program loops back to the label INAGN just
described to continue looking for a valid input.

When a Y response is received, the routine continues in the
following manner. The value in register L is transferred to the accum
ulator. It is trimmed by a masking operation to leave only the three
least significant bits. This would leave an octal number in the range
of zero to seven. A count of one is added to this value to give a
number in the range 01 to 10 octal. This is the equivalent of decimal
1 to 8, or the allowed coordinates along either the X or Y coordinate
of the playing grid! This value is then saved in two temporary storage
locations in memory to serve as the initial position of the space ship
at the start of the game. Thus, the space ship will always have a
starting point along a line corresponding to the diagonal where both
coordinates are the same value. However, the actual value will vary
with each game because of the random manner in which the number
is generated (in register L) as alluded to previously. This gives some
added variety to the game right from the beginning move!

The routine then continues by taking the value in the accumulator
and reducing it by a masking operation back to the octal range 0 to
7. The value is then multiplied by 2 (RLC instruction) so that it will
represent an even number in the range 00 to 16 octal.

At this point the value is converted to the low portion of an
address. For this particular version of the program this is accomp
lished by the ORI 260 command which will form a value in the range
260 to 277 (octal). This address is stored temporarily in memory for
use by a routine that will be explained in detail further on. Suffice
it to say at this point that the address refers to a table that will con
tain the possible moves that the space ship might try to take.

The routine then continues by initializing a phasor shots taken
counter that will keep track of how many shots the player has fired.

1 - 11

Because of the point in the overall program at which the counter is
decremented, this counter- is initialized to a value one greater than
the number of shots that the player is to be allowed.

The routine concludes by filling a block of 64 (decimal) locations
with all ones. This block of memory will serve as a shots taken map.
Its use will be explained in detail later .

NOTNO, CPI331 If input, was it Y?
JFZ INAGN If not, get a new input
LAL Else, move random counter
NDI007 To ACC & trim ASCII code
ADI001 Add 1 to get 1 - 8
LHI001 Range and set up pointer
LLI372 To LAST position storage
LMA Initialize X WAS value
INL Advance pointer
LMA Initialize Y WAS value
LLI377 Pointer to random cntr storage
NDI007 Reduce size
RLC Make it an even value
ORI260 Form table pointer
LMA And save table pointer
LHI001 Set pointer to shot counter
LLI376 Storage location
LMI020 Initialize to 16 decimal
LHI003 Set pointer to start of
LLI300 Shots taken map
LAI377 Fill accumulator with l's

FILOOP, LMA Initialize shots taken
INL Map to all ones condition
JFZ FILOOP Until map completed

The next portion of the program starts by displaying the message
MY LAST POSITION WAS: to the player. The routine then fetches
the values of the X and Y coordinates that have been previously

1 - 12

stored in memory and outputs those values by forming the ASCII
code for the appropriate numerical values and displaying them via
the output display subroutine PRINT provided by the user.

Next, a subroutine termed TRYMOV is called. The TRYMOV sub
routine, which will be discussed shortly, will attempt to move the
space ship into an available free sector using a technique that selects
a new location in an essentially random manner. If the TRYMOV
subroutine cannot move the space ship, the program will not return
in the normal manner as the space ship will have been captured. If,
however, the space ship is able to move to a new sector, the program
will continue as illustrated in the routine. At this point, the phasor
shots taken counter will be decremented in value. If the player has
not used up the allotted shots, the game continues.

If the player has used up the number of allotted phasor shots, the
program continues to the label PHASOR. Here the program yvill dis
play the message indicating that the player is out of phasor energy
and has lost the game. The program will then loop back to the label
OVER presented earlier to see if the player wants to start a new
game.

PLAYIN, LHIOOO
LLI367
CALMSG
LHI001
LLI372
LAM
ORI260
CAL PRINT
LHI001
LLI 026
CALMSG
LHI001
LLI373
LAM
ORI260
CAL PRINT
CALTRYMOV

1 - 13

Set pntr to POSITION WAS:
X = message
Display message
Set pointer to X WAS
Storage location
Fetch value
Form ASCII code
Display position value
Set pointer to Y =

Message
Display message
Set pointer to Y WAS
Storage location
Fetch value
Form ASCII code
Display position value
Move the spaceship!

PHASOR,

LHI001
LLI 376
LBM
DCB
LMB
JFZ CONTIN

LHI001
LLI125
CALMSG
JMPOVER

Pointer to shots taken
Counter storage
Fetch counter
Decrement value
Restore counter
Jump ahead if counter not 0

If shots counter = 0,
Set pointer and display
OUT OF ENERGY message
Go see if want new game

Provided that the player still has shots available with which to de
stroy travel sectors, the program continues at the label CONTIN.
Here the message YOU ARE FIRING TO: is displayed. The program
then allows the player to enter first the X and then the Y coordinate
of the sector that the player wishes to destroy.

When obtaining the X coordinate, the program simply calls the
subroutine INPUTN to obtain a character from the input device. The
character obtained is checked to see if it is in the range of one to
eight decimal. If not, the routine loops back to wait for a valid input.
If so, the ASCII code is trimmed down to four bits and the value
saved in a temporary location as the new value of X in memory.

The program then prepares to receive the Y coordinate from the
player.

CONTIN,

INX,

LHI001
LLI036
CALMSG

CALINPUTN
CPI261
JTS INX
CPI271
JFS INX
LHI001

1 -14

Set pointer to
FIRING TO message
Display message

Fetch X value
See if input is a
Digit in the range
of one to eight decimal
Ignore input if not
If valid input set pointer

LLI370
NDI017
LMA
LHI001
LLI026
CAL MSG

To new X storage location
Trim off ASCII part
Save the new X value
Set pointer to
Y = message
Display message

The input for obtaining the Y coordinate from the player is
handled in the same manner that was described for the portion of the
program where the player responds to the WANT TO PLAY? query.
Register L is again used as a counter whose final value will depend on
how long it takes the player to enter the Y coordinate. When a valid
character is received (in the range one to eight decimal), the trimmed
number is saved in memory as the new coordinate along the Y axis.
The value in register L is then processed in the same manner as
before to form an address that will be utilized by the TRYMOV sub
routine that has already been referred to, and which will be described
soon.

INY, CAL CKINP
NDA
CFSINPUTN
INL
CPI261
JTS INY
CPI271
JFS INY
LBL
LHI001
LLI371
NDI017
LMA
LAB
NDI007
RLC
ORI260
LHI001
LLI377
LMA

1 -15

See if have input
Set flags
Fetch character if ready
Advance random counter
See if input
In decimal range
One to eight
Else ignore input
Save random counter value
Set pointer to new Y
Storage location
Trim ASCII part off
Save the new Y value
Move random counter to ACC
Reduce it in size
Make it an even value
Form random table pointer
Set pointer to random table
Pointer storage location
Save random pointer

After the X and Y shot coordinates have been obtained from the
player, the program continues at the point labeled HITEST. At this
time the program must perform a check to determine whether the
sector which the player has just destroyed is the same one in which
the space ship might have been in. (Which is determined by the
TRYMOV subroutine. Remember, the TRYMOV subroutine has
already been called by the program, even though it has not yet been
presented in detail in this discussion.) This is determined by testing
to see if the coordinates of the player's phasor shot (stored in mem
ory) match with the new location of the space ship (also stored in
memory). If a match occurs here, then the space ship has been hit.
That is a losing move for the player, and the program will display
the appropriate message and return to see if the player wants to try
a new game.

HITEST,

BOMB,

LHI001
LLI 370
LAM
INL
INL
CPM
JFZ ZERSEC
DCL
LAM
INL
INL
CPM
JFZ ZERSEC

LHI001
LLI072
CAL MSG
JMP OVER

Set pointer to
X phasor shot storage
Fetch X shot value
Advance pointer to new
X spaceship location value
Compare shot with location
If not a match, no hit
Set pointer to Y phasor
Shot storage and fetch
Advance pointer to new
Y spaceship location value
Compare shot with location
If not a match, no hit

Shot hit spaceship - set
Pointer to HIT message
Display message
See if want new game

The next section of the program begins at the label ZERSEC. This
portion of the program serves to zero-out a sector in the sector map
whenever a sector is destroyed by a phasor shot made by the player.

As the reader knows, there are 64 different sectors in the 8 by 8

1 - 16

grid on which the game is played. At the beginning of a game, an area
in memory is assigned as a sector map. This area consists of 64 con
secutive locations in memory. In the sample program, the memory
area is assigned to locations 300 to 377 (octal) on page 03. The area
is initialized (as mentioned earlier) by loading the value 377 into all
64 locations. Now, each time the player specifies a grid location by
designating an X and Y coordinate, a memory location in the sector
map is changed to be in a 000 (octal) condition. The location that is
to be zeroed out is ascertained by performing a simple calculation.
The fundamental calculation made may be expressed by the
following formula:

v = [(X - 1) x 8] + (Y - 1)

where X and Y are the respective coordinates given by the player
when firing a phasor shot. The value V obtained by the calculation
is then added to a base value (300 in the example program.) to give
an effective address in the sector map. By reviewing the above for
mula, the reader may verify that the calculation will yield the values
from 0 to 63 decimal or 0 to 77 octal when all the possible coor
dinate values are considered. When added to the base value (300 in
the example) this will yield a low address in the range 300 to 377
(octal).

A portion of the program (to be presented later) will prevent the
space ship from moving into any location that has been zeroed-out in
the sector map.

The ZERSEC portion of the program is presented next.

ZERSEC, LLI 370
LAM
SUI 001
RLC
RLC
RLC
LDA
INL
LAM

1 - 17

Get X shot value
From storage
Subtract '1'

MUltiply by eight

Save in register D temporarily
Get Y shot value
From storage

SUI 001
ADD
ORI300
LLA
LHI003
LMIOOO
JMP PLAYIN

Subtract '1'
Add to previous calculations
Form shot table address
Set low address pointer
And page address of shot table
Zero the entry in shot table
Continue with game

The next portion of the program is the subroutine TRYMOV. This
subroutine is the most complicated portion of the program. The sub'
routine serves the function of attempting to find a new location for
the space ship. It does this by attempting to find a sector adjacent to
the last position of the space ship that has not been destroyed by a
phasor shot. The sector must also be within the boundaries of the
8 by 8 playing grid. Additionally, the direction of movement is
accomplished in an essentially random manner so that the player will
not be able to detect a reliable pattern of movement for the space
ship!

The first few instructions of the subroutine fetch the address that
points to the move table. This address is set up each time the player
specifies the Y coordinate of a phasor shot (or answers the WANT
TO PLAY? query at the beginning of a game). As discussed earlier,
the address each time the subroutine is entered will have been
selected in an essentially random manner.

The address refers to a position in a table which holds all the
possible moves the space ship can make to an adjacent sector. A pic
torial near the beginning of this article illustrated the eight possible
moves the space ship could make if it was not bounded by the edges
of the playing grid, or sectors that had been destroyed. Referral to
that pictorial will show that the possible moves may be referenced by
a value of -1, 0, or +1 from its present position along each axis. One
can convert this information into a table that holds all the possible
moves. The table used consists of eight groups of two bytes per
group. The first byte in a group holds a move along the X axis. The
second stores a move along the Y axis. In the example program, the
table is stored in locations 260 through 277 on page 03, and appears
as shown on the following page.

1 - 18

377
001
000
001
001
001
377
000
001
000
377
377
000
377
001
377

MOVES TABLE (X = -1)
Y = +1
X= 0
Y = +1
X= +1
Y = +1
X = -1
Y= 0
X= +1
Y= 0
X = -1
Y = -1
X= 0
Y = -1
X = +1
Y = -1

The initial value of the address to the moves table is transferred
from a temporary location in memory to the accumulator at the
start of the TRYMOV subroutine. Also, a moves tried counter, which
will be maintained in CPU register C during the subroutine, is initial
ized to a value of eight (decimal). The routine then goes on to the
point labeled TR YSEC which marks a looping point within the sub
routine.

At TRYSEC, the address value originally in the accumulator is
moved to CPU register L to set up the low portion of the address to
the moves table. This value is also saved for possible later use in CPU
register B. The high address of the moves table is set up in CPU
register H, and an X move value fetched from the table. The X move
value obtained from the table is then added to the X coordinate
value representing the previous position of the space ship to form a
new value along the X coordinate. At this point some tests must be
made to ensure that the new value is within the boundaries of the
playing grid. This is readily accomplished by checking to see that the
new coordinate is between the range of 1 to 8 decimal. If the new
value is within the playing grid, it is saved in a temporary location in
memory. If it is not valid, the program jumps ahead to a routine that
will advance the moves table pointer to the next X entry in the table

1 - 19

(by going to the label NOGDX which will advance the address tem
porarily stored in CPU register B TWO locations!)

If the new X value is O.K., the routine proceeds to advance the
pointer to the moves table one location to obtain a Y move. A
similar boundary checking procedure is performed again. If the new
Y coordinate is valid, it too is saved in a temporary location in
memory. If not, the program jumps ahead to the label NOGDY
which will advance the moves table pointer just one location to the
next X entry.

If the new X and Y coordinates are within the boundaries of the
playing grid, the program continues by executing the portion of the
subroutine labeled CHECK. This part of the program ascertains
whether the new sector the space ship is attempting to move into is
available. That is, that it has not been destroyed by a previous phasor
shot made by the player! This is readily accomplished by using the
new coordinate values to once again calculate a position in the sector
map and checking to see that the position has not been zeroed out.
The calculation technique is exactly the same as that used by the
routine ZERSEC explained earlier. If the sector is available, the pro
gram jumps ahead to the routine labeled SA VPOS. If not, the space
ship must try to find another position in the grid. This is attempted
by proceeding to the point labeled NOGDY.

The portion of the routine beginning with the label NOGDX serves
to advance the moves table address pointer to the next X entry in
the table. Since the table occupies just 20 (octal) locations in
memory (in the example program locations 260 through 277 on page
03), and since the initial value may have been at any even valued ad
dress within that range, some special operations must be performed
when advancing the pointer to the next X entry. First, it may be
necessary to try every possible move in the table. Since the first posi
tion tried may have been the eighth entry in the table (four least sig
nificant bits of the address equal to 16 octal), one must keep the
pointer in the range of 00 to 17 octal (for the four LSB's). This is
readily accomplished by a masking operation that removes the four
most significant bits. Then, since the table does not reside in the first
20 (octal) locations on a page in memory, the base address value of
260 (in the example) must be tacked back on to form the complete

1 - 20

address value. This procedure will force the moves table pointer to
loop back to the value 260 when it reaches a value of 277 rather than
going to 300 which would be outside the range of the table.

When the address of the next entry in the moves table has been set
up, the routine checks to see if all eight possible moves have been
tried by decrementing the counter being maintained in CPU register
B. If not, the routine loops back to the point labeled TR YSEC. If,
however, all eight possible moves have been tried, then the space ship
has not been able to find a new position and it is captured. A
message of defeat is then issued to the player. From that point, the
program will go back to see if a new game is desired.

The portion of the routine labeled SA VPOS is executed if the
space ship successfully finds a new sector to move into. This routine
simply moves the X and Y coordinate values being temporarily saved
in memory during the TRYMOV subroutine into the storage lo
cations used to hold the new location. (This move actually places the
new coordinates into the memory locations that are referenced the
next time the message MY LAST LOCATION WAS: is displayed.)

Note that the SAVPOS routine ends with a RET instruction to
conclude the subroutine. Thus, a return from the TRYMOV subrou
tine indicates that the space ship completed a successful move. If the
space ship does not find a new sector to move into, the subroutine is
not actually completed. Instead, a jump out of the subroutine to
start a new game is executed.

The various portions of the TRYMOV subroutine are presented
below.

TRYMOV,

TRYSEC,

LHI001
LLI377
LAM
LCI010

LLA
LBA
LHI003

1 - 21

Set pointer to
Random counter storage
Fetch value
Set a loop counter

Set pointer to moves table
Save pointer in B too
Set pg pointer to moves table

LAM Fetch an X move
LHI001 Change pointer to
LLI 372 X WAS storage
ADM Add X move to form new loc
CPI001 N ow make boundaries test
JTS NOGDX No good if less than one
CPI011 Or more than
JFS NOGDX Eight decimal
LHI001 If OK, save in X temporarily
LLI374 Storage location
LMA For awhile
INB Advance pointer stored in B
LLB And load new pointer
LHI003 To Y move location
LAM Fetch a Y move
LHI001 Change poin ter to
LLI373 Y WAS storage
ADM Add Y move to form new loc
CPI001 Now make boundaries test
JTS NOGDY No good if less than one
CPI011 Or more than
JFS NOGDY Eight decimal
LHI001 If OK, save in Y temporarily
LLI 375 Storage location
LMA For awhile

CHECK, DCL Decrement pointer back to
LAM X temp storage and fetch
SUI 001 Subtract '1'
RLC
RLC Multiply by eight
RLC
LDA Save in D temporarily
INL Advance pointer to
LAM Y temp storage and fetch
SUI 001 Subtract '1'
ADD Add to previous calculations
ORI300 Form shot table address
LLA Set low address pointer
LHI003 And page address pointer

1 - 22

NOGDX,
NOGDY,

SAVPOS,

LAM
NDA
JFZ SAVPOS
JMPNOGDY

INB
INB
LAB
NDI017
ORI260
DCC
JFZ TRY SEC
LHI001
LLI201
CALMSG
JMPOVER

LHI001
LLI374
LDM
INL
LEM
LLI372
LMD
INL
LME
RET

Fetch entry from shot table
Set flags, now see if location
Previously fired into
Try another location if yes

Advance move table pointer
As required to get to next
X move, move value to ACC
And make sure it is kept
In bounds
Decrement loop counter
If not 0, try another location
Else set pointer
To CAPTURED message
Display message
See if want new game

Set pointer to X temporarily
Storage location
Save value in D temporarily
Advance pointer to Y temp
Save in E temporarily
Change pointer to X WAS
Storage and set new value
Do likewise for Y WAS
Too!
Return to calling program

That is all there is to the program! That is not so difficult, eh?

