SCELBI-8H USER'S MANUAL

AUTHOR: NAT WADSWORTH

© COPYRIGHT 1974
SCELBI COMPUTER CONSULTING, INC.
1322 REAR - BOSTON POST ROAD
MILFORD, CT. 86468

= ALL RIGHTS RESERVED =~

THE BASIC OPFRATION OF A SCFLBl1-8H MINI-COMPUTER

THERE HAVE BEEN NUMEROUS FXAMPLFS PUT FORTH OVFR THF YFARS

TO ILLUSTRATE THE BASIC SCHEMF BEHIND THE OPERATION OF COMPUTERS.

THE SCHEME 1S DECEPTIVELY SIMPLE AND. INCREDIBLY POVERFUL. THE

POVFR COMES FROM THE SPEED WITH WHICH THF MACHINES CAN PFRFORM

THE SIMPLE OPERATIONS. THE FUNDAMENTAL CONCEPT OF THE COMPUTER
. 1S THAT IT IS A MACHINE THAT IS CAPABLE OF DOING TW0 FUNDAMENTAL
OPERATIONS AT VERY HIGH SPEED: FIRST IT IS ABLE TO OBTAIN A PIECE

OF INFORMATION FROM A STORAGE ARFA AND PERFORM A FUNCTION AS DIRECTED
BY THE INFORMATION IT OBTAINS, AND SFCONDLY, BASED ON ITS CURRENT
STATUS, IT IS ABLE TO ASCERTAIN WHERF TO OBTAIN THE NEXT PIECE OF
INFORMATION THAT WILL GIVE IT FURTHER "DIRECTIONS.'" THIS FUNDAMENTAL
CONCFPT IS THE KEY TO THF OPERATION OF ALL DIGITAL COMPUTERS AND
WHILE. IT IS A SIMPLE CONCEPT, IT CAN BE BUILT UPON TO ARRIVE AT ALL
THE COMPLFX OPFRATIONS COMPUTERS OF TODAY CAN PERFORM. HOW THIS IS
DONE 1S WHAT THIS BOOK IS ABOUT.

ONF OF THF BFST ANALOGIES FOR DESCRIBING A COMPUTFR'S BASIC OPER-
ATIONS IS TO CONSIDER A BANK OF BOXES, SIMILAR TO A BANK OF POST OFFICE
MAIL BOXES. A PIECE OF PAPER CONTAINING "DIRFCTIONS' CAN BF PLACED IN
EACH BOX. A PERSON IS DIRFCTFD TO GO TO THF BANK OF BOXES, AND AFTER
STARTING AT A GIVEN PLACE, TO OPEN FACH BOX, WITHDRAW THE PIECE OF
PAPER AND FOLLOW THE DIRECTIONS THERF-ON. THE BOXFS ARE LABFLED IN
AN ORDERLY FASHION, AND THE PERSON IS ALSO TOLD, THAT UNLESS A PIFCE
OF PAPFR IN A BOX DIRECTS OTHERWISE, WHEN THE PERSON IS FINISHED PER-
FORMING THE TASK DIRECTED THEY ARF TO RFPLACE THE PAPER IN THE BOX
AND PROCEED TO OPEN THE NEXT BOX. NOTE, HOWEVER, THAT A PIECE OF PAPFR

MAY GIVE DIRECTIONS TO ALTER THE SEQUENCE IN WHICH THF PERSON IS TO
OPEN BOXES.

FIGURF 1| ON THE NEXT PAGE SHOWS A PICTURE OF A SET OF SUCH BOXES.
FACH BOX IS LABELFD FOR IDENTIFICATION,

TO PRESENT A VIEW OF A COMPUTFRS OPFRATION, ASSUME A PERSNN HAS
BEFN TOLD TO START AT BOX Al AND TO FOLLOV THF DIRFCTIONS CONTAINED
ON THE PIECES OF PAPFR IN THE BOXES UNTIL A PIECE OF PAPER CONTAINING
THE DIRECTION *STOP"™ IS FOUND IN ONF OF THE BOXFS. 1IN THIS EXAMPLE
THF PERSON FINDS THE FOLLOWING "INSTRUCTIONS."

IN BOX Al IS THE MESSAGF: "TAKE THE MATHFMATICAL VALUE OF | AND
WVRITE IT DOWN ON A SCRATCH PAD.,"™

SINCE THE "INSTRUCTION™ IN BOX Al ONLY PFRTAINED TO SOMF FUNCTION
THAT THE PFRSON WAS TO PFRFORM, AND DID NOT DIRFCT THFE PFRSON TO GO TO
SOME SPECIFIC BOX, THFN THE PEFRSON WILL SIMPLY GO ON TO THE NFEXT BOX
. IN THF ROV. BOX A2 CONTAINS THE INFORMATION:

*ADD THE NUMBFR 2 TO ANY VALUF ALRFADY. PRFESENT ON YOUR SCRATCH PAD."

THE PFRSON WILL AT THIS POINT PFRFORM AN ADDITION AND HAVE A TOTAL
"ACCUMULATED" VALUE ON THE PAD OF SCRATCH PAPFR. THF ACCUMULATED VALUF
WOULD BE 3. SINCF THERE ARF NO OTHFR DIRFCTIONS IN BOX A2, THF OPFRATOR
WOULD CONTINUE ON TO OPFN BOX A3 WHICH HAS THE FOLLOVING MESSAGE:

“PLACE ANY ACCUMULATED MATHEMATICAL VALUE YOU HAVE ON YOUR SCRATCH
PAD INTQO BOX HB."