An assembled listing of the program for running on a 8008 system
will be presented on the following pages. The program in the listing
has been assembled to reside in pages 01 to 03 with page 04 reserved
for the user's I/O routines. Page 00 and most of page 01 will be used
to hold the various message strings mentioned previously. The ASCII
data that should be stored in those locations is shown next. (As
suming the user is satisfied with the message strings illustrated.)

1- 23

000 000
000 010
000 020
000 030
000 040
000 050
000 060
000 070
000 100
000 110
000 120
000 130
000 140
000 150
000 160
000 170
000 200
000 210
000 220
000 230
000 240
000 250
000 260
000 270
000 300
000 310
000 320
000 330
000 340
000 350
000 360
000 370
001 000
001 010
001 020
001 030
001 040
001 050
001 060
001 070

215 212 212 323 320 301 303 305
323 310 311 320 240 303 301 320
324 325 322 305 256 240 331 317
325 240 310 301 326 305 240 261
265 240 320 310 301 323 317 322
215 212 323 310 317 324 323 240
327 311 324 310 240 327 310 311
303 310 240 324 317 240 304 305
323 324 322 317 331 240 315 331
240 324 322 301 326 305 314 215
212 323 305 303 324 317 322 323
256 240 311 306 240 301 314 314
240 315 331 240 301 304 312 301
303 305 316 324 240 323 305 303
324 317 322 323 215 212 301 322
305 240 304 305 323 324 322 317
331 305 304 240 311 240 301 315
240 303 301 320 324 325 322 305
304 256 240 311 306 240 331 317
325 215 212 310 311 324 240 315
305 240 317 322 240 322 325 316
240 317 325 324 240 317 306 240
320 310 301 323 317 322 240 305
316 305 322 307 331 254 215 212
324 310 305 316 240 331 317 325
240 314 317 323 305 241 215 212
212 000 000 000 000 ~ 212 212
327 301 316 324 240 324 317 240
320 314 301 331 277 240 240 000
215 212 212 320 317 317 322 240
323 320 317 322 324 241 000 215
212 212 315 331 240 314 301 323
324 240 320 317 323 311 324 311
317 316 240 327 301 323 272 240
240 330 240 275 240 000 ~ 240
240 331 240 275 240 000 215 212
212 331 317 325 240 301 322 305
240 306 311 322 311 316 307 240
324 317 272 240 240 330 240 275
240 000 215 212 212 331 317 325

1 - 24

001 100
001 110
001 120
001 130
001 140
001 150
001 160
001 170
001 200
001 210
001 220
001 230
001 240
001 250
001 260

240 310 311 324 240 315 305 241
241 240 240 331 317 325 240 314
317 323 305 241 000 215 212 212
331 317 325 240 301 322 305 240
317 325 324 240 317 306 240 320
310 301 323 317 322 240 305 316 .
305 322 307 331 254 240 240 331
317 325 240 314 317 323 305 241
000 215 212 212 243 241 260 243
207 207 207 240 240 304 301 322
316 241 240 240 331 317 325 240
310 301 326 305 240 315 305 240
240 303 240 301 240 320 240 324
240 325 240 322 240 305 240 304
240 241 241 000

The starting address for each message string may be located from
the above data presentation. The beginning of each message string
has been underlined. The reader may desire to change some of the
messages. If the reader elects to do so, and by so doing changes the
starting address of a character string, then the appropriate pointer
instruction in the operating portion of the program must be modified
accordingly. The assembled program for an 8008 system is presented
on the next several pages.

001 350 307 MSG, LAM
001 351 240 NDA
001 352 053 RTZ
001 353 106 200 004 CAL PRINT
001 356 060 INL
001 357 110 350 001 JFZ MSG
001 362 050 INIi.
001 363 104 350 001 JMP MSG

001 370 000 000
001 371 000 000
001 372 000 000
001 373 000 000

1 - 25

001 374 000 000
001 375 000 000
001 376 000 000
001 377 000 000

002 000 056 000 START, LHIOOO
002 002 066 000 LLIOOO
002 004 106 350 001 CAL MSG

002 007 056 000 OVER, LHIOOO
002 011 066 325 LLI325
002 013 106 350 001 CALMSG

002 016 106 000 004 INAGN, CAL CKINP
002 021 240 NDA
002 022 122 020 004 CFSINPUTN
002 025 060 INL
002 026 074 316 CPI316
002 030 110 043 002 JFZNOTNO
002 033 056 000 LHIOOO
002 035 066 350 LLI 350
002 037 106 350 001 CALMSG
002 042 000 HLT

002 043 074 331 NOTNO, CPI331
002 045 110 016 002 JFZ INAGN
002 050 306 LAL
002 051 044 007 NDI007
002 053 004 001 ADI001
002 055 056 001 LHI001
002 057 066 372 LLI372
002 061 370 LMA
002 062 060 INL
002 063 370 LMA
002 064 066 377 LLI377
002 066 044 007 NDI007
002 070 002 RLC
002 071 064 260 ORI260
002 073 370 LMA
002 074 056 001 LHI001

1 - 26

002 076 066 376 LLI376
002 100 076 020 LMI020
002 102 056 003 LHI003
002 104 066 300 LLI300
002 106 006 377 LAI377

002 110 370 FILOOP, LMA
002 111 060 INL
002 112 110 110 002 JFZ FILOOP

002 115 056 000 PLAYIN, LHIOOO
002 117 066 367 LLI367
002 121 106 350 001 CALMSG
002 124 056 001 LHI001
002 126 066 372 LLI372
002 130 307 LAM
002 131 064 260 ORI260
002 133 106 200 004 CAL PRINT
002 136 056 001 LHI001
002 140 066 026 LLI026
002 142 106 350 001 CALMSG
002 145 056 001 LHI001
002 147 066 373 LLI373
002 151 307 LAM
002 152 064 260 ORI260
002 154 106 200 004 CAL PRINT
002 157 106 002 003 CALTRYMOV
002 162 056 001 LHI001
002 164 066 376 LLI376
002 166 317 LBM
002 167 011 DCB
002 170 371 LMB
002 171 110 206 002 JFZ CONTIN

002 174 056 001 PHASOR, LHI001
002 176 066 125 LLI125
002 200 106 350 001 CALMSG
002 203 104 007 002 JMP OVER

002 206 056 001 CONTIN, LHI001

1- 27

002 210 066 036 LLI036
002 212 106 350 001 CALMSG

002 215 106 020 004 INX, CALINPUTN
002 220 074 261 CPI261
002 222 160 215 002 JTS INX
002 225 074 271 CPI271
002 227 120 215 002 JFS INX
002 232 056 001 LHI001
002 234 066 370 LLI370
002 236 044 017 NDI017
002 240 370 LMA
002 241 056 001 LHI001
002 243 066 026 LLI026
002 245 106 350 001 CALMSG

002 250 106 000 004 INY, CAL CKINP
002 253 240 NDA
002 254 122 020 004 CFSINPUTN
002 257 060 INL
002 260 074 261 CPI261
002 262 160 250 002 JTS INY
002 265 074 271 CPI271
002 267 120 250 002 JFS INY
002 272 316 LBL
002 273 056 001 LHI001
002 275 066 371 LLI371
002 277 044 017 NDI017
002 301 370 LMA
002 302 301 LAB
002 303 044 007 NDI007
002 305 002 RLC
002 306 064 260 ORI260
002 310 056 001 LHI001
002 312 066 377 LL1377
002 314 370 LMA

002 315 056 001 HITEST, LHI001
002 317 066 370 LLI370
002 321 307 LAM

1 - 28

002 322 060 INL
002 323 060 INL
002 324 277 CPM
002 325 110 352 002 JFZ ZERSEC
002 330 061 DCL
002 331 307 LAM
002 332 060 INL
002 333 060 INL
002 334 277 CPM
002 335 110 352 002 JFZ ZERSEC

002 340 056 001 BOMB, LHI001
002 342 066 072 LLI072
002 344 106 350 001 CALMSG
002 347 104 007 002 JMP OVER

002 352 066 370 ZERSEC, LLI 370
002 354 307 LAM
002 355 024 001 SUI 001
002 357 002 RLC
002 360 002 RLC
002 361 002 RLC
002 362 330 LDA
002 363 060 INL
002 354 307 LAM
002 365 024 001 SUI 001
002 367 203 ADD
002 370 064 300 ORI300
002 372 360 LLA
002 373 056 003 LHI003
002 375 076 000 LMIOOO
002 377 104 115 002 JMP PLAYIN

003 002 056 001 TRYMOV, LHI001
003 004 066 377 LLI377
003 006 307 LAM
003 007 026 010 LCI010

003 011 360 TRYSEC, LLA
003 012 310 LBA

1 - 29

003 013 056 003 LHI003
003 015 307 LAM
003 016 056 001 LHI001
003 020 066 372 LLI372
003 022 207 ADM
003 023 074 001 CPI001
003 025 160 125 003 JTSNOGDX
003 030 074 011 CPI011
003 032 120 125 003 JFSNOGDX
003 035 056 001 LHI001
003 037 066 374 LLI 374
003 041 370 LMA
003 042 010 INB
003 043 361 LLB
003 044 056 003 LHI003
003 046 307 LAM
003 047 056 001 LHI001
003 051 066 373 LLI373
003 053 207 ADM
003 054 074 001 CPI001
003 056 160 126 003 JTSNOGDY
003 061 074 011 CPI011
003 063 120 126 003 JFSNOGDY
003 066 056 001 LHI001
003 070 066 375 LLI 375
003 072 370 LMA

003 073 061 CHECK, DCL
003 074 307 LAM
003 075 024 001 SUI 001
003 077 002 RLC
003 100 002 RLC
003 101 002 RLC
003 102 330 LDA
003 103 060 INL
003 104 307 LAM
003 105 024 001 SUI 001
003 107 203 ADD
003 110 064 300 ORI300
003 112 360 LLA

1 - 30

003 113 056 003 LHI003
003 115 307 LAM
003 116 240 NDA
003 117 110 152 003 JFZ SAVPOS
003 122 104 126 003 JMPNOGDY

003 125 010 NOGDX, INB
003 126 010 NOGDY, INB
003 127 301 LAB
003 130 044 017 NDI017
003 132 064 260 ORI260
003 134 021 DCC
003 135 110 011 003 JFZ TRYSEC
003 140 056 001 LHI001
003 142 066 201 LLI201
003 144 106 350 001 CALMSG
003 147 104 007 002 JMPOVER

003 152 056 001 SAVPOS, LHI001
003 154 066 374 LLI 374
003 156 337 LDM
003 157 060 INL
003 160 347 LEM
003 161 066 372 LLI372
003 163 373 LMD
003 164 060 INL
003 165 374 LME
003 166 007 RET

003 260 377 377
003 261 001 001
003 262 000 000
003 263 001 001
003 264 001 001
003 265 001 001
003 266 377 377
003 267 000 000
003 270 001 001
003 271 000 000

1 - 31

003 272 377 377
002 273 377 377
003 274 000 000
003 275 377 377
003 276 001 001
003 277 377 377

004 000 CKINP,

004 020 INPUTN,

004 200 PRINT,

Do not forget that the program as presented will be using locations
300 through 377 on page 03 as a sector map. The reader should also
make sure that the user provided I/O routines are loaded into mem
ory at the indicated locations before attempting to operate the pro
gram!

OPERATING THE SPACE CAPTURE PROGRAM

Once the program has been loaded into memory it is ready for
operation. The program is started by executing a jump to location
000 on page 02 for the illustrated program, and placing the computer
in the normal program execution run mode. From there on the pro
gram effectively guides the player. The program will continue to op
erate, playing game after game, until the player responds with a N for
NO to the WANT TO PLAY? query.

The player will want to have a supply of paper with 8 by 8 grids
marked out to keep track of the space ship's movements and .sectors
in which shots have been fired as the games progresses. If the game is
to be used frequently, it is probably worthwhile to make up a good
supply of the grid forms using a mimeograph or duplicating machine.

In case the reader has any doubts as to how the game is played,

1 - 32

the following illustrates an actual game played using the program. At
the end of the illustration showing the dialogue between the com
puter and the player is a grid illustrating how the game progressed.
The progress of the space ship is shown as a series of arrows indi
cating the direction of each movement. The phasor shots fired by the
player are shown as a circled number in various sectors. The number
refers to the actual shot number as the game progressed.

SPACESHIP CAPTURE. YOU HAVE 15 PHASOR
SHOTS WITH WHICH TO DESTROY MY TRAVEL
SECTORS. IF ALL MY ADJACENT SECTORS ARE
DESTROYED, I AM CAPTURED. IF YOU HIT ME
OR RUN OUT OF PHASOR ENERGY, THEN
YOU LOSE!

WANT TO PLAY? Y

MY LAST POSITION WAS: X= 7, Y = 7

YOU ARE FIRING TO: X = 7, Y = 7

MY LAST POSITION WAS: X = 8, Y = 6

YOU ARE FIRING TO: X = 6, Y = 6

MY LAST POSITION WAS: X = 8, Y = 7

YOU ARE FIRING TO: X = 6, Y = 8

MY LAST POSITION WAS: X = 8, Y = 6

YOU ARE FIRING TO: X = 6, Y = 5

MY LAST POSITION WAS: X = 8, Y = 5

YOU ARE FIRING TO: X = 6, Y = 4

MY LAST POSITION WAS: X = 7, Y = 6

1 - 33

YOU ARE FIRING TO: X = 6, Y = 7

MY LAST POSITION WAS: X = 8, Y = 7

YOU ARE FIRING TO: X = 7, Y = 4

MY LAST POSITION WAS: X = 7, Y = 6

YOU ARE FIRING TO: X = 8, Y = 4

MY LAST POSITION WAS: X = 8, Y = 6

YOU ARE FIRING TO: X = 8, Y = 6

MY LAST POSITION WAS: X = 7, Y = 5

YOU ARE FIRING TO: X = 8, Y = 7

MY LAST POSITION WAS: X = 7, Y = 6

YOU ARE FIRING TO: X = 7, Y = 6

MY LAST POSITION WAS: X = 7, Y = 5

YOU ARE FIRING TO: X = 7, Y = 5

MY LAST POSITION WAS: X = 8, Y = 5

#!O#! DARN! YOU HAVE ME CAPTURED!!

WANT TO PLAY?

1 - 34

8
@

7
® CD' ~' ~~
~ \

® /'if' 6

G)
,y N

12 ~

5

y

4
® (j) @

3

2

1

1 2 3 4 5 6 7 8
x

PICTORIAL OF THE MOVES MADE IN THE ILLUSTRATIVE
SPACE CAPTURE GAME

1 - 35

LISTING FOR AN 8080 COMPUTER

The following is a listing of the program for an 8080 system. Only
a few minor changes have been made in the program. Notably, the
inclusion of stack pointer initializing instructions (required by the
8080 since it does not have a program counter stack on the CPU
chip) at the labels START and OVER. Additionally, the double re
gister (H and L) load instruction has been utilized when applicable
instead of the individual commands required in an 8008 unit. Several
other minor changes have been made to make use of the more power
ful 8080 instruction set, but the basic structure of the program has
not been altered so that the explanations of the various routines
made earlier need not be elaborated upon.

001 350 176 MSG, LAM
001 351 247 NDA
001 352 310 RTZ
001 353 315 200 004 CAL PRINT
001 356 043 INXH
001 357 303 350 001 JMP MSG

001 370 000 000
001 371 000 000
001 372 000 000
001 373 000 000
001 374 000 000
001 375 000 000
001 376 000 000
001 377 000 000

002 000 061 350 001 START, LXS 350 001
002 003 041 000 000 LXH 000000
002 006 315 350 001 CAL MSG

002 011 061 350 001 OVER, LXS 350001
002 014 041 325 000 LXH 325 000
002 017 315 350 001 CALMSG

1 - 36

002 022 315 000 004 INAGN, CAL CKINP
002 025 247 NDA
002 026 364 020 004 CFSINPUTN
002 031 054 INL
002 032 376 316 CPI316
002 034 302 046 002 JFZ NOT NO
002 037 041 350 000 LXH 350000
002 042 315 350 001 CALMSG
002 045 166 HLT

002 046 376 331 NOTNO, CPI331
002 050 302 022 002 JFZ INAGN
002 053 175 LAL
002 054 346 007 NDI007
002 056 306 001 ADI001
002 060 041 372 001 LXH 372001
002 063 167 LMA
002 064 054 INL
002 065 167 LMA
002 066 056 377 LLI377
002 070 346 007 NDI007
002 072 007 RLC
002 073 366 260 ORI260
002 075 167 LMA
002 076 041 376 001 LXH 376 001
002 101 066 020 LMI020
002 103 041 300 003 LXH 300003
002 106 076 377 LAI377

002 110 167 FILOOP, LMA
002 111 054 INL
002 112 302 110 002 JFZ FILOOP

002 115 041 367 000 PLAYIN, LXH 367 000
002 120 315 350 001 CALMSG
002 123 041 372 001 LXH 372001
002 126 176 LAM
002 127 366 260 ORI260
002 131 315 200 004 CAL PRINT

1 - 37

002 134 041 026 001 LXH 026 001
002 137 315 350 001 CALMSG
002 142 041 373 001 LXH 373 001
002 145 176 LAM
002 146 366 260 ORI260
002 150 315 200 004 CAL PRINT
002 153 315 363 002 CALTRYMOV
002 156 041 376 001 LXH 376 001
002 161 065 DCM
002 162 302 176 002 JFZ CONTIN

002 165 041 125 001 PHASOR, LXH 125001
002 170 315 350 001 CALMSG
002 173 303 011 002 JMPOVER

002 176 041 036 001 CONTIN, LXH 036 001
002 201 315 350 001 CALMSG

002 204 315 020 004 INX, CALINPUTN
002 207 376 261 CPI261
002 211 372 204 002 JTS INX
002 214 376 271 CPI271
002 216 362 204 002 JFS INX
002 221 041 370 001 LXH 370 001
002 224 346 017 NDI017
002 226 167 LMA
002 227 041 026 001 LXH 026 001
002 232 315 350 001 CALMSG

002 235 315 000 004 INY, CAL CKINP
002 240 247 NDA
002 241 364 020 004 CFSINPUTN
002 244 054 INL
002 245 376 261 CPI261
002 247 372 235 002 JTS INY
002 252 376 271 CPI271
002 254 362 235 002 JFS INY
002 257 105 LBL
002 260 041 371 001 LXH 371 001
002 263 346 017 NDI017

1 - 38

002 265 167 LMA
002 266 170 LAB
002 267 346 007 NDI007
002 271 007 RLC
002 272 366 260 ORI260
002 274 041 377 001 LXH 377 001
002 277 167 LMA

002 300 041 370 001 HITEST, LXH 370001
002 303 176 LAM
002 304 054 INL
002 305 054 INL
002 306 276 CPM
002 307 302 333 002 JFZ ZERSEC
002 312 055 DCL
002 313 176 LAM
002 314 054 INL
002 315 054 INL
002 316 276 CPM
002 317 302 333 002 JFZ ZERSEC

002 322 041 072 001 BOMB, LXH 072 001
002 325 315 350 001 CALMSG
002 330 303 011 002 JMPOVER

002 333 056 370 ZERSEC, LLI 370
002 335 176 LAM
002 336 326 001 SUI 001
002 340 007 RLC
002 341 007 RLC
002 342 007 RLC
002 343 127 LDA
002 344 054 INL
002 345 176 LAM
002 346 326 001 SUI 001
002 350 202 ADD
002 351 366 300 ORI300
002 353 157 LLA
002 354 046 003 LHI003
002 356 066 000 LMIOOO

1 - 39

002 360 303 115 002 JMP PLAYIN

002 363 041 377 001 TRYMOV, LXH 377 001
002 366 176 LAM
002 367 016 010 LCI010

002 371 157 TRYSEC, LLA
002 372 107 LBA
002 373 046 003 LHI003
002 375 176 LAM
002 376 041 372 001 LXH 372001
003 001 206 ADM
003 002 376 001 CPI001
003 004 372 101 003 JTS NOGDX
003 007 376 011 CPI011
003 011 362 101 003 JFS NOGDX
003 014 041 374 001 LXH 374001
003 017 167 LMA
003 020 004 INB
003 021 150 LLB
003 022 046 003 LHI 003
003 024 176 LAM
003 025 041 373 001 LXH 373001
003 030 206 ADM
003 031 376 001 CPI001
003 033 372 102 003 JTS NOGDY
003 036 376 011 CPI011
003 040 362 102 003 JFS NOGDY
003 043 041 375 001 LXH 375 001
003 046 167 LMA

003 047 055 CHECK, DCL
003 050 176 LAM
003 051 326 001 SUI 001
003 053 007 RLC
003 054 007 RLC
003 055 007 RLC
003 056 127 LDA
003 057 054 INL
003 060 176 LAM

1 - 40

003 061 326 001
003 063 202
003 064 366 300
003 066 157
003 067 046 003
003 071 176
003 072 247
003 073 302 125 003
003 076 303 102 003

003 101 004
003 102 004
003 103 170
003 104 346 017
003 106 366 260
003 110 015
003 111 302 371 002
003 114 041 201 001
003 117 315 350 001
003 122 ' 303 011 002

003 125 041 374 001
003 130 126
003 131 054
003 132 136
003 133 056
003 135 162
003 136 054
003 137 163
003 140 311

003 260 377
003 261 001
003 262 000
003 263 001
003 264 001
003 265 001
003 266 377

372

NOGDX,
NOGDY,

SAVPOS,

1 - 41

SUI 001
ADD
ORI300
LLA
LHI003
LAM
NDA
JFZ SAVPOS
JMP NOGDY

INB
INB
LAB
NDI017
ORI260
DCC
JFZ TRYSEC
LXH 201 001
CAL MSG
JMP OVER

LXH 374001
LDM
INL
LEM
LLI 372
LMD
INL
LME
RET

377
001
000
001
001
001
377

003 267 000 000
003 270 001 001
003 271 000 000
003 272 377 377
003 273 377 377
003 274 000 000
003 275 377 377
003 276 001 001
003 277 377 377

004 000 CKINP,

004 020 INPUTN,

004 200 PRINT,

1 - 42

HEXP AWN - A MINI CHESS GAME

The possibility of playing a game of chess against a computer has
undoubtably crossed the minds of most people that have had ex
posure to computers in one way or another. However, the game's
near-limitless number of possible board configurations and moves
makes it impossible to program on a small computer system. An al
ternative is to simplify the game to allow it to be programmed for
the small computer system. Hexpawn is one such game.

Hexpawn consists of a 3 x 3 playing board and six pawns, three
pawns for each player. The starting configuration is illustrated be
low. The pawns move in a manner similar to their moves in chess.
A pawn can move one square forward, provided the square it is
moving to is vacant, or one square diagonally to capture an oppo
nent's pawn. A diagonal move cannot be made if an opponent's pawn
is not captured by the move. The object of the game is to move a
pawn to the opponent's side of the board while blocking the oppo
nent from doing so, or capture all of the opponent's pawns. A game
is a draw when no one can make a legal move.

x X X
1 2 3

4 5 6

0
7 0 8

0
9

The game starts by the current board configuration being printed
followed by a request for a human to enter the first move. Each
move is made by entering the number of the square which contains
the pawn to be moved, followed by the number of the square to

2-1

which the pawn is to be moved. The computer then makes its move,
and prints the new board configuration. It then waits for the
human's next move. After each move by the human and by the com
puter, the board is examined to determine if the game has been won
by either side. When this occurs, an appropriate message is printed to
indicate the end of the current game, and a new game is started.
Should the human make an illegal move, the computer rejects the
move and requests a new one.

As one can see, the game is fairly simple and requires no more
than three or four moves by each side to complete. Thus, to make
the game interesting, the program is written to provide the computer
with ARTIFICIAL INTELLIGENCE. The computer is given the
ability to decide which move it should make in an effort to win the
game. That is, after each move is made by the human player, the
computer examines the board and decides which, of all possible
moves, it will make. If a move is made by the computer which results
in the computer losing the game, that move is noted as an undesired
move which should not be made again when that same board con
figuration if encountered. Thus, the computer learns from its mis
takes, and eventually becomes so efficient in its ability to play the
game that the best one can hope for is to play to a draw with the
computer.

This version of Hexpawn is written to reside in five pages (256
bytes per page) of an 8008 or 8080 microcomputer system. The
program may be reduced somewhat be revising or removing some
of the text messages, if the user is limited in the amount of memory
available. There are also several portions of the program which could
be rearranged into subroutines, allowing for further compression of
the program. Also, the table which is used to restore the program to
its initial state of ignorance may be deleted along with the associated
restoration program steps. If this is done, the program can be re
stored by simply reloading the program into memory. Making such
changes to the program can reduce the memory required to less than
four pages. The program was written to make it easy to follow the
logic rather than minimize the amount of memory required. The
reader can see that the memory required is, however, considerably
less than that needed to duplicate the same game using a higher level
language.

2-2

The flow chart on the following page illustrates the basic flow of
the program. As one may observe, the game progresses in the same
manner as a chess game. Each side makes one move at a time, and
checks the board at the completion of each move to determine
whether there is a winner. A verbal description of the flow chart will
now be presented.

FUNDAMENTAL OPERATION OF THE HEXPAWN PROGRAM

The program starts by printing an introductory message which des
cribes the operation of the game for a person that is playing the game
for the first time. A game is then started by displaying the playing
board along with the opening positions of the pawns for the human
player to examine.

The program next requests the human to input a move. When the
move has been received, it is checked to determine whether the
player's move was to the opposite side of the board. That would
indicate the challenger had won the game. If not, the move is entered
on the current board. The program then examines the board and de
termines which move it will make in response to the player's move.
If the human's move was a winning move, the program will remove
the last move that it made from its list of possible moves. Since the
last move that the computer made resulted in a win by the human,
it does not want to make the same mistake twice. One may note
that it requires at least two moves by a human to win a game, so that
there will always be an initial move by the program which can be
deleted.

When the program examines the current playing board, it selects a
move from a list of possible moves which it may make for the
current board configuration. If this list has had all of its entries re
moved, because the human has won as a result of making those
moves, the game is conceded to the human and the move that the
program just made will be removed. Otherwise, the program makes
the move indicated in the list. It then determines whether its move
has won the game or has resulted in a draw (all remaining pawns are
blocked from making a move). If the game is a win or draw, an
appropriate message is printed. A new game is then started. If not,
the game is continued and the program returns to print the current

2-3

PRINT
INTRODUCTORY

MESSAGE

NO

NO

REMOVE LAST MOVE
MADE BY PROGRAM

YES PRINT
>----------1 WINNING 1-----1

YES

2-4

MESSAGE

PRINT
DRAW

MESSAGE

playing board for the player to examine.

TABLES USED BY THE HEXPAWN PROGRAM

The most important portion of a program such as Hexpawn is
that which decides what move is to be made for a specific board
configuration. This operation is performed through the use of four
tables in this program. These tables are used to: Find the matching
board configuration, direct the program to the list of possible moves
for each configuration, select the move to be made, and provide the
actual codes for making the move. Each of these tables are presented
in the listing at the end of this chapter. Due to the size of these
tables, only sample entries of each will be presented in the following
discussion.

The MODEL table is a table used by the program to determine the
current board configuration. It consists of 33 pairs of bytes which
define all the possible board configurations immediately following
a human's move. The first byte of each pair indicates the positions
of the program's pawns on the board. For each pawn in a square,
the bit corresponding to that square is set to '1.' If a pawn is not in a
square, the bit corresponding to that square is '0.' The squares of the
board defined in the first byte are as follows:

BIT POSITION
BOARD POSITION

B7 B6 B5 B4 B3 B2 B1 BO
123456 X X

The reader may note that bits B1 and BO do not have any position
on the playing board defined for them. The reason for this is that if
any of the program's pawns reach position 7, 8, or 9, the game will
be over with the computer winning. It will not be necessary to store
the fact that the program's pawn has reached the last row. Con
sequently, bits B1 and BO will always be set to a zero. The same is
true for the human's pawns, which are defined by the following bit
definitions in the second byte of the model pair.

BIT POSITION
BOARD POSITION

B7 B6 B5
X X 4

2-5

B4 B3 B2
5 6 7

B1
8

BO
9

Bits B7 and B6 are not defined for any position on the board, since
a move to position 1, 2, or 3 is a winning move for the human. Bits
B7 and B6 of the second byte are always a zero.

For example, suppose the first move made by the human was from
square 7 to square 4. The current board configuration would be re
presented by the following byte pair (using octal notation):

PGM'S PAWNS 340
HUMAN'S PAWNS 043

This corresponds to a physical board configuration of:

XIXIX
01 I

1010

When the program finds the byte pair In the model table that
matches the current board, it sets up a pointer to the MODEL-TO
MOVE INDEX table. The model-to-move index table consists of a
list of pointers. Each entry in this table points of a list of possible
moves for the current board configuration. The list of moves is
contained in the MOVE INDEX table.

The move index table contains a list of moves which may be made
for each of the 33 models in the model table. Each list contains
from one to three numbers which indicate a possible move. Each list
is terminated by a 200 octal entry. The move numbers range in value
from 1 to 15, and indicate possible moves taken from the list on the
following page.

The move number is a number which is contained in the move
index table. The number in the FROM column is the square on the
playing board that the program's pawn is to be moved from. The TO
column contains the square that the program's pawn is to be moved
to. The result of the move is indicated in the last column. When a
number of a move is read from the move index table, it is used to set
up a pointer to the MOVE table.

The move table contains a four byte grouping for each of the

2-6

MOVE NO. FROM TO RESULT

1 1 4
2 1 5 CAPTURE
3 2 4 CAPTURE
4 2 5
5 2 6 CAPTURE
6 3 5 CAPTURE
7 3 6
8 4 7 COMPUTER WINS
9 4 8 COMPUTER WINS

10 5 7 COMPUTER WINS
11 5 8 COMPUTER WINS
12 5 9 COMPUTER WINS
13 6 8 COMPUTER WINS
14 6 9 COMPUTER WINS
15 DRAW

moves in the table above. The first byte has one bit set. This bit
represents the original position of the program's pawn which is to
be moved (as discussed previously). The second byte has a bit set
to represent the position to which the program's pawn will be
moved. The third byte indicates the position of the player's pawn
which will be captured by the move, if the move results in a capture.
If no capture will be made, the third byte will be all zeros. The
fourth byte depicts the result of the move. If the fourth byte is zero,
the program will continue with the game by requesting a move by
the human. If the move results in the computer winning, the fourth
byte will contain the ASCII code for the number of the square the
computer will move into to win the game. This code is used in setting
up the winning message. If the move will result in a draw, the fourth
byte will contain the octal value 100. The following example
contains the four byte group used to define move number three. The
reader may note that bytes 2 and 3 both correspond to square 4 of
the playing board. Byte 2 indicates the program's pawn moving to
square 4, and byte 3 indicates the human's pawn at square 4 being
captured by the move.

2-7

MOVE NO.3 BYTE NO.1
BYTE NO.2
BYTE NO.3
BYTE NO.4

100
020
040
000

The move index table is the means by which the program learns
to play the game. Each time a move is selected from the move index
table that location in the table is saved. After every move, a test for
a possible win by the human is made. If the human wins, the location
in the move index table which was saved by the program is zeroed.
Once zeroed, the program will not be able to make the same moVe.
The program will skip that location and make the next move
indicated in the list. For example, suppose in the first game the
player's first move was from 7 to 4. The program would find the first
model in the model table as a match. It would fetch the pointer from
the first location in the model-to-move index table and select move 7
as its first move. This sequence is illustrated below.

MODEL
TABLE

MODEL-TO-MOVE
TABLE

MOVE INDEX
TABLE

MOVE
TABLE

34o--------~~000----------~>007~ .
043 003 004 ~.

003 040
200 004

000
000

From this sequence it may be observed that the program has
moved from square 3 to 6. This move allows the human to win easily
by moving from square 4 to 2 thus capturing the program's pawn.
The program then removes 007 from the list of moves for the first
model by loading a 000 in the first location of that list. Now, if the
human makes the same opening move of square 7 to square 4, the
program will skip the first location in the list of moves for the first
model, since it is zero. It will then make the second move, which is

2-8

move number 4. Thus, the program has learned that move number 7
was not the proper move to make for that particular board model.

Another manner in which the program learns is when all the moves
for a specific model have been zeroed. When the program searches
the move index table for a move, and itxeaches the 200 byte, which
terminates the list, it concedes the game to the human. The program
knows that on the next move, no matter what move it makes, it will
lose the game. At this point the program will go back to the previous
move that it made before getting into the predicament and zero it in
the move index table. In this way, the program is prevented from
making the same move which brought it to the point of having to
concede the game.

TEXT MESSAGES USED IN HEXPAWN

There are several messages used in Hexpawn to inform the human
player of the setup of the game, to indicate when the human has in
put an illegal move, to display the current board configuration, and
to signify the outcome of the game. These messages are of variable
length, and may require more than one line of output. The content
of these messages may be altered by the reader, if desired, to reflect
greater emotion by the program at winning and losing. The messages
presented here were kept fairly low key to conserve memory space,
since the operating program and associated tables alone require
almost 1K bytes of memory. The message strings are presented
next.

"HERE'S THE BOARD
11213
41516
71819

I'M X, YOU'RE 0
MOVE ONE SQUARE FORWARD IF VACANT
OR ONE SQUARE DIAGONALLY TO CAP1'URE
YOU START."

"NO! NO !"

2-9

"I CONCEDE!"

"YOU WIN."

"NO GOOD! MUST START AGAIN"

"DRAW, NO ONE WINS."

"I MOVE TO .
I WIN! YOU LOSE!"

"I WIN! YOU HAVE NO PAWNS."

These text messages are stored as a continuous string of ASCII
characters with each message terminated by a zero byte. The playing
board, however, is stored on the same page as the model table and
temporary data, as it is updated after each move by the program.
The board output, FROM and TO messages are stored as shown next.

"X ! X ! X

O!O!O
FM " " TO "

The program uses a common subroutine to output these messages
to the user's output device. This subroutine is called with memory
pointer registers Hand L set to the starting address of a message. It
fetches each character from the storage area and presents it to the
user's output routine in the accumulator. When it encounters the
zero byte, it returns to the calling program. The listing for this rou
tine is presented next. It is labeled MSG.

MSG, LAM
NDA
RTZ
CAL PRINT
INL
JFZ MSG
INH
JMP MSG

2·10

Fetch character to print
End of message?
Yes, return
No, print character
Incr low addr msg pointer
If non-O, continue output
Else, incr page addr pointer

As one can see, the MSG subroutine is quite straight-forward. It
simply fetches characters from memory starting at the location set
up by the calling program in the Hand L registers, and calls the user
provided subroutine PRINT to output the character ~o the system
output device. The PRINT subroutine must take the character in the
accumulator and perform whatever is required to output that charac
ter to the printer or display device. This routine is free to use
registers B through E in outputting the character. The only require
ment is that if registers Hand L must be used, they must be restored
to their initial value before returning to the MSG subroutine.