THUS THE PERSON WOULD TEAR THE CURRENT SHEET OFF THF "“SCRATCH PAD"
AND PLACE IT - CONTAINING THF VALUE *3" - INTO BOX H8. NOTF THOUGH,

- l -

THAT WHILEF THE PFRSON WAS DIRECTED TO PLACE THE ACCUMULATED VALUE ON
THE SCRATCH PAD INTO BOX H8, THE PERSON WAS NOT DIRECTED TO ALTER THE
SEQUENCE. IN WHICH TO OBTAIN NEV "INSTRUCTIONS" SO THF PERSON WOULD PRO-
CEED TO OPEN BOX A4 WHICH CONTAINS THF DIRFCTIVE:

“TAKE THE MATHEMATICAL VALUE OF 6 AND PLACE IT ON YOUR SCRATCH
PAD."*

® 9 6 0 000 000000 OO0 E LSOO NOESOON TN NRSONS NSNS

L] .] L] L] L]] . .
« Al . A2 « A3 « A4 . A5 « A6 - AT . AB .
L] L] ® L] L 4 L . L []
® 0 0000 0088000000 5000 OSSOSO OO ONSSSIDSPSIESIEOGSSES
L [L] L] [* [] L] L]
L Bl L4 82 [] Ba L] Ba L] Bs L 86 * B7 L] Bg .
.'....‘..’..................Q;...........
L e ® L] L] * L] L4 .
. Cl .C2 .€C3.C4.0C65.6C6.C7.C8.
L] L] L] L] L] L] * L] L]
LG B B B B B B B B B B BN AN BRI BECRE BN R B B BE BE BN BN B BN BN X BN RN BE BN BY BN BN AN
L] [) * L] L] L] L] * L
- DI « D2 . D3 « D4 . DS . D6 . D7 . D8 .
L] L] L4 [] L] L 4 L L] [
® & 0 0008000000008 0800000000000 eNNIDGS
. [L [] . L] L] L o
L El L 4 52 L4 Es L Elx L ES ° F6 L] F7 [] ES L 4
L] L . [L] L] L] L] e
G O 0 000000000 00090080 0000 00HOOEOPNOIPNOESEISTPBES
L 4 L] L [] [) L L] L .
« FI « F2 . ¥3 « F4 . F5 . F6& » F7 . F8 .
L]] [] L] L]] L] L]]
® & 0 06 00 0000000 O OO0 O PO O OOOSNOCLEDESOOSINDIEGOECEGBSETOS TSI
L * L d L L] L] L] L L
« G! ¢« G2 ¢« G3 « G4 « G5 « G6& « GT . GB .
. . * * L] L] L] L4 L]
O 0 006 ¢ 00060 00900 C OO0 SO PS OSSO0 O8N 0SSN GEOEDPES
L] L) L L[] L L [] L L]
« Hl « H2 « H3 « H4 . H5 o« H6 « H7 . H8 .
L[] L] L : [) L] L 2 L] L] L]
O 0005000000000 OO0 H 0L SO0 OESNSSLEEESOSESIEISITPOGES

FIGURE |

GOING ON TO BOX A5 THE PERSON FINDS:

“ADD 3 TO THE PRESENT VALUE ON YOUR SCRATCH PAD.™

THIS IS OBVIOUSLY JUST A *“DATA VORD.™ THE OPFRATOR ADDS THE
VALUE é FROM THE PRFVIOUS BOX TO THE NUMBER 3, NOTING THE CALCULA-
TION ON THE SCRATCH PAD AND PROCEEDS TO OPEN BOX Aé6:

“"PLACE ANY ACCUMULATED VALUE YOU HAVE ON YOUR SCRATCH PAD INTO
BOX H7."

THE PERSON THUS WOULD PUT THE VALUE “9" ON A PIECE OF PAPER (FROM
THE SCRATCH PAD). INTO THE DESIGNATED BOX AND PROCEED TO OPEN BOX A7:

-2-

“GET THE VALUE PRESENTLY STORED IN BOX H8 AND SAVE THE VALUE ON
YOUR SCRATCH PAD."

THIS IS A SIMPLE OPERATION AND THE PERSON PROCEEDS TO OPEN UP
BOX AS8: :

“FETCH THE VALUE IN BOX H7: SUBTRACT THE VALUE ON YOUR SCRATCH

PAD FROM THE VALUE FOUND IN BOX H7. LFAVE THE RESULT ON YOUR SCRATCH
PAD.* :

WHEN THE OPERATOR HAS PERFORMED THIS OPERATION THE OPERATOR WILL
HAVE FINISHED THE *“A* ROV AND WILL THEN CONTINUE OBTAINING "INSTRUCT-
IONS* BY GOING TO THE "B" ROW AND OPENING BOX Bl WHERE MORE DIREC~
TIONS ARE FOUND:

*IF THE PRESENT VALUE ON YOUR SCRATCH PAD IS NOT ZERO GO TO BOX
83." D

AT THIS TIME IF THE PERSON CHECKS THE SCRATCH PAD IT WILL BE
FOUND THAT THE VALUE ON THE SCRATCH PAD IS INDEED NON-ZERO AS THE
LAST CALCULATION PFRFORMED ON THE SCRATCH PAD WAS TO SUBTRACT THE VALUE
IN BOX H8 FROM THE VALUE IN BOX H7. 1IN THIS EXAMPLE THAT WOULD BE:

9 - 3 = 6

THEREFORE THE DIRECTIONS IN BOX Bl FOR THIS PARTICULAR CASE WILL TELL
THE OPERATOR TO *JUMP OVER'" BOX B2 AND GO TO BOX B3. FOR THE SAKE OF
COMPLETENESS, HOWEVER, BOX B2 DOES CONTAIN AN INSTRUCTION, FOR HAD THE
VALUE ON THE SCRATCH PAD BEEN ZERO THE OPERATOR WOULD NOT HAVE “JUMPED
OVER" BOX B2 AND WOULD HAVE FOUND THE FOLLOWING MESSAGE INSIDE BOX B2:

“THE VALUES IN BOX H7 AND H8 ARE OF EQUAL VALUE. STOP!*™

HOWEVER, FOR THE VALUES USED IN THIS EXAMPLE, THE PERSON WOULD
HAVE "JUMPED"™ TO BOX B3 WHERE THE FOLLOWING DIRECTIVE WOULD BE FOUND:

*1F THE PRESENT VALUE ON YOUR SCRATCH PAD IS A "“NEGATIVE NUMBER"
JUMP TO BOX BS5."

SINCE THIS IS NOT CURRENTLY THE CASE THE PERSON WILL NOT "JUMP*®
TO BOX BS, BUT WILL SIMPLY CONTINUE TO OPEN BOX B4 WHICH CONTAINS:

“"THE VALUE IN BOX H7 1S LARGER THAN THE VALUE IN BOX H8. STOP!"™

AT THIS POINT THE PERSON HAS COMPLETED THE "INSTRUCTION SEQUENCE"
FOR THIS EXAMPLE. IT SHOULD BE NOTED, HOWEVER, THAT BOX BS DID CON-
TAIN THE MESSAGE3s

"THE VALUE IN BOX H7 1S SMALLER THAN THE VALUE IN BOX H8. STOP!"™

THIS LITTLE EXAMPLE OF A PERSON OPENING UP BOXES AND FOLLOWING
THE DIRECTIONS CONTAINED IN EACH ONE IS VERY SIMILAR TO THE CONCEPT
USED BY A COMPUTER. NOTE THAT EACH "INSTRUCTION" IS VERY SHORT AND
SPECIFIC. ALSO NOTE, THAT THE COMBINATION OF ALL THE INSTRUCTIONS
IN THE EXAMPLE WILL RESULT IN THE PERSON BEING DIRECTED TO SOLVE THE
PROBLEM:

IS 1 + X GREATER THAN, LESS THAN, OR EQUAL TO: 6 + Y ?

FOR, THE READER CAN NOTE, IF THE "DATA WORDS" CONTAINED IN BOXES A2
AND A5 FOR THE EXAMPLE WERE CHANGED, THE SEQUENCE OF "INSTRUCTIONS"

WOULD STILL RESULT IN THE PERSON BFING TOLD TO "STOP"™ AT THE BOX THAT
CONTAINFD THE CORRECT ANSWER. THE RFADFR CAN VERIFY THIS BY SIMPLY
ASSUMING THAT DIFFFRENT NUMBERS THAN THOSE USFD IN THF FXAMPLF ARE IN
BOXES A2 AND AS AND GOING THROUGH THE INSTRUCTION SEQUENCE UNTIL TOLD
TO “STOP."

THE EXAMPLE ILLUSTRATES HOVW A CARFFULLY PLANNFD SET OF DIRFCTIONS,
ARRANGED SUCH THAT THEY ARF PFRFORMFD IN A PRECISE SEQUENCE, CAN BF
USED TO SOLVE A PROBLFM FVEN THOUGH THE "VARIABLFES" (DATA) IN THE
PROBLEM MAY VARY. SUCH A SET OF "INSTRUCTIONS® 1S OFTEN TERMED AN
"ALGORITHM' BY THOSE IN THFE MINI-COMPUTER FIELD. THE FXAMPLE SOLVED
A MATHEMATICAL PROBLEM USING THE "ALGORITHM," BUT THE RFADER VILL
FIND THAT "ALGORITHMS" CAN BF DEVISED TO SOLVF MANY PROBLFMS ON A
COMPUTER THAT ARE NOT STRICTLY MATHFMATICAL'!

ANY PERSON LEARNING A NEVW SKILL MUST OF NFCESSITY LFARN THE VNCABU=-
LARY OF THE FIELD IN ORDER TO PROCEFD TO ANY GREAT EXTENT. YOU MIGHT
THINK THAT IT WOULD BFE EASIER IF EUFRYTHING WAS WRITTEN IN PLAIN FUERY-
DAY WORDS, BUT THFE TRUTH OF THF MATTER IS THAT SPFECIALIZED VOCABULARIES
DO SERVE SFEVERAL USEFUL FUNCTIONS. FOR ONFE THING, THEY CAN GRFATLY
SHORTEN THE TIME THAT IT TAKES TO COMMUNICATE IDEAS OR CONCFPTS. IN
TODAY'S FAST-MOVING WORLD THAT IS OF SIGNIFICANCE IN ITSELF. IN ADDI-
TION, THE LIMITATIONS OF THE ENGLISH LANGUAGF OFTEN RESULT IN A GIVEN
WORD HAVING A SPECIAL MEANING WHEN IT IS USED IN THE CONTFXT OF A
PARTICULAR SUBJECT. ONE MUST KNOW THE NEW MEANING WHEN IT IS USED
IN SUCH A MANNER. THROUGH=-0UT THIS BOOK THE MEANINGS OF VARIOQUS WORDS
USED BY THOSE IN THE MINI-COMPUTFR FIELD VWILL BE POINTED OUT. FORTUN-
ATLY, MUCH OF THE MINI-COMPUTER FIELD VOCABULARY IS VFRY LOGICALLY
NAMED. THIS 1S PROBABLY DUE PARTLY T0O THE FACT THAT COMPUTERS ARE OF
NECESSITY EXTREMELY DEPENDENT ON LOGIC, AND HFNCE MANY PERSONS WwHO
HFELPED CRFATE THE FIELD -~ AND BY THAT FACT WERF RATHER LOGICALLY
ORIENTED THEMSFLVES - SFEM TO HAVE HAD THE LOGICAL SENSE TO HAVE NAMED