The MSG subroutine is called to output every message by this pro
gram. Therefore, in order to change the messages, the reader simply
stores the ASCII codes for the messages desired in a continuous
string in memory, and then stores a zero byte to terminate the
message. To output a message, the program sets the pointer to the
starting address of the message and calls the MSG subroutine.

THE HEXPAWN PROGRAM

The reader may refer to the flow chart presented previously during
the following discussion of the operating portion of the program.

The first part of the Hexpawn program outputs the introductory
message and resets the move index table to its initial state of intelli
gence. The move index table is initialized by transferring the con
tents of the RESTORE MOVE list into the ACTIVE MOVE list. The
restore move list is a copy of the move index table with all the
possible moves contained in it. The active move list is actually the
move index table, which will have its contents zeroed as the program
learns to play the game. This restore routine transfers the upper half
of page 04, which contains the restore list and the beginning of the
text messages, down to the lower half of page 04, which contains
the active move list, or move index table. The actual list, however,·
only requires approximately 3/8 of the page. This should be noted so
that one does not try to store messages in the area from 137 through
177 on page 04.

This restore routine is performed only when the program is started
at the beginning. After each game is completed, the program returns

2 - 11

to the next section, starting at the label AGAIN so that the move
index table will not be reset. The only way that the move index table
can be reset is for the operator to restart the program.

The listing for the initial portion of the Hexpawn program is pre
sented below.

START,

RSTR,

LLI076
LHI005
CALMSG
LHI004
LDIOOO
LEI 200
LLE
LAM
LLD
LMA
IND
INE
JFZ RSTR

Set pointer to intro. msg

Print introduction
Set pointer to move index pg
Init. actv move list pointer
Init. rstr move list pointer
Set restore list pointer
Fetch restore list entry
Set pointer to active list
Store entry in active list
Increment active list pointer
Increment restore list pointer
Done? No, cont. transfer

The next section of the program is the one which prepares the
board output to display the current setup of the playing board.
There are two points at which the program enters this routine. The
first is at the instruction labeled AGAIN. This entry point resets the
playing board, as stored in locations 03 000 for the X pawns, and
03 001 for the 0 pawns. This is the starting setup as shown in the
figure on the first page of this chapter. It then proceeds to the other
entry point of this routine. The second entry point is labeled PBD.
This point is entered when the program is in the middle of a game.
This portion of the routine sets up the board output message to dis
play the current positions of the pawns in the following manner.

First, the board output message is cleared by storing space charac
ters, ASCII code 240, at the locations in the board output that
represent the possible pawn positions. The current positions of the X
pawns and 0 pawns are then determined by the subroutines STX
and STO.

When the STX subroutine is first called, the accumulator contains

2 - 12

the current X board as stored in location 03000. This is rotated left
one bit to load the CARRY with the condition of square 1 with
respect to the presence of an X pawn. If the carry is set to 1, the
ASCII code for an X is stored in the location of square 1 in the board
output message. If the carry is reset to 0, the routine simply returns
and the contents of square 1 remain a space character. The next time
STX is called, the accumulator contains the current X board rotated
to the left one bit so that when it is rotated to the left again the
carry will indicate the presence, or absence, of an X pawn for square
2. Each time the STX routine is called, the memory pointer registers
Hand L are set to indicate the location in the board output message
where the X is to be stored if it is present at that location. The STO
subroutine stores the ASCII code for the 0 character in the locations
in the board output message where there are 0 pawns present in a
manner similar to the STX subroutine. When the board output
message is set to reflect the current board set up, the MSG sub
routine is called to display the board for the player to examine. The
following is the listing of this board set up and display routine.

AGAIN,

PBD,

LLIOOO
LHI003
LMI340
INL
LMI007
LLI302
LBI 240
LMB
LLI304
LMB
LLI306
LMB
LLI311
LMB
LLI313
LMB
LLI315
LMB
LLI 320
LMB
LLI322

2 - 13

Set pointer to current board

Set board to starting setup

Set pointer to brd printout
Set space char to clear board
Store space in '1'

Store space in '2'

Store space in '3'

Store space in '4'

Store space in '5'

Store space in '6'

Store space in '7'

LMB
LLI324
LMB
LLIOOO
LAM
INL
LBM
LLI 302
CAL STX
LLI304
CAL STX
LLI306
CAL STX
LLI311
CAL STX
LCA
LAB
RLC
RLC
CAL STO
LBA
LLI313
LAC
CAL STX
LCA
LAB
CAL STO
LBA
LLI 315
LAC
CAL STX
LAB
CAL STO
LLI320
CAL STO
LLI 322
CAL STO
LLI 324
CAL STO
LLI300

2 - 14

Store space in '8'

Store space in '9'
Set pointer to current X board
Fetch X board
Advance to 0 board
Fetch current 0 board
Set pointer to 1 position
If X here, store character
Set pointer to 2 position
If X here, store character
Set pointer to 3 position
If X here, store character
Set pointer to 4 position
If X here, store character
Save X board
Fetch 0 board
Position to 4

If 0 here, store character
Save 0 board
Set pointer to 5 position
Fetch X board
If X here, store character
Save X board
Fetch 0 board
If 0 here, store character
Save 0 board
Set pointer to 6 position
Fetch X board
If X here, store character
Fetch 0 board
If 0 here, store character
Set pointer to 7 position
If 0 here, store character
Set pointer to 8 position
If 0 here, store character
Set pointer to 9 position
If 0 here, store character
Set pointer to board printout

CALMSG Print current board

STX, RLC Bit set?
RFC No, return
LMI330 Yes, put X in board
RET

STO, RLC Bit set?
RFC No, return
LMI317 Yes, put 0 in board
RET

After the current board is outputted, the program requests the
player to enter a move by first entering the number of the square
which contains the pawn to be moved, and then the number of the
square to which the pawn is to be moved. The input request is in
dicated by the output of the message FM which is output as part of
the board output message. The program then calls the user supplied
input routine to accept a character from the system input device.

The input subroutine is a user provided routine which must input
a character from the keyboard device and return with the ASCII
code for that character in the accumulator. This subroutine is free to
use registers A through E in inputting the character. If registers H
and L are required to be used, they must be restored to their original
contents before returning to the calling program. If the system's
input device does not provide automatic echo of the inputted char
acter to the output device, this input routine should include some
provision for echoing the character received to the output device.
This subroutine is called only in the move input routine being pre
sented here.

When the FROM square is received, it is checked first to deter
mine whether it is a valid number from 1 to 9, since these are the
only valid entries expected. This is checked by calling the FNUM
subroutine. If the input is not within these limits, the ERROR
routine is entered. The error routine is called at several points in the
next group of routines whenever the move which has been input is
found to be illegal. The error routine prints the message "NO! NO!"

2 - 15

and then jumps to the PBD entry point of the program to request a
new input.

If the FROM input is valid) the 260 portion of the ASCII code is
removed, and the binary value of the number entered is stored in
location 03 002. The current 0 board is then checked to determine
whether an 0 pawn does reside in the square designated by the in
put. The binary value of the FROM square is used as a counter by
the RT AL subroutine which rotates the current 0 board until the
carry bit indicates the presence or absence of an 0 pawn in that posi
tion. If there is no 0 pawn, the error routine is entered.

The message TO is then output and the INPUT routine is called
to input the square to which the pawn is to be moved. This input
is also checked by calling the FNUM routine to determine whether
it is within the limits of the expected input. If it is valid, it is changed
to its binary value and stored in location 03 003. The program then
proceeds to the next routine which checks that the move is legal.

The listing for this portion of the program is presented below.

LLI002
CAL INPUT
LMA
CAL FNUM
JTS ERROR
LAM
NDI017
LMA
LBA
DCL
LAM
CAL RTAL
JFC ERROR
LLI333
CALMSG
LLI003
CAL INPUT
LMA

2 - 16

Set pointer to input storage
Input FM move
Save input
Number valid?
No, error
Fetch number
Delete ASCII code
Save FM location
Save bit count for RT AL
Set pointer to 0 board
Fetch 0 board
Is pawn in FM position?
No, illegal move
Set pointer to TO msg
Print TO
Set pointer to input storage
Inpu t TO move
Save TO input

CAL FNUM Input valid?
JTS ERROR No, error
LAM Fetch number
NDI017 Delete ASCII code
LMA Save TO location

ERROR, LLI 364 Set pointer to error message
LHI005
CALMSG Print error message
LHI003
JMP PBD Print current board

RTAL, DCB Decrement bit count
RTZ If zero, return
RLC Else, rotate left
JMP RTAL

FNUM, LAM Fetch ASCII number
CPI261 Is number valid?
RTS No, return with S flag set
SUI 272 If number is valid, return
ADI200 With S flag set
RET

Once the FROM and TO values are received, the move must be
checked to determine whether it is legal. First, a move forward is
checked by subtracting 3 from the FROM value and checking it
with the value stored for the TO value. If the move is forward one
square, the position of the X pawns must be checked to make sure
an X pawn is not blocking the move. The BLK routine is entered to
check the forward move. BLK sets the TO value as a counter and
fetches the current X board, which is then rotated left by the RT AL
subroutine, placing the bit corresponding to the location the 0 pawn
is to be moved, to the sign position in the accumulator. If this bit
is set, the move is blocked by an X pawn and the error routine is
entered. If not, the BLK routine returns to the mainstream of the
program at the HMV label to make the move as entered.

If the move is not forward, a diagonal move to the left or right is

2 - 17

examined. By adding 1 to the forward move, the new value indicates
a diagonal move to the right. If this matches the TO value, and is not
equal to 7, which would be an illegal move from 9 to 7, the capture
of an X pawn is checked, since a diagonal move must capture an
opponent's pawn. If the move is not to the right, 2 is subtracted
from the forward move and a diagonal move to the left is tested. If
this matches and it is not equal to 3, indicating an illegal move from
7 to 3, an X pawn capture will be checked. If any of the above illegal
conditions occur, the error routine is entered. When a capture move
is indicated, the bit position in the current X board of the bit to be
deleted is set up by the RTLP subroutine. The presence of an X
pawn is checked, and if not there, the error routine is entered.

Once the preliminaries are complete, the move is checked for a
win by the human player. If the move is to square 1, 2, or 3, the
human has won the game. The HWIN routine is then entered to per
form the required steps to teach the program. This is accomplished
by zeroing the last move made by the program in the move index
table. The HWIN routine then outputs a congratulatory message and
starts a new game.

If the move does not result in a win, the move is entered in the
current 0 board by resetting the bit indicating the FROM position
and setting the bit indicating the TO position. If a capture was made,
the bit in the current X board in the TO position is reset. .'

The listing for this routine is shown below.

DCL
LAM
SUI 003
INL
CPM
JTZ BLK
ADIOOI
CPM
JTZ CKCAP
SUI 002
CPI003

2 - 18

Set FM pointer
Fetch FM
Is move forward?
Check against TO

Yes, check if legal
No, move right 1 square
Is TO here
Yes, check for capture
No, move left 1 square
Is move from 7 to 3?

JTZ ERROR Yes, illegal
CPM Is TO here?
JFZ ERROR No, illegal move

CKCAP, CPI007 Is move to 7?
JTZ ERROR Yes, error
r.BM Fetch TO move
LAI200 Set up to calculate capture
CAL RTLP Bit by rotating right
LEA Save capture bit
LLIOOO Set X board pointer
NDM Capture?
JTZ ERROR No, illegal move

HMV, LLI002 Set pointer to FM
LAM Fetch FM location
CAL RTAR Set up FM bit
LDA Save FM bit
INL Set pointer to TO
LAM Fetch TO location
CPI004 Human wins?
JTC HWIN Yes, zero last move
CAL RTAR Set up TO bit
LCA Save TO bit
LLI001 Set pointer to current 0 board
LAM Fetch current board
XRD Clear old set
ORC Set new position
LCA Save new 0 board
LMA Save current board
DCL
LAE Fetch capture bit
NDA Capture?
JTZ NOCP No, skip
XRM Yes, delete piece
LMA Save current X board

RTAR, LBA Set bit count
LAI001 Set bit to rotate

RTLP, DCB Decrement bit count
RTZ If zero, return
RRC Else, rotate right

2 -19

JMP RTLP

BLK, LBM Fetch TO move
LLIOOO Set pointer to X board
LAM Fetch X board
CAL RTAL Check for blocked move

SET, NDA Is move blocked?
JTS ERROR Yes, illegal move
LEI 000 Set for no capture
JMP HMV Return to make human move

HWIN, LLI004 Set pointer to last move
LHI003
LLM Fetch last move address
LHI004
LMIOOO Zero last move
LLI315 Set pointer to lose message
LHI005
CALMSG Print lose message
JMP AGAIN Start new game

Now that the human's move has been entered, it is time for the
program to show what it knows about the game. This is the portion
of the program which performs the table search and makes the re
sultant move that the program believes correct at the time for the
given board configuration. The program first searches the model
table for a matching model. If none is found, it is assumed that the
move just input by the human is invalid. Some of the conditions
which were not checked in the move input routine include a move
forward into a square already occupied by an 0 pawn. (This results
in the human eliminating one of his own pawns.) Or, a move from
square 6 to square 4 in which an X pawn is captured. These moves
will slip through the initial validity tests, but they do result in illegal
board setups which are caught here. The only recourse for the pro
gram at this time is to start the game over again because the current
board is unrecognizible.

When a model is found where the current X board and current 0
board match a byte pair in the model table, a pointer is calculated

2 - 20

from the relative position in the model table to the model-to-move
index table. This pointer is calculated by dividing the low address of
the X byte of the matching model by 2 and adding 106 to the result.
The pointer is used to fetch the starting address of the list of possible
moves in the move index table from the model-to-move index table.

The designated list of moves is then examined, and the first non
zero entry is used as the move the program will make in response to
the current board model. If the program encounters a 200 byte in
searching the table, it jumps to the ONO (OH! NO!) routine.
Reaching a 200 byte indicates the program has made every move it
can for the model, and they all lead to defeat. The ONO routine
concedes defeat and also goes to the HWIN routine to eliminate the
previous move with the intent that this model will not be encoun
tered again.

When a move is found, a pointer is set up using the move number
and the four bytes of the move are fetched from the move table. The
last byte of this group is examined first to determine whether the
program has won the game, indicated by the sign bit set in the last
byte. Or, if the game is a draw, indicated by a 100 stored in the last
byte. If the game is won by the computer, the WIN routine is entered
to print the winning message and start a new game. If the game is a
draw, the DRAW routine is entered, to print the draw message and
start a new game. If the last byte is zero, the move is made as in
dicated by the first three bytes. The first byte has the bit set which is
the FROM location of the X move, the second byte has the bit set
which is the TO location of the X board and the third byte has the
bit set which indicates which location in the 0 board has been cap
tured. If the third byte is zero, the move does not capture any 0
pawn, and the game is continued by jumping to PHD.

When a capture is made, the 0 board is checked to determine
whether all the 0 Nwns have been captured. If so, the program has
won the game. At this point, the program deletes the move that it
has just made from the move table because it knows that if there was
only one 0 pawn on the board, the program has a move open which
will allow it to win by moving to the opponent's side rather than
gobbling up the last pawn. The program will then print a message to
inform the human that he has no more pawns!

2 - 21

The listing for this final routine of the Hexpawn program is pre
sented next. The reader will note the common MSG call followed by
a jump to AGAIN which starts a new game. This instruction pair,
labeled CMSG, was set up to conserve program space, as it is a
common sequence used by several routines to print game concluding
messages and then begin a new game.

NOCP, LDM Save new X board
LLIOIO Set pointer to model table

SMDL, LAD Fetch X board
CPM X board match model?
JTZ OHLF Yes, try 0 half
INL Advance table pointer

SMDl, INL
LAL Check for end of table
CPI112 End of table?
JFZ SMDL No, continue search
LLI340 No match, illegal move made
LHI004 Print "NO GOOD!"

CMSG, CALMSG Print message
JMP AGAIN Start new game

OHLF, INL Advance pointer to 0 board
LAC Fetch current 0 board
CPM o boards match?
JFZ SMDI No, continue search

DCL Move pointer to X board
LAL Set up to calculate pointer
RRC Divide by 2
ADIl06 Add to start of mdl index tbl
LLA Set pointer to mdl index tbl
LLM Fetch pntr to move index tbl
LHI004 Set pntr to move index table

MFDl, LAM Fetch move number
NDA Move number here?
JTS ONO No move avail. Human wins
JFZ MOVE Move found, make it
INL Move zeroed, try next location

2 - 22

MOVE,

JMP MFD1

LEL
LLI004
LHI003
LME
RLC
RLC
ADI174
LLA
LDM
INL
LCM
INL
LEM
INL
LAM
NDA
JTS WIN
JFZ DRAW
LLIOOO
LAM
XRD
ORC
LMA
INL
LAE
NDA
JTZ PBD
XRM
LMA
JFZ PBD

LLI004
LLM
LHI004
LMIOOO
LHI005
LLI330
CAL CMSG

2 - 23

Save move location
Set pointer to last move

Save location as last move
Set up pointer to move
Storage table

Set pointer
Fetch FM bit
Advance pointer
Fetch TO bit
Advance pointer
Fetch capture bit
Advance pointer
Fetch contest bit
Is game over?
Yes, comp·uter wins
Yes, draw
Set pointer to X board
Fetch current X board
Clear old position
Set new position
Save new X board
Advance pointer to 0 board
Fetch capture bit
Capture?
No, print new board
Yes, delete piece
Save new 0 board
Non-O, continue game

Set pointer to last move
Fetch last move location
Set pointer to active move list
Cancel last move
Set pointer-to msg "I WIN
YOU HAVE NO PAWNS!"
Print msg and start again

WIN, LLI025 Set pointer to store win move
LHI005
LMA Store win move in message
LLI011 Print "I MOVE TO "
JMP CMSG "I WIN, YOU LOSE"

DRAW, LLI052 Prnt 'DRAW, NO ONE WINS'
LHI005
JMP CMSG Print draw message

ONO, LLI374 Print "I CONCEDE!"
LHI004
CALMSG Then zero last move

Well! That's it! Now the Hexpawn program is presented in its
final assembled form to be loaded into an 8008 based microcom
puter system. The operating portion of the program resides on
pages 01 and 02 and the tables and messages are on pages 03 through
05. Due to the length of assembled listings for the tables and
messages, they will be presented as an octal dump.

001 000 066 076 START, LLI 076
001 002 056 005 LHI005
001 004 106 171 002 CALMSG
001 007 056 004 LHI004
001 011 036 000 LDIOOO
001 013 046 200 LEI 200
001 015 364 RSTR, LLE ~

001 016 307 LAM
001 017 363 LLD
001 020 370 LMA
001 021 030 IND
001 022 040 INE
001 023 110 015 001 JFZ RSTR
001 026 066 000 AGAIN, LLIOOO
001 030 056 003 LHI003
001 032 076 340 LMI340

2 - 24

001 034 060 INL
001 035 076 007 LMI007
001 037 066 302 PBD, LLI302
001 041 016 240 LEI 240
001 043 371 LMB
001 044 066 304 LLI304
001 046 371 LMB
001 047 066 306 LLI 306
001 051 371 LMB
001 052 066 311 LLI311
001 054 371 LMB
001 055 066 313 LLI313
001 057 371 LMB
001 060 066 315 LLI315
001 062 371 LMB
001 063 066 320 LLI 320
001 065 371 LMB
001 066 066 322 LLI322
001 070 371 LMB
001 071 066 324 LLI324
001 073 371 LMB
001 074 066 000 LLIOOO
001 076 307 LAM
001 077 060 INL
001 100 317 LBM
001 101 066 302 LLI302
001 103 106 157 002 CAL STX
001 106 066 304 LLI304
001 110 106 157 002 CAL STX
001 113 066 306 LLI306
001 115 106 157 002 CAL STX
001 120 066 311 LLI311
001 122 106 157 002 CALSTX
001 125 320 LCA
001 126 301 LAB
001 127 002 RLC
001 130 002 RLC
001 131 106 164 002 CAL STO
001 134 310 LBA
001 135 066 313 LLI313

2 - 25

001 137 302 LAC
001 140 106 157 002 CAL STX
001 143 320 LCA
001 144 301 LAB
001 145 106 164 002 CAL STO
001 150 310 LBA
001 151 066 315 LLI 315
001 153 302 LAC
001 154 106 157 002 CAL STX
001 157 301 LAB
001 160 106 164 002 CAL STO
001 163 066 320 LLI320
001 165 106 164 002 CAL STO
001 170 066 322 LLI322
001 172 106 164 002 CAL STO
001 175 066 324 LLI 324
001 177 106 164 002 CAL STO
001 202 066 300 LLI300
001 204 106 171 002 CALMSG
001 207 066 002 LLI 002
001 211 106 000 006 CAL INPUT
001 214 370 LMA
001 215 106 303 002 CAL FNUM
001 220 160 207 002 JTS ERROR
001 223 307 LAM
001 224 044 017 NDI 017
001 226 370 LMA
001 227 310 LBA
001 230 061 DCL
001 231 307 LAM
001 232 106 223 002 CAL RTAL
001 235 100 207 002 JFC ERROR
001 240 066 333 LLI 333
001 242 106 171 002 CAL MSG
001 245 066 003 LLI 003
001 247 106 000 006 CAL INPUT
001 252 370 LMA
001 253 106 303 002 CAL FNUM
001 256 160 207 002 JTS ERROR
001 261 307 LAM

2 - 26

001 262 044 017 NDI017
001 264 370 LMA
001 265 061 DCL
001 266 307 LAM
001 267 024 003 SUI 003
001 271 060 INL
001 272 277 CPM
001 273 150 242 002 JTZ BLK
001 276 004 001 ADI001
001 300 277 CPM
001 301 150 317 001 JTZ CKCAP
001 304 024 002 SUI 002
001 306 074 003 cpr 003
001 310 150 207 002 JTZ ERROR
001 313 277 CPM
001 314 110 207 002 JFZ ERROR
001 317 074 007 CKCAP, cpr 007
001 321 150 207 002 JTZ ERROR
001 324 317 LBM
001 325 006 200 LAI200
001 327 106 234 002 CAL RTLP
001 332 340 LEA
001 333 066 000 LLIOOO
001 335 247 NDM
001 336 150 207 002 JTZ ERROR
001 341 066 002 HMV, LLI002
001 343 307 LAM
001 344 106 231 002 CAL RTAR
001 347 330 LDA
001 350 060 INL
001 351 307 LAM
001 352 074 004 CPI004
001 354 140 323 002 JTC HWIN
001 357 106 231 002 CAL RTAR
001 362 320 LCA
001 363 066 001 LLI001
001 365 307 LAM
001 366 253 XRD
001 367 262 ORC
001 370 320 LCA

2 - 27

001 371 370 LMA
001 372 061 DCL
001 373 304 LAE
001 374 240 NDA
001 375 150 002 002 JTZ NOCP
002 000 257 XRM
002 001 370 LMA
002 002 337 NOCP, LDM
002 003 066 010 LLI010
002 005 303 SMDL, LAD
002 006 277 CPM
002 007 150 034 002 JTZ OHLF
002 012 060 INL
002 013 060 SMD1, INL
002 014 306 LAL
002 015 074 112 CPIl12
002 017 110 005 002 JFZ SMDL
002 022 066 340 LLI 340
002 024 056 004 LHI004
002 026 106 171 002 CMSG, CAL MSG
002 031 104 026 001 JMP AGAIN
002 034
002 034 060 OHLF, INL
002 035 302 LAC
002 036 277 CPM
002 037 110 013 002 JFZ SMD1
002 042
002 042 061 DCL
002 043 306 LAL
002 044 012 RRC
002 045 004 106 ADI106
002 047 360 LLA
002 050 367 LLM
002 051 056 004 LHI004
002 053 307 MFD1, LAM
002 054 240 NDA
002 055 160 314 002 JTS ONO
002 060 110 067 002 JFZ MOVE
002 063 060 INL
002 064 104 053 002 JMPMFD1

2 - 28

002 067 346 MOVE, LEL
002 070 066 004 LLI004
002 072 056 003 LHI003
002 074 374 LME
002 075 002 RLC
002 076 002 RLC
002 077 004 174 ADI174
002 101 360 LLA
002 102 337 LDM
002 103 060 INL
002 104 327 LCM
002 105 060 INL
002 106 347 LEM
002 107 060 INL
002 110 307 LAM
002 111 240 NDA
002 112 160 262 002 JTS WIN
002 115 110 274 002 JFZ DRAW
002 120 066 000 LLIOOO
002 122 307 LAM
002 123 253 XRD
002 124 262 ORC
002 125 370 LMA
002 126 060 INL
002 127 304 LAE
002 130 240 NDA
002 131 150 037 001 JTZ PBD
002 134 257 XRM
002 135 370 LMA
002 136 110 037 001 JFZ PBD
002 141
002 141 066 004 LLI 004
002 143 367 LLM
002 144 056 004 LHI004
002 146 076 000 LMIOOO
002 150 056 005 LHI005
002 152 066 330 LLI330
002 154 106 026 002 CAL CMSG
002 157
002 157 002 STX, RLC

2 - 29

002 160 003 RFC
002 161 076 330 LMI330
002 163 007 RET
002 164
002 164 002 STO, RLC
002 165 003 RFC
002 166 076 317 LMI317
002 170 007 RET
002 171
002 171 307 MSG, LAM
002 172 240 NDA
002 173 053 RTZ
002 174 106 100 006 CAL PRINT
002 177 060 INL
002 200 110 171 002 JFZ MSG
002 203 050 INH
002 204 104 171 002 JMP MSG
002 207
002 207 066 364 ERROR, LLI364
002 211 056 005 LHI005
002 213 106 171 002 CAL MSG
002 216 056 003 LHI003
002 220 104 037 001 JMP PBD
002 223
002 223 011 RTAL, DCB
002 224 053 RTZ
002 225 002 RLC
002 226 104 223 002 JMP RTAL
002 231
002 231 310 RTAR, LBA
002 232 006 001 LAI001
002 234 011 RTLP, DCB
002 235 053 RTZ
002 236 012 RRC
002 237 104 234 002 JMP RTLP
002 242
002 242 317 BLK, LBM
002 243 066 000 LLIOOO
002 245 307 LAM
002 246 106 223 002 CAL RTAL

2 - 30

002 201 240 SET, NDA
002 252 160 207 002 JTS ERROR
002 255 046 000 LEI 000
002 257 104 341 001 JMP HMV
002 262
002 262 066 025 WIN, LLI 025
002 264 056 005 LHI005
002 266 370 LMA
002 267 066 011 LLI011
002 271 104 026 002 JMP CMSG
002 274
002 274 066 052 DRAW, LLI 052
002 276 056 005 LHI005
002 300 104 026 002 JMP CMSG
002 303
002 303 307 FNUM, LAM
002 304 074 261 CPI261
002 306 063 RTS
002 307 024 272 SUI 272
002 311 004 200 ADI200
002 313 007 RET
002 314
002 314 066 374 aNa, LLI 374
002 316 056 004 LHI004
002 320 106 171 002 CALMSG
003 323
002 323 066 004 HWIN, LLI004
002 325 056 003 LHI003
002 327 367 LLM
002 330 056 004 LHI004
002 332 076 000 LMIOOO
002 334 066 315 LLI315
002 336 056 005 LHI005
002 340 106 171 002 CAL MSG
002 343 104 026 001 JMP AGAIN
002 346

TEMPORARY DATA

003 000 000 000 000 000 000

2 - 31

MODEL TABLE

003 010 340 043 340 016 340 025 260 021
003 020 150 041 240 062 300 051 150 014
003 030 160 034 260 012 304 061 140 054
003 040 140 021 140 024 240 041 070 010
003 050 200 070 120 030 104 060 230 010
003 060 240 014 210 042 054 040 060 020
003 070 110 040 110 010 220 020 044 020
003 100 200 060 240 032 100 020 250 052
003 110 040 070

MODEL-TO-MOVE INDEX TABLE

003 112 000 004 010 013 017 023
003 120 027 033 036 041 043 046 051 054
003 130 057 061 063 065 070 073 075 077
003 140 101 103 107 112 115 120 123 125
003 150 131 133 135

MOVE TABLE

003 200 200 020 000 000 200 010 020 000
003 210 100 020 040 000 100 010 000 000
003 220 100 004 010 000 040 010 020 000
003 230 040 004 000 000 020 000 000 267
003 240 020 000 000 270 010 000 000 267
003 250 010 000 000 270 010 000 000 271
003 260 004 000 000 270 004 000 000 271
003 270 000 000 000 100

BOARD OUTPUT MESSAGE

003 300 215 212 330 336 330 336 330 215
003 310 212 240 336 240 336 240 215 212
003 320 317 336 317 336 317 215 212 306
003 330 315 240 000 240 324 317 240 000

2 - 32

MOVE INDEX TABLE

004 000 007 004 003 200 001 004 005 200
004 010 001 002 200 007 006 010 200 007
004 020 003 013 200 007 002 006 200 003
004 030 004 017 200 005 012 200 005 006
004 040 200 010 200 002 003 200 005 017
004 050 200 006 017 200 006 007 200 017
004 060 200 010 200 002 200 005 010 200
004 070 003 016 200 013 200 017 200 017
004 100 200 016 200 007 006 010 200 003
004 110 013 200 005 013 200 002 010 200
004 120 006 016 200 002 200 001 006 017
004 130 200 017 200 017 200 006 200

RESTORE LIST

004 200 007 004 003 200 001 004 005 200
004 210 001 002 200 007 006 010 200 007
004 220 003 013 200 007 002 006 200 003
004 230 004 017 200 005 012 200 005 006
004 240 200 010 200 002 003 200 005 017
004 250 200 006 017 200 006 007 200 017
004 260 200 010 200 002 200 005 010 200
004 270 003 016 200 013 200 017 200 017
004 300 200 016 200 607 006 010 200 003
004 310 013 200 005 013 200 002 010 200
004 320 006 016 200 002 200 001 006 017
004 330 200 017 200 017 200 006 200

MESSAGE STORAGE

004 340 215 212 316 317 240 307 317 317
004 350 304 241 240 315 325 323 324 240
004 360 323 324 301 322 324 240 301 307
004 370 301 311 316 000 215 212 311 240

005 000 303 317 316 303 305 304 305 241

2 - 33

005 010 000 215 212 311 240 315 317 326
005 020 305 240 324 317 240 240 254 215
005 030 212 311 240 327 311 316 241 240
005 040 331 317 325 240 314 317 323 305
005 050 241 000 215 212 304 322 301 327
005 060 254 316 317 240 317 316 305 240
005 070 327 311 316 323 256 000 215 212
005 100 "310 305 322 305 247 323 240 324
005 110 310 305 240 302 317 301 322 304
005 120 215 212 261 336 262 336 263 215
005 130 212 264 336 265 336 266 215 212
005 140 267 336 270 336 271 215 212 311
005 150 247 315 240 330 254 240 331 317
005 160 325 247 322 305 240 317 215 212
005 170 315 317 326 305 240 317 316 305
005 200 240 323 321 325 301 322 305 240
005 210 306 317 322 327 301 322 304 240
005 220 311 306 240 326 301 303 301 316
005 230 324 215 212 317 322 240 317 316
005 240 305 240 323 321 325 301 322 305
005 250 240 304 311 301 307 317 316 301
005 260 314 314 331 240 324 317 240 303
005 270 301 320 324 325 322 305 215 212
005 300 331 317 325 240 323 324 301 322
005 310 324 256 215 212 000 215 212 331
005 320 317 325 240 327 311 316 256 000
005 330 215 212 311 240 327 311 316 241
005 340 240 331 317 325 240 310 301 326
005 350 305 240 316 317 240 320 301 327
005 360 316 323 256 000 215 212 316 317
005 370 241 240 316 317 241 000

006 000 000 INPUT

006 100 000 PRINT

2 - 34

OPERATING THE HEXP AWN PROGRAM

After loading the Hexpawn program into memory, the program
execution is begun by jumping to the start address of the program
which is at location 000 on page 01. The program will print the in
troductory message followed by the starting position of the playing
board. When the FM is displayed, the player enters the number of
the square from which the pawn is to be moved. The program then
prints TO, and the player enters the number of the square to which
the pawn is to go. The program then makes its move, and the new
board configuration is displayed. When the outcome of the game is
evident to the program, a message is printed to indicate win, lose, or
draw. A sample of three consecutive games is listed below. Note how
the program goes through its learning process as the human player
makes the same sequence of moves in each game.

HERE'S THE BOARD
11213
41516
71819
I'M X, YOU'RE 0
MOVE ONE SQUARE FORWARD IF VACANT
OR ONE SQUARE DIAGONALLY TO CAPTURE
YOU START.

XIXIX
I I

01010
FM 8 TO 5

IXIX
xlol
01 10
FM 9 TO 6

I Ix
xlOIX
01 I
FM 5 TO 2
YOU WIN.

2 - 35

XIXIX
I ,

01010
FM 8 TO 5

IXIX
XIOI
01 10
FM 9 TO 6

IXI
XIXIO
01 I
FM 7 TO 5

1 1
XIOIX

I 1
FM 5 TO 2
YOU WIN.
XIXIX

, I
01010
FM 8 TO 5

IXIX
XIOI
01 10
FM 9 TO 6

IXI
XIXIO
01 1
FM 7 TO 5
I MOVE TO 7,
I WIN! YOU LOSE!

AN 8080 LISTING OF THE HEXPAWN PROGRAM

This final listing is the operating portion of the Hexpawn program
written for an 8080 based system. The 8080 version makes use of
the more powerful instruction set of the 8080 mainly in setting up
pointers, and includes instructions to set up the stack pointer, a func
tion not required by the 8008. The operating portion of the 8080

2 - 36

version resides on pages 01 and 02 with the stack beginning at lo
cation 377 on page 02. The tables and messages are located on pages
03, 04, and 05 exactly as defined for the 8008 version. The user de
fined I/O routines should be set up as defined previously. The func
tional operation of the program is exactly as described in the text,
and, therefore, need not be expanded upon. So, for those readers
with 8080 based systems, here is the listing for the Hexpawn
program.