MANY OF THE PARTS AND SYSTEMS OF COMPUTERS AND COMPUTER PROGRAMS, IN A
LOGICAL MANNER.

ON THE NEXT FEW PAGES ARE TWO DIAGRAMS (FIGURES 2A AND 2B) WHICH
SHALL BE USED TO DEMONSTRATE THE ANALOGY BETWEEN THE PFRSON TAKING
“INSTRUCTIONS" FROM A GROUP OF MAIL BOXES AND THE BASIC OPERATION OF
A REAL MINI-COMPUTER.

FIGURE 2A SHOWS THF POST OFFICFE BOXES; A FIGURE REPRESENTATION
OF A PERSON WHO IS ABLE TO “FETCH" AND RETURN THE "INSTRUCTIONS*" OR
“DATA" FROM AND TO THE BOXES, AND A "SCRATCH PAD'" ON WHICH THF PERSON
CAN MAKE TEMPORARY CALCULATIONS VWHEN DIRECTED TO DO SO.

IN FIGURE 2B ARE THREE INTFR~-CONNECTED BOXES WHICH FORM A "BLOCK-
DIAGRAM" OF A BASIC MINI-COMPUTER. THE UPPER-MOST PORTION OF THE
“"BLOCK-DIAGRAM". 1S LABELED THE “MEMORY.* THE MIDDLE PORTION IS -
LABELED THF "CENTRAL PROCESSOR UNIT'" OR *CPU'" FOR SHORT. THE LOVER
PART OF THE DIAGRAM DEPICTS AN “ACCUMULATOR."

THE CORRELATION BETWEEN THE TW0o PICTURES IS EXTREMELY SIMPLE.
THE "POST OFFICFE BOXES' CORRESPOND TN THE "MFMORY" PORTION OF A
REAL MINI-COMPUTER. THF "MEMORY"™ IS A STORAGF PLACF. A LOCATION
WHERE INSTRUCTIONS AND DATA CAN BF STORED FOR LONG LENGTHS OF TIME.
THE *“MEMORY"™ CAN BE '"ACCESSED." "INSTRUCTIONS®" AND/OR "DATA" CAN
BE TAKFN OUT OF MEMORY, OPERATED ON, AND REPLACED., NEW *“DATA"™
CAN BE PUT INTO THE "MEMORY.' A "MEMORY" THAT CAN BF "READ FROM" AS
WELL AS "WRITTEN INTO*™ IS CALLED A “READ AND WRITF MEMORY." A “READ
AND VRITE MEMORY' IS OFTEN REFERRED TO AS A “RAM" AS AN ABBREVIATION.
MANY TIMES IT IS FEASIBLE TO HAVE A “MFMORY'" THAT IS ONLY "RFAD FROM."

-a-

000000000t s0sosNBOROOS
*A 1 RXA2XATKALRAEXA CXATRAB%
*Bl*B2%B3*B4%xB5%xB6%B7*B8 *
000 0000000080000 00000000
*C1%xC2%C3%CA*CS%xC 6XxC 7*CB*
R RN R NN NN RN NN AW W N
*D1%D2xD3%D4xDS%D 6xD7xD8 *

POST OFFICE BOXES S0 to000css0s0000s 0000 0OOGES = MEMORY
*¥E1 *E2%E3*E4%ES%E6%E7*EB %
*F1kF2xF3%kF4XFSAkFORFTRFE %
*GC 1 %kG2XGI3*G4%kCSHCEXGT*GE*x

*H | *H2%H3xH4%HS%H 6%H 7%xHE8 %

LK 2N BN B BN BN 2N BN B B BN NECRY BN BY BE BN BN BY BN BE BN IR NN)

e 3k 3k 3 3K 2 3k o oK
* *
* *
* *
* 205k 3 3 3 e ke *
* * *
* * *
% * *
* * *
* * * CENTRAL
PERSON 243k o 34 3k k¢ 2k 3 3 ok ok oK o = PROCESSING
* UNIT
*
*x
*’ kK
* *
* *
* *
* *
%* *
*ok * %
o e
® 0 6000006080800 000 * L]
P9
PAD & PENCIL . 1 «+ 2 =3 . o . = ACCUMULATOR
. - L] []
[] [] [] [
L 2R BX BN BN BE BN BN A BE SK Y B BN SR N W) LN N N)
[3 L]
L B I