001 000 061 000 003
001 003 041 076 005
001 006 315 165 002
001 011 041 000 004
001 014 021 200 004
001 017 032
001 020 167
001 021 054
001 022 034
001 023 302 017 001
001 026 041 000 003
001 031 066 340
001 033 054
001 034 066 007
001 036 056 302
001 040 006 240
001 042 160
001 043 056 304
001 045 160
001 046 056 306
001 050 160
001 051 056 311
001 053 160
001 054 056 313
001 056 160
001 057 056 315
001 061 160
001 062 056 320
001 064 160
001 065 056 322

2 - 37

START, LXS 000 003
LXH 076 005
CALMSG
LXH 000 004
LXD 200 004

RSTR, LDAD
LMA
INL
INE
JFZ RSTR

AGAIN, LXH 000 003
LMI340
INL
LMI007

PBD, LLI302
LBI240
LMB
LLI304
LMB
LLI306
LMB
LLI311
LMB
LLI313
LMB
LLI315
LMB
LLI320
LMB
LLI322

001 067 160 LMB
001 070 056 324 LLI324
001 072 160 LMB
001 073 056 000 LLIOOO
001 075 176 LAM
001 076 054 INL
001 077 106 LBM
001 100 056 302 LLI302
001 102 315 153 002 CALSTX
001 105 056 304 LLI 304
001 107 315 153 002 CAL STX
001 112 056 306 LLI 306
001 114 315 153 002 CAL STX
001 117 056 311 LLI311
001 121 315 153 002 CAL STX
001 124 117 LCA
001 125 170 LAB
001 126 007 RLC
001 127 007 RLC
001 130 315 160 002 CAL STO
001 133 107 LBA
001 134 056 313 LLI313
001 136 171 LAC
001 137 315 153 002 CAL STX
001 142 117 LCA
001 143 170 LAB
001 144 315 160 002 CAL STO
001 147 107 LBA
001 150 056 315 LLI 315
001 152 171 LAC
001 153 315 153 002 CAL STX
001 156 170 LAB
001 157 315 160 002 CAL STO
001 162 056 320 LLI320
001 164 315 160 002 CAL STO
001 167 056 322 LLI322
001 171 315 160 002 CAL STO
001 174 056 324 LLI324
001 176 315 160 002 CAL STO
001 201 056 300 LLI300

2 - 38

001 203 315 165 002 CALMSG
001 206 056 002 LLI 002
001 210 315 000 006 CAL INPUT
001 213 167 LMA
001 214 315 270 002 CALFNUM
001 217 372 177 002 JTS ERROR
001 222 176 LAM
001 223 346 017 NDI017
001 225 167 LMA
001 226 107 LBA
001 227 055 DCL
001 230 176 LAM
001 231 315 212 002 CAL RTAL
001 234 322 177 002 JFC ERROR
001 237 056 333 LLI 333
001 241 315 165 002 CAL MSG
001 244 056 003 LLI003
001 246 315 000 006 CAL INPUT
001 251 167 LMA
001 252 315 270 002 CALFNUM
001 255 372 177 002 JTS ERROR
001 260 176 LAM
001 261 346 017 NDI017
001 263 167 LMA
001 264 055 DCL
001 265 176 LAM
001 266 326 003 SUI 003
001 270 054 INL
001 271 276 CPM
001 272 312 231 002 JTZ BLK
001 275 306 001 ADI001
001 277 276 CPM
001 300 312 316 001 JTZ CKCAP
001 303 326 002 SUI 002
001 305 376 003 CPI003
001 307 312 177 002 JTZ ERROR
001 312 276 CPM
001 313 302 177 002 JFZ ERROR
001 316 376 007 CKCAP, CPI007
001 320 312 177 002 JTZ ERROR

2 - 39

001 323 106 LBM
001 324 076 200 LAI200
001 326 315 223 002 CAL RTLP
001 331 137 LEA
001 332 056 000 LLIOOO
001 334 246 NDM
001 335 312 177 002 JTZ ERROR
001 340 056 002 HMV, LLI002
001 342 176 LAM
001 343 315 220 002 CAL RTAR
001 346 127 LDA
001 347 054 INL
001 350 176 LAM
001 351 376 004 CPI004
001 353 332 307 002 JTC HWIN
001 356 315 220 002 CAL RTAR
001 361 117 LCA
001 362 056 001 LLI001
001 364 176 LAM
001 365 252 XRD
001 366 261 ORC
001 367 117 LCA
001 370 167 LMA
001 371 055 DCL
001 372 173 LAE
001 373 247 NDA
001 374 312 001 002 JTZ NOCP
001 377 256 XRM
002 000 167 LMA
002 001 126 NOCP, LDM
002 002 056 010 LLI010
002 004 172 SMDL, LAD
002 005 276 CPM
002 006 312 032 002 JTZ OHLF
002 011 054 INL
002 012 054 SMD1, INL
002 013 175 LAL
002 014 376 112 CPI112
002 016 302 004 002 JFZ SMDL
002 021 041 340 004 LXH 340 004

2 - 40

002 024 315 165 002 CMSG, CALMSG
002 027 303 026 001 JMP AGAIN
002 032
002 032 054 OHLF, INL
002 033 171 LAC
002 034 276 CPM
002 035 302 012 002 JFZ SMD1
002 040
002 040 055 DCL
002 041 175 LAL
002 042 017 RRC
002 043 306 106 ADI106
002 045 157 LLA
002 046 156 LLM
002 047 046 004 LHI004
002 051 176 MFD1, LAM
002 052 247 NDA
002 053 372 301 002 JTS ONO
002 056 302 065 002 JFZ MOVE
002 061 054 INL
002 062 303 051 002 JMP MFD1
002 065
002 065 135 MOVE, LEL
002 066 041 004 003 LXH 004 003
002 071 163 LME
002 072 007 RLC
002 073 007 RLC
002 074 306 174 ADI174
002 076 157 LLA
002 077 126 LDM
002 100 054 INL
002 101 116 LCM
002 102 054 INL
002 103 136 LEM
002 104 054 INL
002 105 176 LAM
002 106 247 NDA
002 107 372 251 002 JTS WIN
002 112 302 262 002 JFZ DRAW
002 115 056 000 LLIOOO

2 - 41

002 117 176 LAM
002 120 252 XRD
002 121 261 ORC
002 122 167 LMA
002 123 054 INL
002 124 173 LAE
002 125 247 NDA
002 126 312 036 001 JTZ PBD
002 131 256 XRM
002 132 167 LMA
002 133 302 036 001 JFZ PBD
002 136
002 136 056 004 LLI 004
002 140 156 LLM
002 141 046 004 LHI004
002 143 066 000 LMIOOO
002 145 041 330 005 LXH 330005
002 150 315 024 002 CAL CMSG
002 153
002 153 007 STX, RLC
002 154 320 RFC
002 155 066 330 LMI330
002 157 311 RET
002 160
002 160 007 STO, RLC
002 161 320 RFC
002 162 066 317 LMI317
002 164 311 RET
002 165
002 165 176 MSG, LAM
002 166 247 NDA
002 167 310 RTZ
002 170 315 100 006 CAL PRINT
002 173 043 INXH
002 174 303 165 002 JMP MSG
002 177
002 177 041 364 005 ERROR, LXH 364005
002 202 315 165 002 CALMSG
002 205 046 003 LHI003
002 207 303 036 001 JMPPBD

2 - 42

002 212 005 RTAL, DCB
002 213 310 RTZ
002 214 007 RLC
002 215 303 212 002 JMP RTAL
002 220
002 220 107 RTAR, LBA
002 221 076 001 LAI001
002 223 005 RTLP, DCB
002 224 310 RTZ.
002 225 017 RRC
002 226 303 223 002 JMP RTLP
002 231
002 231 106 BLK, LBM
002 232 056 000 LLI 000
002 234 176 LAM
002 235 315 212 002 CAL RTAL
002 240 247 SET, NDA
002 241 372 177 002 JTS ERROR
002 244 036 000 LEI 000
002 246 303 340 001 JMP HMV
002 251
002 251 062 025 005 WIN, STA 025005
002 254 041 011 005 LXH 011 005
002 257 315 024 002 CALCMSG
002 262
002 262 041 052 005 DRAW, LXH 052 005
002 265 303 024 002 JMP CMSG
002 270
002 270 176 FNUM, LAM
002 271 376 260 CPI260
002 273 370 RTS
002 274 326 272 SUI 272
002 276 306 200 ADI200
002 300 311 RET
002 301
002 301 041 374 004 ONO, LXH 374004
002 304 315 165 002 CALMSG
002 307
002 307 041 004 003 HWIN, LXH 004 003
002 312 156 LLM

2 - 43

002 313 046 004 LHI004
002 315 066 000 LMIOOO
002 317 041 315 005 LXH 315 005
002 322 315 165 002 CALMSG
002 325 303 026 001 JMP AGAIN
002 330

006 000 000 INPUT,

006 100 000 PRINT,

2 - 44

HANGMAN!

HANGMAN is a word game with which most readers are probably
well acquainted. The object of the game is to determine what word
a player is thinking of by guessing the letters that make up the word.
When characters contained in the word are correctly identified, the
positions of the letters that have been ascertained are disclosed. The
goal of the game is to ascertain all the letters making up the con
cealed word with the least amount of incorrect guesses. The game in
the form to be presented traditionally received its name from the
practice of creating a sketch of a stick figure being hung from a hang
man's scaffold. A portion of the stick figure, such as a head, arms,
torso, or legs, would be drawn in each time an incorrect letter guess
was made. If the stick figure was completed before the entire word
had been correctly identified, the player lost.

In the computerized version of the game to be presented here, the
computer will select a word from a list of words (which may be
created by the reader if desired). The computer will then allow a
player to enter guesses as to the letters contained in the word
selected. Each time the player correctly identifies a letter contained
in the word, the characters that have been ascertained will be dis
played in their proper location within the word. Each time a guess is
incorrect, the computer will add a letter towards the spelling of
Hangman! A game is finished when a player correctly identifies the
word selected by the computer. Or, when eight incorrect letter
guesses result in the complete spelling of Hangman!

The game is relatively simple to implement on a computer. How
ever, despite its relative simplicity programming wise, the game can
be surprisingly fun and challenging. This is due primarily to the
nature of the game, augmented by the fact that the programmer has
a virtually unlimited reservoir of alternatives to use when creating
a list of words for the computer to select from when playing a game.

Besides its use as a pure fun game, the program can also be applied
to more serious considerations such as making it a learning or
teaching tool. Since the level of the vocabulary that is placed in the

3 - 1

computer memory may be set as desired by the programmer, the
game can be applied towards helping students develop vocabularies
in virtually any subject. Additionally, one may readily change the
language with which the game is played! French, Spanish, German,
Maylasian! The computer will not care at all! The human player,
though, may be suitably impressed with such variations!

FUNDAMENTAL STRUCTURE OF THE PROGRAM

The structure of the program is straightforward. Essentially, the
computer is directed to select a word from a list of words in
memory. A selected word is transferred to a buffer storage area. The
player is asked to guess the letters in the selected word. Each time
the player makes an entry, the buffer is scanned for any matches
with the letter entered by the player. Appropriate matches are trans
ferred to a working buffer that keeps track of all correct letter
entries made by the player. Correct entries result in the contents of
the working buffer being displayed to show the correct locations of
letters properly identified by the player. Incorrect guesses by the
player result in successive portions of the dreaded HANGMAN! being
displayed. The overall flow of the program to be described here is
illustrated in the flow chart on the following page.

DETAILS OF THE PROGRAM

The operating portion of the program described here fits easily
into less than 1 K of memory excluding a variable length word table.
The word table is simply a list of words. The list may extend as far
as the user desires in available memory. A sample word table is in
cluded in this article. However, the reader may create a new list of
words for the game. The word list provided uses about four pages of
memory if the entire list is used. However, the list may be shortened
if memory space is at a premium. A version of the program
assembled to reside on pages 02 through 04 (operating portion) with
the word table starting on page 05 will be provided as part of this
article.

3-2

NO

HALT

DISPLAY
HANGMAN!

YES

3-3

The first several routines in the program are used to initialize
pointer storage locations and display a WANT A NEW WORD mes
sage to the system operator. Messages to be displayed by the program
are stored as text strings in memory terminated by a zero byte. Text
strings are displayed by calling a subroutine labeled MSG. MSG will
output a string of characters pointed to by the Hand L registers until
a zero byte is detected. The actual MSG subroutine will be presented
later. Suffice it to say at this point that one need only set up the H &
L CPU registers to the starting address of a text string stored in
memory, then call the MSG subroutine when it is desired to display
such messages.

Following the WANT A NEW WORD message display, the pro
gram waits for a response from the operator by calling a user defined
input subroutine labeled INPUTN. INPUTN should be designed by
the reader to accept a character from the system's imput device (such
as a keyboard) and return the character in the accumulator to the
calling program. The INPUTN subroutine should also perform an
echo display function so that the operator may verify the input char
acter. The subroutine is free to utilize CPU registers A through E as
far as this program is concerned. The user should note that this pro
gram expects the eighth bit in the accumulator to be in a '1' con
dition when the remaining seven bits represent an ASCII encoded
character.

If the operator responds to the WANT A NEW WORD query by
entering the letter N for no, the program terminates after displaying
an appropriate response. If a Y for yes is entered, the program con
tinues by calling upon a subroutine called MOVT AB. This subroutine
will fetch a word from the program's word table. It will then transfer
the word into a buffer. The buffer it is transferred into will be re
ferred to as the word buffer in this article. The actual operation of
the MOVTAB subroutine will be presented later. Suffice it to note at
this time that upon return from the MOVT AB subroutine, a new
word will be residing in the word buffer. The program will then be
ready to start the playing of a game of Hangman!

START, LHI003
LLI350
LMI001

3-4

Set pointer to
Number of guesses counter
Initialize counter

NEWONE,

NOMORE,

LLI356
LMIOOO
INL
LMI005
LHI004
LLI 000
CALMSG
CALINPUTN
CPI316
JTZ NOMORE
CPI331
JFZ NEWONE
CAL MOVTAB
JMP GUESS

LHI004
LLI025
CALMSG
HLT

Pointer to word table pointer
Initialize to
Start of
Word table
Pointer to WANT A
NEW WORD? message
Display message
Fetch answer
Was it NO?
Say GOODBYE if no
Else was it a YES?
Ignore input otherwise
If Y, fetch a word
Go play the game

Pointer to GOODBYE
Message
Display message
End of playing session

The next portion of the program begins by sending a message
telling the operator to GUESS A LETTER. The program then
accepts an input from the player. The input is expected to be any
alphabetical character.

The program will then scan the word buffer to see if the letter
received from the player matches with any of the letters in the word.
Whenever a match is detected, the letter is stored in the same posi
tion in a second buffer called the guesses buffer.

It should be pointed out that the word buffer and the guesses
buffer are identical in length. (Eight bytes in this program.) In the
example program, the word buffer starts at location 360 on page 03.
The guesses buffer starts at location 370 on page 03. At the start of
each game, the word buffer, as previously mentioned, will be loaded
with a word taken from the word table. A word may be up to eight
letters in length. If there are not eight letters in a word, the balance
of the word buffer will be filled with zero bytes. Furthermore, at the
time the word buffer obtains a new word, the guesses buffer is filled

3-5

with hyphens.

It thus becomes an easy matter to keep a record of correct guesses
as the Hangman game progresses. Each time a position in the word
buffer matches with the letter guessed by the player, the identical
position in the guesses buffer is changed from a hyphen to the actual
letter! The addressing scheme used in the program makes it easy to
accomplish the objective. When a match is found in the word buffer,
it is only necessary to add 010 (octal) to the buffer pointer to reach
the corresponding position in the guesses buffer. The pictorial below
should clarify the relationship.

[wlolRlol I I
ADDR 360 367

[Wi I R I I 1-1-1
ADDR 370 377

If there is a match between the character inputted and any posi
tion in the word buffer, a flag is set (using register B). The word in
the word buffer is scanned for a matching character until a zero byte
is detected or the buffer pointer reaches the last address allocated for
the buffer.

GUESS,

SCAN,

CKMTCH,

LHI004
LLI037
CAL MSG
CALINPUTN
LCA

LBIOOO
LHI003
LLI360

CPM
JFZ NOMTCH
INB

3-6

Pointer to GUESS A
LETTER message
Display message
Fetch a letter
Save letter in C

Clear B for a flag register
Set pointer to
Word buffer

Look for a match
Skip ahead if not a match
Set B as a flag

LAI010 Advance pointer
ADL To the guesses
LLA Buffer
LMC And deposit character
LAL Decrease pointer
SUI 010 Back to
LLA Word buffer

NOMTCH, INL Advance buffer pointer
LAM See if next character
NDA Is a zero byte
JTZ EOWORD End of word if so
LAI007 See if at
NDL End of word buffer
JTZ EOWORD End of word if so
LAC Restore character to ACC
JMP CKMTCH Check next position

When the entire word buffer has been searched, the program
checks the flag mentioned previously (in CPU register B) to deter
mine if the player had made a correct letter guess. The flag will be set
(have a value) if such was the case. It will still be zero if no match
was detected.

If the flag was set during the SCAN operation, then the player has
correctly determined a letter that exists in the word that the player
is trying to identify. The program must now show the player how
much of the word has been correctly identified. Thus, the program
will first display an encouraging message. Then, the routine simply
outputs the contents of the guesses buffer. The guesses buffer will
contain all the locations of the letters that have been correctly iden
tified during the game. Unidentified locations will still contain a
hyphen. Thus, if a player had correctly identified the letters Wand
R in the spelling of WORD, the computer would output: W-R-.

As the program outputs the contents of the guesses buffer, it
checks to see if any hyphens (referred to in the listing as dashes) are
displayed. A software flag mechanism is used for this purpose. At the
end of the guesses buffer outputting operation, the flag is tested. If

3-7

it is zero, then the player has identified the entire word. The program
will then display a congratulations message and go back to see if the
player wants to continue the game with a new word. If there are any
hyphens left in the guesses buffer as indicated by the software flag
being set, then the program loops back to allow the player to guess
another letter.

The reader may note that the routine examines the word buffer to
determine when to stop outputting the contents of the guesses
buffer. This is because the word buffer will contain a zero byte at the
end of the word if the word is less than eight characters in length.
The guesses buffer does not contain such an indicator.

The portion of the program just discussed is presented next.

EOWORD,

NOTEND,

AHEAD2,

INB
DCB
JTZ HANG IT
LHI004
LLI074
CAL MSG
LHI003
LLI353
LMIOOO
LLI370

LAM
CPI255
JFZ AHEAD2
LEL
LLI353
LBM
INB
LMB
LLE

CAL PRINT
INL
LAL
SUI 010

3-8

At end of word, exercise
The MATCH flag
If = 0, no matches
If match(es), set pointer
To GOOD. YOU HAVE: msg
Display message
Set pointer to
Dashes counter storage
Clear dashes counter
Pointer to guesses buffer

Fetch a character
See if it is a dash
Skip next instruction if not
Save pointer temporarily
Set pointer to dashes counter
Fetch dashes value
Increment
Restore to memory
Restore saved pointer

Print the character
Advance the buffer pointer
Decrease pointer
To word buffer

ENDAGN,

LLA
LAM
NDA
JTZ ENDAGN
LAL
NDI007
JTZ ENDAGN
LAI010
ADL
LLA
JMPNOTEND

LLI353
LBM
INB
DCB
JFZ GUESS
LHI004
LLI120
CAL MSG
JMP NEWONE

Here
Fetch data from word buffer
And see if it is
Zero byte, jump if so
Fetch pointer
See if at end of word
Buffer, jump if so
Else restore pointer
Ahead to
The guesses buffer
Do next character in buffer

Pointer to dashes counter
Fetch value
Exercise the dashes
Flag register
Word not completed
If reach here, set pointer
To congratulations message
Display message
Go play with a new word

For the case when the player has inputted a letter that does not
exist in the word in the word buffer, the program must take a dif
ferent course of action. This case is handled by a portion of the
program that starts at the label HANGIT. Here the operator is in
formed of the incorrect guess by the display of the message NOPE.
This message is then followed by the display of a portion or all of
the HANGMAN! message.

Each time the player guesses incorrectly during a game, a letter is
added to the message spelling out the word HANGMAN! In order to
do this properly, the program maintains a counter of the number of
incorrect guesses made. Then, the computer is simply used to deter
mine how many letters of the HANGMAN! message to display. (The
HANGMAN! message is simply stored in a buffer, starting at location
340 on page 03 in the example program.) If the entire HANGMAN!
statement is not displayed, the balance of the message is shown as
dash signs (hyphens). The number of dash signs to display is cal-

3-9

culated by subtracting the value of the counter (of incorrect guesses
made) from 10 (octal) which is the number of characters in the
HANGMAN! message. Thus, as the game progresses, the message
HANGMAN! will appear more and more complete with each in
correct guess as illustrated below.

H------
HA- - - - -
HAN- - --

HANGMAN!

(First incorrect guess)
(Second incorrect guess)
(Third incorrect guess)

(Eighth incorrect guess)

When eight incorrect guesses have been made in a game, the entire
HANGMAN! message will be displayed. The player then loses the
game. The program will then go back and see if the player wants to
start with a new word.

The listing for the portion of the program that displays the
dreaded HA~GMAN! message is shown next.

HANGIT,

HANGMR,

LHI004
LLI 062
CAL MSG
LHI003
LLI350
LBM
INB
LMB
INL
LMB
LAI010
SUB
INL
LMA
LEI 340

LLE
LAM
CAL PRINT

3 - 10

Pointer to NOPE
Message
Display message
Set pointer to
Number of guesses in counter
Fetch counter
Increment it
Restore the counter
Advance pointer
Save it again
Calculate number of
Dashes left in HANGMAN!
Advance pointer
Save the value in memory
Init. pntr. to HANGMAN bfr

Set pntr to HANGMAN bfr
Fetch a character from buffer
Display it

MRDASH,

INL
LEL
LLI351
LBM
DCB
LMB
JFZ HANGMR
LLI352
LCM
INC
DCC
JTZ NEWONE
LAI255

CAL PRINT
LCM
DCC
LMC
JFZ MRDASH
JMP GUESS

Advance the buffer pointer
Save temporarily in E
Pointer to counter in memory
Fetch counter value
Decrement
Restore to memory
Continue if counter not zero
Pntr to second cntr in memory
Fetch counter value
Exercise counter value
To see if it is zero
Start new game if so
Else load code for "-"

Display a dash
Fetch counter
Decrement
Restore
Until counter is zero
Then continue game

The next portion of the program is a subroutine mentioned pre
viously called MOVTAB. The primary function of this subroutine
is to fetch a new word from a list or table of words stored in
memory. However, the subroutine also performs a few other func
tions that need to be performed each time a new word (actually
representing the start of a new game) is obtained.

The first thing the subroutine does is fetch the value of the
counter used for keeping track of how many incorrect guesses were
made during the last game played. This value will be used to deter
mine how many words in the word table to skip over when selecting
a new word. This method is used so that words will be selected from
the table in a rather arbitrary fashion rather than simply taking the
next word in the list. If the next word in the list was always taken,
players might soon start remembering certain words or sequences of
words which would soon make the game somewhat boring!

The program then initializes the guesses buffer to the all hyphens

3 -11

condition by loading the ASCII code for the dash sign (255 octal)
into all the locations in the buffer. In a similar fashion, the word
buffer is cleared to the all zeroes condition in preparation for its reo
ceiving a new word from the word table.

These initial functions of the subroutine are shown below.

MOVTAB,

DASHFL,

NXWORD,

ZEROFL,

LHI003
LLI 350
LBM
LLI370
LCI010
LAI255

LMA
INL
DCC
JFZ DASHFL

LLI360
LCI010
XRA

LMA
INL
DCC
JFZ ZEROFL

Pointer to number
Of guesses counter
Fetch and save in B
Pointer to guesses buffer
Set a loop counter
Set code for "."

Fill guesses buffer
With dashes
Until counter
Is zero

Set pointer to word buffer
Set a loop counter
Clear the accumulator

Fill word buffer
With zero bytes
Until counter
Is zero

Before explaining the operation of the portion of the subroutine
that extracts a new word from the word table, it will be beneficial to
explain the organization of the table.

The table consists of a list of words stored in memory in the
following format.

A
A+1
A+2

1st letter of a word
2nd letter of a word
3rd letter of a word

3·12

A+N Nth letter of a word
A+N+1 000 word terminator code

B 1st letter of a word
B+1 2nd letter of a word

B+N Nth letter of a word
B+N+1 000 word terminator code

C 1 st letter of a word

C+N+1 000 word terminator code
D 000 end of table terminator

The reader should notice that each word in the list must be ter
minated by a zero byte. Words must also be limited to eight or less
letters in length (or they would overflow the word buffer). The table
is terminated by placing an additional zero byte immediately
following the zero byte word terminator after the last word in the
table. The word table in the program provided in this manual starts
on page 05 at location 000. The table may extend for as long as the
user desires within available memory. (In the sample word list about
100 words are provided. These require about three pages of memory.
Of course, the list may be shortened if necessary. Or the user may
provide a completely original table of words.)

A word is extracted from the word table through the following
procedure. First, a word table pointer is extracted from its storage
location in memory and loaded into CPU registers Hand L. This
pointer will initially point to the first letter of a word in the table.
N ext, a character is extracted from the word table. The character
obtained is first tested to see if it is a zero byte. A zero byte in place
of an expected letter (as the first letter in a word) indicates that the
end of the table has been reached. In that case, the pointer in Hand
L is reset back to the start of the word table.

Next, a second pointer is established in CPU registers D and E.

3 - 13

This pointer will be used to point to the word buffer during transfer
operations from the word table. Now a character is fetched from the
word table. Then the pointers in Hand Land D and E are swapped
and the character is transferred into the word buffer. (Unless a zero
byte indicating the end of a word is detected. In that case no transfer
takes place.) Next, the two sets of pointers are advanced. The process
is then repeated until a whole word has been loaded into the word
buffer.

When an entire word has been transferred into the word buffer,
the routine advances the word table pointer once more. (This is so it
will be advanced over the end of word terminator and be pointing at
the first letter in the next word in the table.) Then the pointer is
restored to its storage location in memory. Next, the routine fetches
the number of guesses counter. It decrements the value of that
counter. If the value is not zero after the decrement operation, then
the routine loops back (to the label NXWORD), and proceeds to read
the next word in the word table into the word buffer. (The reason
for following this procedure was presented earlier.) When the counter
reaches zero, it is stored in memory (at its 000 value) for use during
the next game. The subroutine is then exited.

AHEAD3,

BUFFMR,

LLI 356
LAM
INL
LHM
LLA
XRA
CPM
JFZ AHEAD3
LHI005
LLIOOO

LDI003
LEI 360

LAM
NDA
JTZ NEXT

3 -14

Set pointer to word table pntr
Fetch the low address
Advance pointer
Set the page address
And low address
Clear the accumulator
See if first entry is zero
Skip ahead if not
Reset pointer to start
Of word table if so

Set pointer to word
Buffer in D and E

Fetch a character from table
Exercise flags
If zero, have whole word

NOHIGH,

NEXT,

NOTHI,

CAL SWITCH
LMA
INL
CAL SWITCH
INL
JFZ NOHIGH
INH

JMP BUFFMR

INL
JFZ NOTHI
INH

CAL SWITCH
LLI 356
LME
INL
LMD
DCB
JFZ NXWORD
LLI350
LMIOOO
RET

Else swap pointers
Dep character in word buffer
Advance word buffer pointer
Swap pointers
Advance word table low pntr
If not zero, skip next
Advance table high pointer

Continue transfer from table

Advance table pointer
Low address
And high address if required

Save pointer in D and E
Set pointer to table pointer
Save table pointer low
Address and
High address
Decr number guesses counter
If not zero, get next word
Else set pointer to guesses
Counter and zero counter
Then exit subroutine

That completes the discussion of the major routines in the pro
gram. There are two more minor utility subroutines used in the pro
gram. One of these is simply a subroutine called SWITCH that is used
to exchange the contents of CPU registers Hand L with D and E.
During this operation, CPU register C is used as a temporary register.

SWITCH, LCH
LHD
LDC
LCL
LLE
LEC
RET

3 - 15

Put H into C temporarily
Load D into H
Now orig H from C to D
Put L into C temporarily
Load E into L
Now orig L from C to E
Swapping oper. completed

The other is the subroutine mentioned earlier called MSG. MSG
simply outputs a string of characters from memory to an output
device until it detects a zero byte.

MSG, LAM
NDA
RTZ
CAL PRINT
INL
JFZ MSG
INH
JMP MSG

Fetch a character
See if a zero byte
Indicating end of string
If not, display character
Increment low address pointer
Get next character unless
Need to advance page address
Then get next character

The MSG subroutine above calls on another subroutine which has
been termed PRINT. The PRINT subroutine must be an actual device
operating subroutine that will cause the ASCII character in the accu
mulator to be transmitted to the output device being used by the
system. The PRINT subroutine, which must be provided by the user,
may use the CPU registers B through E if required. It should not alter
the contents of the Hand L CPU registers (unless the subroutine is
able to restore those registers to their original values at the conclu
sion of the process).

ASSEMBLED LISTING OF THE "HANGMAN!" PROGRAM
FOR AN '8008'

An assembled listing of the program for operation on an 8008
system is presented next. The operating portion of the program has
been assembled to reside in pages 02 and 03. Page 04 is reserved for
the various message strings used by the program plus the user pro
vided I/O subroutines. The word table for the program is assumed to
start on page 05. A sample list of words for use with the program is
provided in ASCII form at the end of the assembled listing.

3 - 16

002 000 056 003 START, LHI003
002 002 066 350 LLI 350
002 004 076 001 LMIOO1
002 006 066 356 LLI 356
002 010 076 000 LMIOOO
002 012 060 INL
002 013 076 005 LMI005

002 015 056 004 NEWONE, LHI004
002 017 066 000 LLI 000
002 021 106 110 003 CAL MSG
002 024 106 200 004 CALINPUTN
002 027 074 316 CPI316
002 031 150 047 002 JTZ NOMORE
002 034 074 331 CPI331
002 036 110 015 002 JFZ NEWONE
002 041 106 347 002 CAL MOVTAB
002 044 104 057 002 JMP GUESS
002 047 056 004 NOMORE, LHI004
002 051 066 025 LLI025
002 053 106 110 003 CALMSG
002 256 000 HLT

002 057 056 004 GUESS, LHI004
002 061 066 037 LLI037
002 063 106 110 003 CAL MSG
002 066 106 200 004 CALINPUTN
002 071 320 LCA

002 072 016 000 SCAN, LBIOOO
002 074 056 003 LHI003
002 076 066 360 LLI 360

002 100 277 CKMTCH, CPM
002 101 110 116 002 JFZ NOMTCH
002 104 010 INB
002 105 006 010 LAI010
002 107 206 ADL
002 110 360 LLA
002 111 372 LMC

3 - 17

002 112 306 LAL
002 113 024 010 SUI 010
002 115 360 LLA

002 116 060 NOMTCH, INL
002 117 307 LAM
002 120 240 NDA
002 121 150 136 002 JTZ EOWORD
002 124 006 007 LAI007
002 126 246 NDL
002 127 150 136 002 JTZ EOWORD
002 132 302 LAC
002 133 104 100 002 JMP CKMTCH

002 136 010 EOWORD, INB
002 137 011 DCB
002 140 150 253 002 JTZ HANGIT
002 143 056 004 LHI004
002 145 066 074 LLI074
002 147 106 110 003 CALMSG
002 152 056 003 LHI003
002 154 066 353 LLI353
002 156 076 000 LMIOOO
002 160 066 370 LLI 370

002 162 307 NOTEND, LAM
002 163 074 255 CPI255
002 165 110 177 002 JFZ AHEAD2
002 170 346 LEL
002 171 066 353 LLI 353
002 173 317 LBM
002 174 010 INB
002 175 371 LMB
002 176 364 LLE

002 177 106 300 004 AHEAD2, CAL PRINT
002 202 060 INL
002 203 306 LAL
002 204 024 010 SUI 010
002 206 360 LLA

3 - 18

002 207 307 LAM
002 210 240 NDA
002 211 150 231 002 JTZ ENDAGN
002 214 306 LAL
002 215 044 007 NDI007
002 217 150 231 002 JTZ ENDAGN
002 222 006 010 LAI010
002 224 206 ADL
002 225 360 LLA
002 226 104 162 002 JMP NOTEND

002 231 066 353 ENDAGN, LLI 353
002 233 317 LBM
002 234 010 INB
002 235 011 DCB
002 236 110 057 002 JFZ GUESS
002 241 056 004 LHI 004
002 243 066 120 LLI120
002 245 106 110 003 CALMSG
002 250 104 015 002 JMP NEWONE

002 253 056 004 HANGIT, LHI004
002 255 066 062 LLI062
002 257 106 110 003 CALMSG
002 262 056 003 LHI003
002 264 066 350 LLI350
002 266 317 LBM
002 267 010 INB
002 270 371 LMB
002 271 060 INL
002 272 371 LMB
002 273 006 010 LAI010
002 275 221 SUB
002 276 060 INL
002 277 370 LMA
002 300 046 340 LEI 340

002 302 364 HANGMR, LLE
002 303 307 LAM
002 304 106 300 004 CAL PRINT

3 - 19

002 307 060 INL
002 310 346 LEL
002 311 066 351 LLI351
002 313 317 LBM
002 314 011 DCB
002 315 371 LMB
002 316 110 302 002 JFZ HANGMR
002 321 066 352 LLI352
002 323 327 LCM
002 324 020 INC
002 325 021 DCC
002 326 150 015 002 JTZ NEWONE
002 331 006 255 LAI255

002 333 106 300 004 MRDASH, CAL PRINT
002 336 327 LCM
002 337 021 DCC
002 340 372 LMC
002 341 110 333 002 JFZ MRDASH
002 344 104 057 002 JMP GUESS

002 347 056 003 MOVTAB, LHI003
002 351 066 350 LLI350
002 353 317 LBM
002 354 066 370 LLI 370
002 356 026 010 LeI 010
002 360 006 255 LAI255

002 362 370 DASHFL, LMA
002 363 060 INL
002 364 021 DCC
002 365 110 362 002 JFZ DASHFL

002 370 066 360 NXWORD, LLI360
002 372 026 010 LCI010
002 374 250 XRA

002 375 370 ZEROFL, LMA
002 376 060 INL
002 377 021 DCC

3 - 20

003 000 110 375 002 JFZ ZEROFL
003 003 066 356 LLI 356
003 005 307 LAM
003 006 060 INL
003 007 357 LHM
003 010 360 LLA
003 011 250 XRA
003 012 277 CPM
003 013 110 022 003 JFZ AHEAD3
003 016 056 005 LHI005
003 020 066 000 LLIOOO

003 022 036 003 AHEAD3, LDI003
003 024 046 360 LEI 360

003 026 307 BUFFMR, LAM
003 027 240 NDA
003 030 150 053 003 JTZ NEXT
003 033 106 101 003 CAL SWITCH
003 036 370 LMA
003 037 060 INL
003 040 106 101 003 CAL SWITCH
003 043 060 INL
003 044 110 050 003 JFZ NOHIGH
003 047 050 INH

003 050 104 026 003 NOHIGH, JMP BUFFMR

003 053 060 NEXT, INL
003 054 110 060 003 JFZ NOTHI
003 057 050 INH

003 060 106 101 003 NOTHI, CAL SWITCH
003 063 066 356 LLI 356
003 065 374 LME
003 066 060 INL
003 067 373 LMD
003 070 011 DCB
003 071 110 370 002 JFZ NXWORD
003 074 066 350 LLI 350

3 - 21

003 076 076 000 LMIOOO
003 100 007 RET

003 101 325 SWITCH, LCH
003 102 353 LHD
003 103 332 LDC
003 104 326 LCL
003 105 364 LLE
003 106 342 LEC
003 107 007 RET

003 110 307 MSG, LAM
003 111 240 NDA
003 112 053 RTZ
003 113 106 300 004 CAL PRINT
003 116 060 INL
003 117 110 110 003 JFZ MSG
003 122 050 INH
003 123 104 110 003 JMP MSG