FIGURE 2A

THE ANALAGOUS STRUCTURE OF A COMPUTER AS GIVEN. IN THE EXAMPLE
DISCUSSED. IN THE TEXT

-5-

e 2k 35 3 3k ok e sbe 30 2K 3¢ 3k 24 3 e 3 3k e 3k kK ok ok ok

x *
* *
* *
* *
* MEMORY *
* *
* *
* *
* *
* *

30 3 3k 3k e 3 2 3K 2 3K e ok e 2 3k e 3K ok ok koK

() L]

* L]

2k 2k 2 3 2 3k ¢ A A A A K AR K K 3K 2K K K K K K

* *
* CENTRAL *
* PROCESSOR *
* UNIT *
* (CPWU) *
* *
e 2k 3 3 2K 40 K e oK 2 ok ok 3¢ o e e e K 3 ok ek ok K

L *

] -
L] L]

246 3k 3 3¢ 3 ak 3 K 3 2 2K Ak K 2k 2k e ke 3 A K K K kK

* *
* ACCUMULATOR *
* *

o e 2 2 6 6 3 K KK o oK e o 3 e K Ko oK K K
FIGURE 2B

BLOCK DIAGRAM OF THE FUNDAMENTAL COMPONENTS
OF A MINI-COMPUTER

A MEMORY THAT IS NEVER “WRITTEN INTO,* BUT IS ONLY USED TO *“READ FROM,"
IS TERMED A "RFAD ONLY MEMORY'" AND IS ABBREVIATED AS A 'ROM.'" FOR THE
PRESENT DISCUSSION THE TERM *“MEMORY" WILL REFER TO A "READ AND WRITE
MEMORY'"™ (*“RAM"). THE UTILIZATION OF "READ ONLY MEMORIES," AS A GFENERAL
RULE, REQUIRES A MORE SOPHISTICATED “CENTRAL PROCESSOR UNIT' AND MORE
SOPHISTICATED PROGRAMMING TECHNIQUES, THAN THAT ILLUSTRATED IN THE

PRESENT DISCUSSION, AND HENCE THEIR USE WILL NOT BE DISCUSSED AT THIS
TIME.

THE FIGURE OF A PERSON IN PICTURE 2A CORRESPONDS TO THE CENTRAL
PROCESSOR UNIT IN FIGURE 2B. THE CENTRAL PROCESSOR UNIT IN A COMPUTER
IS THE SECTION THAT *“CONTROLS"™ THE OVER=-ALL OPERATION OF THE MACHINE.
THE “CPU" CAN RECEIVE (FETCH) “INSTRUCTIONS'" OR “DATA" FROM THE MEMORY.
IT IS ABLE TO "INTERPRET® THE "INSTRUCTIONS* IT FETCHES FROM THE MEMCRY.,
IT IS ALSO ABLE TO PERFORM VARIOUS TYPES OF MATHEMATICAL OPERATIONS.

IT CAN ALSO "RETURN" INFORMATION TO THE MEMORY - FOR INSTANCE MAKE
DEPOSITS OF "DATA* INTO THE MEMORY. THE "CPU"™ ALSQO GCONTAINS CONTROL
SECTIONS THAT ENABLE IT TO SEQUENTIALLY "ACCESSY THE "NEXT" LOCATION
IN MEMORY WHEN IT HAS FINISHED PERFORMING AN OPERATION, OR, IF IT IS
DIRECTED TO DO SO0, TO "ACCESS* THE MEMORY AT A SPECIFIED LOCATION, OR

- 6 =

TO "JUMP" TO A NEW AREA IN MEMORY FROM WHICH TO CONTINUF FETCHING
*“INSTRUCTIONS."

THE PAD OF PAPER AND PENCIL IN FIGURE 2A CORRESPONDS TO THE
BLOCK TITLED "ACCUMULATOR®™. IN PICTURE 2B. THE "ACCUMULATOR"™ IS A
TEMPORARY "REGISTER" OR “MANIPULATING AREA" WHICH IS USED BY THE
CPU WHEN. IT 1S PERFORMING OPERATIONS SUCH AS ADDING TWO NUMBERS.
ONE NUMBER, OR PIECE OF INFORMATION CAN BE TEMPORARILY HELD. IN IT
WHILE THE CENTRAL PROCESSOR UNIT GOES ON TO OBTAIN ADDITIONAL
INSTRUCTIONS OR. DATA FROM MEMORY. IT IS AN ELECTRONIC *“SCRATCH
PAD" FOR THE CPU.

: THE THREE FUNDAMENTAL UNITS: THE MEMORY, CENTRAL PROCESSOR
UNIT, AND THE ACCUMULATOR ARE AT THE HEART OF EVERY DIGITAL
COMPUTER SYSTEM. OF COURSE, THERE ARE OTHER PARTS WHICH WILL BE
ADDED. IN AND EXPLAINED LATER, BUT THESE FUNDAMENTAL PORTIONS CAN
BE USED TO EXPLAIN THE BASIC OPFRATION OF A DIGITAL MINI1-COMPUTER
WHICH 1S THE PURPOSE OF THIS CHAPTER.

THE READER SHOULD LEARN THE NAMES OF THE BASIC PARTS OF THE
MINI-COMPUTER AS THEY ARE PRESENTED. NOTE HOVW EASY IT IS TO RE-
MEMBER THE PORTIONS THAT HAVE BEEN SHOWN. THE “REMEMBERING"
ELEMENT IS A "MEMORY."™ THE PORTION THAT DOES THE “WORK" OR PRO-
CESSING 1S SIMPLY TERMED THE “CENTRAL PROCESSOR UNIT," AND THE
PART THAT IS USED TO ACCUMULATE. INFORMATION TEMPORARILY IS APTLY
CALLED THE “ACCUMULATOR!"

THE READER SHOULD NOVW HAVE A CONCEPTUAL VIEW OF THE CONCEPT
BEHIND A COMPUTER'S OPERATION AND AN UNDERSTANDING OF THE MACHINE'S
MOST BASIC ORGANIZATION. IT IS SIMPLY A MACHINE THAT CAN FETCH _
INFORMATION FROM A MEMORY, INTERPRET THE INFORMATION AS AN INSTRUC-
TION OR DATA, PERFORM A VERY SMALL OPERATION, AND CONTINUE ON
TO DETERMINE THE NEXT OPERATION THAT IS TO BE PERFORMED. EACH
OPERATION IT IS CAPABLE OF DOING IS VERY TINY BY ITSELF, BUT WHEN
THE MANY OPERATIONS OF A TYPICAL "PROGRAM" ARE PERFORMED IN SEQ~
UENCE, THE SOLUTIONS TO VERY COMPLEX PROBLEMS CAN BE OBTAINED. IT
1S IMPORTANT TO RFMEMBER THAT THE MINI-COMPUTER CAN PERFORM EACH
LITTLE OPERATION IN JUST A FEV MILLIONTHS OF A SECOND! THUS, A
PROGRAM THAT MIGHT SEEM VERY. LARGE TO A PERSON =- SAY ONE WITH MANY
THOUSANDS OF. INDIVIDUAL INSTRUCTIONS -~ WOULD ONLY TAKE A DIGITAL
MINI-COMPUTER A FEW THOUSANDTH'S OF A SECOND TO PERFORM. THE SPFED
WITH WHICH THE COMPUTER CAN EXECUTE INDIVIDUAL INSTRUCTIONS IS WHAT
GIVES THE MINI-COMPUTER ITS FANTASTIC CAPABILITY.

IT 1S NOW TIME TO START DELVING INTO0 THE ACTUAL PHYSICAL MANNER
IN WHICH A MINI-COMPUTER OPERATES. HOW CAN A MACHINE BE CON=-
STRUCTED SO THAT IT IS ABLE TO PERFORM THE PROCESSFS OF THE CENTRAL
PROCESSOR UNIT? WHILE IT WILL REQUIRE A NUMBER OF PAGES QF TEXT TO
EXPLAIN THE PROCEDURE - 1T IS NOT NEARLY AS DIFFICULT TO UNDERSTAND
AS MANY PEOPLE MIGHT SUSPECT. THE COMPLEXITY OF A COMPUTER WHEN
FIRST VIEWED BY A PERSON IS CAUSED BY THE FACT THAT IT APPEARS TO
CONSIST OF MANY HUNDREDS OF PARTS. IT BFCOMES MUCH SIMPLFR WHEN ONE
UNDERSTANDS THAT THE HUNDREDS OF PARTS ARE RFALLY MADE UP FROM A
FEW DOZEN SIMILAR PARTS AND THEY ARE CAREFULLY ORGANIZED INTO JUST
A FEV MAJOR OPERATING PORTIONS. THE READFR 1S ALREADY FAMILIAR WITH
THE MOST FUNDAMENTAL PORTIONS.

AS FANTASTIC AS IT MAY SOUND AT FIRST, A DIGITAL MINI-COMPUTER
CAN BE THOUGHT OF AS. REALLY NOTHING MORE THAN A HIGHLY ORGANIZED
COLLECTION OF "ON OR OFF" SWITCHES! YES, COMPUTERS ARE CONSTRUCTED
FROM ELECTRONIC DEVICES THAT CAN ONLY ASSUME ONE OF TwW0 POSS-

- 7T =

IBLF STATFS! THF ELFCTRONIC SWITCHFS CAN BF bONSTRUCTFD IN A VARIFTY
OF WAYS. FOR INSTANCE, THF SWITCH CAN BF MADE SO THAT THF VOLTAGF‘

AT A GIVEN POINT IS EITHFR HIGH OR LOWV, OR CURRENT THROUGH A DEVICF

IS FITHFR FLOVING OR NOT FLOWING, OR FLOVING IN ONE DIRFCTION, AND
THEN THE OTHFR DIRFCTION. BUT, RFGARDLESS OF HOW THE ELECTRONIC
SWITCH 1S CONSTRUCTED, ITS STATUS CAN ALVAYS BE RFPRFSENTED AS BEING
EITHER “ON" OR “OFF." THIS “ON*" OR “OFF" STATUS CAN BF MATHFMATICALLY