003 340 310 310
003 341 301 301
003 342 316 316
003 343 307 307
003 344 315 315
003 345 301 301
003 346 316 316
003 347 241 241

003 350 000 000
003 351 000 000
003 352 000 000
003 353 000 000

003 356 000 000
003 357 000 000

003 360 000 000
003 361 000 000
003 362 000 000

3 - 22

003 363 000
003 364 000
003 365 000
003 366 000
003 367 000

003 370 255
003 371 255
003 372 255
003 373 255
003 374 255
003 375 255
003 376 255
003 377 255

000
000
000
000
000

255
255
255
255
255
255
255
255

004 000 215 212 212 327 301 316 324 240
004 010 301 240 316 305 327 240 327 317
004 020 322 304 277 240 000 215 212 307
004 030 317 317 304 302 331 241 000 215
004 040 212 307 325 305 323 323 240 301
004 050 240 314 305 324 324 305 322 272
004 060 240 000 215 212 316 317 320 305
004 070 241 240 240 000 215 212 307 317
004 100 317 304 256 240 331 317 325 240
004 110 310 301 326 305 272 240 240 000
004 120 215 212 303 317 316 307 322 301
004 130 304 325 314 301 324 311 317 316
004 140 323 241 000

004 200 INPUTN,

004 300 PRINT,

005 000 310 305 314 314 317 000 301 322
005 010 322 317 327 000 303 317 315 320
005 020 325 324 305 322 000 320 322 305
005 030 315 311 325 315 000 316 317 324
005 040 311 303 305 000 306 325 316 000

3 - 23

005 050
005 060
005 070
005 100
005 110
005 120
005 130
005 140
005 150
005 160
005 170
005 200
005 210
005 220
005 230
005 240
005 250
005 260
005 270
005 300
005 310
005 320
005 330
005 340
005 350
005 360
005 270
006 000
006 010
006 020
006 030
006 040
006 050
006 060
006 070
006 100
006 110
006 120
006 130
006 140

310 305 301 326 331 000 322 325
302 302 305 322 000 322 325 323
324 314 305 000 324 310 327 301
322 324 000/317 331 323 324 305
322 000 317'330 311 304 311 332
305 000 317 323 323 311 306 331
000 317 320 311 316 311 317 316
000 317 317 332 331 000 317 316
305 322 317 325 323 000 316 317
315 301 304 000 316 317 303 324
325 322 316 305 000 316 317 315
311 316 301 324 305 000 316 325
315 323 313 325 314 314 000 304
301 306 306 317 304 311 314 000
323 311 304 305 322 305 301 314
000 303 322 311 303 313 305 324
000 303 317 325 322 311 305 322
000 303 317 323 315 317 323 000
303 310 305 315 311 323 324 000
303 310 305 315 311 303 301 314
000 303 310 311 303 317 322 331
000 303 310 314 317 322 311 316
305 000 303 311 324 311 332 305
316 000 303 311 324 322 325 323
000 303 314 317 323 305 324 000
303 317 307 305 316 324 000 302
311 322 304 000 302 305 305 324
314 305 000 302 305 314 311 305
326 305 000 302 301 324 310 324
325 302 000 302 301 323 313 305
324 000 302 301 316 321 325 305
324 000 302 301 302 302 311 324
324 000 302 301 303 313 302 317
316 305 000 301 325 304 311 302
314 305 000 301 323 320 311 322
311 316 000 301 323 324 305 322
317 311 304 000 301 320 320 322
317 326 301 314 000 301 320 317
307 305 305 000 301 316 316 325
311 324 331 000 301 316 317 304

3 - 24

006 150
006 160
006 170
006 200
006 210
006 220
006 230
006 240
006 250
006 260
006 270
006 300
006 310
006 320
006 330
006 340
006 350
006 360
006 370
007 000
007 010
007 020
007 030
007 040
007 050
007 060
007 070
007 100
007 110
007 120
007 130
007 140
007 150
007 160
007 170
007 200
007 210
007 220
007 230
007 240

311 332 305 000 301 314 325 315
311 316 325 315 Q00301 311 322
000 301 311 323 314 305 000 301
304 312 317 311 316 000 301 302
331 323 323 000 301 302 317 314
311 323 310 000 321 325 305 325
305 000 321 325 311 326 305 322
000 321 325 301 314 315 000 321
325 311 324 305 000 321 325 311
330 317 324 311 303 000 321 325
317 311 316 000 321 325 317 311
324 000 321 325 317 324 311 305
316 324 000 322 301 304 311 317
000 322 301 311 323 311 316 000
322 301 320 324 000 322 301 324
311 317 000 322 301 325 303 317
325 323 000 322 301 331 317 316
000 322 301 332 317 322 000 322
305 301 314 315 000 322 305 305
313 000 322 305 307 311 323 324
305 322 000 322 311 326 305 324
000 323 303 310 317 317 316 305
322 000 323 301 325 316 301 000
323 301 324 311 316 000 323 303
305 320 324 305 322 000 323 303
311 305 316 303 305 000 323 303
322 311 302 302 314 305 000 302
305 310 311 316 304 000 304 311
307 316 311 306 331 000 305 314
314 311 320 324 311 303 000 305
314 317 321 325 305 316 324 000
305 314 325 323 311 326 305 000
306 305 301 324 310 305 322 000
307 301 314 314 317 327 323 000
307 301 322 304 305 316 000 307
301 332 305 314 314 305 000 315
301 303 301 302 322 305 000 326
301 314 311 301 316 324 000 326
305 316 311 323 317 316 000 326
311 326 311 304 000 327 305 311

3 - 25

007 250 307 310 324 000 327 305 311 322
007 260 304 000 327 311 323 305 000 332
007 270 305 322 317 000 332 317 317 314
007 300 317 307 331 000 332 305 316 311
007 310 324 310 000 331 301 327 316 000
007 320 331 317 314 313 000 331 305 314
007 330 314 317 327 000 331 325 314 305
007 340 000 324 322 311 303 313 314 305
007 350 000 305 316 304 000 000

A list of the messages used in the game (which reside on page 04
in the assembled listing just presented) is shown below in the order
in which they appear in the messages table.

WANT A NEW WORD?

GOODBYE!

GUESS A LETTER:

NOPE!

GOOD. YOU HAVE:

CONGRATULATIONS!

For those that want to use the word list supplied as an example,
(pages 05 through 07 in the listing just presented) the list on the
following page will serve as a reference. The words appear in the
same order as they are stored in the list. (Remember, however, that
the program will skip around the list as it selects the next word that
will be played!)

3 - 26

HELLO
ARROW
COMPUTER
PREMIUM
NOTICE
FUN
HEAVY
RUBBER
RUSTLE
THWART
OYSTER
OXIDIZE
OSSIFY
OPINION
OOZY
ONEROUS
NOMAD
NOCTURNE
NOMINATE
NUMSKULL
DAFFODIL
SIDEREAL
CRICKET
COURIER
COSMOS
CHEMIST
CHEMICAL
CHICORY
CHLORINE
CITIZEN
CITRUS
CLOSET
COGENT
BIRD
BEETLE
BELIEVE
BATHTUB

BASKET
BANQUET
BABBITT
BACKBONE
AUDIBLE
ASPIRIN
ASTEROID
APPROVAL
APOGEE
ANNUITY
ANODIZE
ALUMINUM
AIR
AISLE
ADJOIN
ABYSS
ABOLISH
QUEUE
QUIVER
QUALM
QUITE
QUIXOTIC
QUOIN
QUOIT
QUOTIENT
RADIO
RAISIN
RAPT
RATIO
RAUCOUS
RAYON
RAZOR
REALM
REEK
REGISTER
RIVET
SCHOONER

3 - 27

SAUNA
SATIN
SCEPTER
SCIENCE
SCRIBBLE
BEHIND
DIGNIFY
ELLIPTIC
ELOQUENT
ELUSIVE
FEATHER
GALLOWS
GARDEN
GAZELLE
MACABRE
VALIANT
VENISON
VIVID -
WEIGHT
WEIRD
WISE
ZERO
ZOOLOGY
ZENITH
YAWN
YOLK
YELLOW
YULE
TRICKLE
END

OPERATING THE PROGRAM

Once the program has been loaded into memory (along with the
user provided I/O routines!) the program is ready to operate. Simply
start program execution at page 02 location 000. Operation from
then on is directed by the program. A sample of the program's opera
tion is illustrated below.

WANT A NEW WORD? Y
GUESS A LETTER: A
NOPE! H------
GUESS A LETTER:
GOOD. YOU HAVE:
GUESS A LETTER:
NOPE! HA- - - - -

E
- E - - -
R

GUESS A LETTER: L
GOOD. YOU HAVE: -ELL-
GUESS A LETTER: B
NOPE! HAN- - --
GUESS A LETTER: S
NOPE! HANG- - -
GUESS A LETTER: 0
GOOD. YOU HAVE: -ELLO
GUESS A LETTER: H
GOOD. YOU HAVE: HELLO
CONGRATULATIONS!

WANT A NEW WORD? Y
GUESS A LETTER: A
NOPE! H------
GUESS A LETTER:
GOOD. YOU HAVE:
GUESS A LETTER:
GOOD. YOU HAVE:
GUESS A LETTER:
GOOD. YOU HAVE:
GUESS A LETTER:
NOPE! HA- - - - -

3 - 28

E
-----E
I
---I-E
o
-O-I-E
U

GUESS A LETTER: R
NOPE! HAN- - --
GUESS A LETTER: T
GOOD. YOU HAVE: - OTI - E
GUESS A LETTER: N
GOOD. YOU HAVE: NOT I - E
GUESS A LETTER: C
GOOD. YOU HAVE: NOTICE
CONGRATULATIONS!

WANT A NEW WORD? Y
GUESS A LETTER: W
NOPE! H- - - - - -
GUESS A LETTER: Y
NOPE! HA- - - - -
GUESS A LETTER: P
NOPE! HAN- - --
GUESS A LETTER: N
NOPE! HANG- - -
GUESS A LETTER: G
NOPE! HANGM--
GUESS A LETTER: V
NOPE! HANGMA-
GUESS A LETTER: C
NOPE! HANGMAN-
GUESS A LETTER: X
NOPE! HANGMAN!

WANT A NEW WORD? N
GOODBYE!

The program will continue to operate until a player responds with
a N for NO to the WANT A NEW WORD query. At that time, the
program will halt. If it is desired to continue playing after a NO
response to that question, the program may simply be restarted at
the starting address (page 02 location 000).

3 - 29

ASSEMBLED LISTING OF THE PROGRAM
FOR AN 8080 SYSTEM

The following is an assembled listing of the HANGMAN! program
designed to run on an 8080 system. Only minor changes have been
made in the program to take advantage of some of the special capa
bilities of the 8080 instruction set. However, the basic organization
of the program has not been altered so that the previous detailed
discussion of the program's operation still applies. The message table
and word list would be in the same format as the 8008 version. Of
course, the user will need to provide the appropriate I/O routines for
either version of the program. They can be placed in the same
memory locations for the following 8080 version as was suggested
for the 8008 example (on page 04 starting at locations 200 (input)
and 300 (output)).

002 000 041 350 003 START, LXH 350 003
002 003 066 001 LMI001
002 005 056 356 LLI356
002 007 066 000 LMIOOO
002 011 054 INL
002 012 066 005 LMI005

002 014 061 200 004 NEWONE, LXS 200 004
002 017 041 000 004 LXH 000 004
002 022 315 032 003 CALMSG
002 025 315 200 004 CALINPUTN
002 030 376 316 CPI316
002 032 312 050 002 JTZ NOMORE
002 035 376 331 CPI331
002 037 302 014 002 JFZ NEWONE
002 042 315 327 002 CAL MOVTAB
002 045 303 057 002 JMP GUESS

002 050 041 025 004 NOMORE, LXH 025 004
002 053 315 032 003 CAL MSG
002 056 166 HLT

3 - 30

002 057 041 037 004 GUESS, LXH 037004
002 062 315 032 003 CALMSG
002 065 315 200 004 CALINPUTN
002 070 117 LCA

002 071 006 000 SCAN, LBIOOO
002 073 041 360 003 LXH 360003

002 076 276 CKMTCH, CPM
002 077 302 114 002 JFZ NOMTCH
002 102 004 INB
002 103 076 010 LAI010
002 105 205 ADL
002 106 157 LLA
002 107 161 LMC
002 110 175 LAL
002 111 326 010 SUI 010
002 113 157 LLA

002 114 054 NOMTCH, INL
002 115 176 LAM
002 116 247 NDA
002 117 312 134 002 JTZ EOWORD
002 122 076 007 LAI007
002 124 245 NDL
002 125 312 134 002 JTZ EOWORD
002 130 171 LAC
002 131 303 076 002 JMP CKMTCH

002 134 004 EOWORD, INB
002 135 005 DCB
002 136 312 243 002 JTZ HANGIT
002 141 041 074 004 LXH 074 004
002 144 315 032 003 CALMSG
002 147 041 353 003 LXH 353 003
002 152 066 000 LMIOOO
002 154 056 370 LLI 370

002 156 176 NOTEND, LAM
002 157 376 255 CPI255

3 - 31

002 161 302 171 002 JFZ AHEAD2
002 164 135 LEL
002 165 056 353 LLI353
002 167 064 INM
002 170 153 LLE

002 171 315 300 004 AHEAD2, CAL PRINT
002 174 054 INL
002 175 175 LAL
002 176 326 010 SUI 010
002 200 157 LLA
002 201 176 LAM
002 202 247 NDA
002 203 312 223 002 JTZ ENDAGN
002 206 175 LAL
002 207 346 007 NDI007
002 211 312 223 002 JTZ ENDAGN
002 214 076 010 LAI010
002 216 205 ADL
002 217 157 LLA
002 220 303 156 002 JMP NOTEND
002 223 056 353 ENDAGN, LLI353
002 225 064 INM
002 226 065 DCM
002 227 302 057 002 JFZ GUESS
002 232 041 120 004 LXH 120 004
002 235 315 032 003 CALMSG
002 240 303 014 002 JMP NEWONE

002 243 041 062 004 HANG IT, LXH 062 004
002 246 315 032 003 CALMSG
002 251 041 350 003 LXH 350 003
002 254 064 INM
002 255 176 LAM
002 256 054 INL
002 257 167 LMA
002 260 076 010 LAI010
002 262 226 SUM
002 263 054 INL
002 264 167 LMA

3 - 32

002 265 036 340 LEI 340

002 267 153 HANGMR, LLE
002 270 176 LAM
002 271 315 300 004 CAL PRINT
002 274 054 INL
002 275 135 LEL
002 276 056 351 LLI351
002 300 065 DCM
002 301 302 267 002 JFZ HANGMR
002 304 056 352 LLI352
002 306 064 INM
002 307 065 DCM
002 310 312 014 002 JTZ NEWONE
002 313 076 255 LAI255

002 315 315 300 004 MRDASH, CAL PRINT
002 320 065 DCM
002 321 302 315 002 JFZ MRDASH
002 324 303 057 002 JMP GUESS

002 327 041 350 003 MOVTAB, LXH 350 003
002 332 106 LBM
002 333 056 370 LLI370
002 335 016 010 LCI010
002 337 076 255 LAI255

002 341 167 DASHFL, LMA
002 342 054 INL
002 343 015 DCC
002 344 302 341 002 JFZ DASHFL

002 347 041 360 003 NXWORD, LXH 360 003
002 352 016 010 LCI010
002 354 257 XRA

002 355 167 i1EROFL, LMA
002 356 054 INL
002 357 015 DCC
002 360 302 355 002 JFZ ZEROFL

3 - 33

002 363 052 356 003 LHLD 356 003
002 366 257 XRA
002 367 276 CPM
002 370 302 376 002 JFZ AHEAD3
002 373 041 000 005 LXH 000 005

002 376 021 360 003 AHEAD3, LXD 360003

003 001 176 BUFFMR, LAM
003 002 247 NDA
003 003 312 014 003 JTZ NEXT
003 006 022 STAD
003 007 023 INXD
003 010 043 INXH
003 011 303 001 003 JMP BUFFMR

003 014 043 NEXT, INXH
003 015 042 356 003 SHLD 356003
003 020 005 DCB
003 021 302 347 002 JFZ NXWORD
003 024 041 350 003 LXH 350 003
003 027 066 000 LMIOOO
003 031 311 RET

003 032 176 MSG, LAM
003 033 247 NDA
003 034 310 RTZ
003 035 315 300 004 CAL PRINT
003 040 043 INXH
003 041 303 032 003 JMP MSG

3 - 34

PUBLICATIONS FROM SCELBI COMPUTER CONSULTING, INC.

MACHINE LANGUAGE PROGRAMMING for the '8008'
(and similar microcomputers) $19.95

ASSEMBLER PROGRAMS FOR THE '8008' $17.95

AN '8008' EDITOR PROGRAM $14.95

'8008' MONITOR ROUTINES $11.95

AN '8080' ASSEMBLER PROGRAM $17.95

AN '8080' EDITOR PROGRAM $14.95

'8080' MONITOR ROUTINES $11.95

SCELBI'S FIRST BOOK OF COMPUTER GAMES
FOR THE '8008'/,8080' $14.95

SCELBI'S GALAXY GAME FOR THE 8008/8080 $14.95

THE ABOVE PUBLICATIONS MAY BE ORDERED
DIRECTL Y FROM:

SCELBI COMPUTER CONSULTING, INC.
1322 Rear - Boston Post Road

Milford, CT 06460