szzigtéZED MOST SUITABLY BY A MATHEMATICAL SYSTFM BASFD ON "BINARY"
N. . B . i,

SOMF PEOPLF TFND TO THINK THAT COMPUTFRS ARF VFRY DIFFICULT TO
UNDFRSTAND BFCAUSF THFY HAUF HFARD OF “STRANGF" TYPFS OF MATHFMATICS
THAT ARE OFTEN REFFRRED TO IN CONJUNCTION WITH COMPUTFRS. IN ACTUAL -
ITY MUCH OF THE MATHFMATICS THAT ARF DFALT VITH IN COMPUTER TECHNOL -
OGY ARE MUCH EASIFR TO UNDERSTAND AND DFAL WITH THAN THF DECIMAL SYS-
TEM THAT THE AUVFRAGE PFRSON 1S FAMILIAR WITH. IN THF DFCIMAL NUM-
BERING SYSTFM A PFRSON MUST LFARN 18 DIFFFRFNT SYMBOLS AND IN ORDFR
TO MANIPULATE THOSF SYMBOLS THEY MUST MFMORIZF A LOT OF INFORMATION,
FOR INSTANCE, LOOK AT HOW STUDENTS ARF TAUGHT T0 MULTIPLY. THF LFARN-
ING PROCESS ACTUALLY INVOLVFS THF STUDENT HAVING TO MEMORIZF A RATHFR
LARGF NUMBFR OF FACTS. BECAUSE OF THE WAY IT IS TYPICALLY TAUGHT,
MOST STUDENTS NEVER REALIZE HOV MUCH VORK THFY HAUF T0 GO THROUGH
JUST TO LEARN THE MULTIPLICATION TABLFS! THF TFACHFR DOFS NOT STAND
UP AND SAY: '0.K., NOV YOU ARF GOING TO MFMORIZF ABOUT 1806 FACTS.'
INSTEAD, OVER A PFRIOD OF A FFW WFFKS OR SO, THF STUDFENT IS MADF T0
MEMORIZF THE 106 OR SO FACTS - A FFVW AT A TIMF. THF STUDENT MUST
LFARN THE VALUF OF FACH DIGIT MULTIPLIED BY ALL THE OTHFR DIGITS IN
THE DECIMAL NUMBERING SYSTFM. THF DFCIMAL NUMBERING SYSTFM IS FAR
MORF COMPLICATED FOR THF BEGINNFR THAN LFARNING THE BINARY NUMBFRING
SYSTEM - AND THFE BINARY NUMBERING SYSTEM IS THE ONF UTILIZFD BY
COMPUTERS AT THFIR MOST BASIC FUNCTIONING LFVEL. THF RFASON THFE
COMPUTER USES THE BINARY SYSTEM IS BFCAUSF IT IS THF SIMPLEST SYSTFM
AROQUND AND HENCE THE FASIEST ONF WITH WHICH TO CONSTRUCT A COMPUTING
MACHINF!

- READERS KNOW THF WORD "BINARY" INDICATES "TW0." COMPUTFRS ARE
BUILT UP OF FELECTRONIC SWITCHES THAT CAN ONLY HAVE TW0 POSSIBLF
STATES. THF SWITCHES ARF BINARY DEVICES. THE STATUS OF THF SWITCHES
CAN BE RFPRFSENTED MATHEMATICALLY UTILIZING THF “BINARY" NUMBERING
SYSTEM. THE BINARY NUMBERING SYSTFM ONLY HAS Tw0 DIGITS IN IT! THFY
ARF ZFRO (@) AND ONE (l1). A SWITCH CAN THUS BE MATHFMATICALLY SYM-
BOLIZED, FOR INSTANCE, BY A ZFRO WHEN IT IS “OFF" AND A ONF WHFN
IT IS “ON." THE OPPOSITE RELATIONSHIP COULD ALSO BE ESTABLISHED,

A ONE COULD BF USED T0O RFPRESENT A SWITCH BFING "OFF" AND A ZFRD USED
TO RFPRESFNT A SWITCH AS “ON."” IT WOULD MAKE NO DIFFERFNCF MATHFMATI=-
CALLY WHICH CONVENTION WAS USFD AS LONG AS ONE WAS CONSISTENT. FOR
THE PURPOSES OF THF PRESFNT DISCUSSION THE READFR CAN ASSUMF THAT THF
FIRST CONVENTION (SWITCH OFF = @, SWITCH ON = 1) WILL BF USED.

1T SHOULD BF IMMEDIATFLY APPARFNT THAT WORKING WITH A NUMBFR-
ING SYSTFM BASFD ON ONLY TWO INTEGFRS WILL BE A LOT EASIER THAN
WRKING WITH ONF HAVING 16 INTFGER SYMBOLS. IN FACT, MOST PROBLFMS
FOR PFOPLF LEARNING THF BINARY SYTFM, COMF ABOUT BECAUSF THFY TFND
TO FORGFT HOW SIMPLF IT IS AND THEY TFND TO KFFP GOING TOWARDS A
DECIMAL SOLUTION OUT OF HABIT WHFN THFY ARF WORKING WITH THE BIN-
ARY SYSTFM. FOR INSTANCE, WHFN ONF STARTS TO ADD BINARY NUMBFRS,
AS SOON AS THE VALUE *“1* IS FXCFFDFD, A "CARRY" TO THE NFXT COLUMN
MUST BE MADE. THE VALUF OF THF ADDITION OF "1 + 1" IN THE BINARY
SYSTEM 1S: 1@4. IT IS NOT 2! THERE IS NO SUCH INTEGFR AS “2" IN
THE BINARY NUMBFRING SYSTEM. HOWEVFR, WHEN A PFRSON WH0O HAS WORKED
WITH THF DFCIMAL SYSTEM FOR YFARS FIRST STARTS WORKING WITH THF BIN-

- & -

ARY SYSTFEM, OLD DECIMAL HABITS TEND TO GET IN THF WAY. THF RFADFR
WILL HAVE TO BEVWARF!

TO FORMFRLY. INTRODUCFE THE BINARY MATHFMATICAL SYSTEM ONF CAN
START BY STATING THAT IT USES TWwOo INTEGERS ZFRO (@) AND ONE (1) AND
NO OTHERS. A BINARY NUMBFR HAS A VALUF DETFRMINED BY THE VALUE OF
THE INTEGERS THAT MAKE UP THF NUMBER, AND THF POSITION OF THF DIGITS.

' IN THF DFCIMAL NUMBFRING SYSTFM THE READFR IS FAMILIAR WITH THF
LOCATION OF A DIGIT HAVING A "VFIGHTFD" UALUF AS FOLLOWS: A THRFF
DIGIT NUMBFR HAS A VALUFE DFTERMINFD BY THE UNIT VALUF OF THF DIGIT
IN THE RIGHT-MOST COLUMN PLUS THF VALUF OF THE DIGIT TO THF LEFT OF
IT MULTIPLIED BY 108, PLUS THE VALUF OF THE THIRD DIGIT MULTIPLIFD
BY ONF HUNDRED AS ILLUSTRATED IN THFE FOLLOWING EXAMPLF:

THF DECIMAL NUMBER 345§

1S FQUAL TO:

§ UNITS =]
PLUS (+) 4 TIMES 10 = 4@
PLUS (+) 3 TIMES 1@9@ = 360

IN OTHER WORDS, AFTER THFE RIGHT HAND MOST COLUMN (WHICH HAS THF

. VALUE OF THE DIGIT), EACH COLUMN T0O THE LFFT IS GIVEN A VWEIGHTING
FACTOR WHICH INCRFASES AS A POVER OF THE TOTAL NUMBER OF DIGITS
UTILIZED BY THF NUMBFRING SYSTFM. NOTF THAT IN THF ABOVF FXAMPLF

THE 4 RFPRESFNTING 48 UNITS IS FQUAL TO 4 TIMES THFE NUMBFR OF INTEGFR
SYMBOLS IN THE DFCIMAL SYSTFM (18) BFCAUSE IT 1S LOCATED IN THF SFCOND
COLUMN FROM THFE RIGHT. THF NUMBER 3 REPRFSFNTING 300 UNITS 1S FQUAL
TO 3 TIMES THF NUMBER OF INTEGER SYMBOLS IN THFE DFCIMAL SYSTEM

SQUARED BECAUSF IT 1S LOCATED IN THFE THIRD COLUMN FROM THFE RIGHT. FOR
MATHFMATICIANS, THIS RFELATIONSHIP OF THF VWFIGHTFD VALUE OF THF DIGITS
BASED ON THEIR POSITION CAN BE DESCRIBFD IN MATHFMATICAL SHORT-HAND AS
FOLLOWS:

. 1F THE NUMBER OF DIFFERENT INTEGER SYMBOLS IN THF NUMBFRING SYSTFM
IS U (FOR THE DECIMAL SYTEM U=1@)

AND THE COLUMN WHOSE WEIGHTED VALUE IS TO BE DFTERMINED IS
COLUMN NUMBFR M (STARTING VITH THE RIGHT MOST COLUMN AND
COUNTING TO THE LEFT)

AND ANY DIGIT IS RFPRESENTFD BY THF SYMBOL X

THEN THF WEIGHTED VALUE OF A DIGIT IN COLUMN M IS FXPRESSED AS:

X TIMFS U RAISFD TO THE POWFR (M=-1) OR X*x((Ut(M=1))

NOTE: IN THIS BOOK THF ASTFRISK (x) WILL BF USED TO INDICATF
MULTIPLICATION AND THF UP-ARROW (t) WILL BF USFD TO SIGNIFY THE
RAISING OF A NUMBER TO A POVER.

THE READER CAN EASILY VERIFY THAT THE ABOVFE FORMULA APPLIFS TO
THE DECIMAL NUMBERING SYSTEM. HOVEVFR, THE ABOVF FORMULA IS A GFNFRAL
FORMULA THAT CAN BE USED TO DFTERMINE THE WEIGHTED POSITIONAL VALUE
OF ANY NUMBERING SYSTEM. IT WILL BE USFD TO DETFRMINF THF WEIGHTED

- Q =

POSITIONAL VALUFS OF NUMBERS. IN THF BINARY NUMBERING SYSTEM.

IN THE BINARY NUMBERING SYSTFM THERF ARFE JUST TVW0 DIFFFRFNT INTEGER
SYMBOLS (@ AND 1). THUS U IN THE ABOVF FORMULA IS FQUAL TO 2. FOR

ILLUSTRATIVE PURPOSES ASSUMF THE FOLLOWING BINARY NUMBFR IS T0O BF ANAL-~
YZED: '

1 61

AND IT 1S DESIRED TO DETERMINE ITS VALUE IN TFRMS OF DFECIMAL NUMBERS.
(REMFMBER ITS BINARY VALUE IS JUST: 1 6 1). USING THF ABOVE FOR-
MULA3 FOR THE DIGIT IN THE RIGHT-MOST COLUMN: M IS EQUAL TO 1, THUS
(M-1) IS FQUAL TO @, AND WITH X = 1|3

VEIGHTED VALUF = X%x((Ut(M=1)) = 1%((21(@)) = Ix] = |
(REMEMBER THAT ANY NUMBFR RAISFED TO THF ZFRO POWFR IS FQUAL TO 1.)
GOING ON TO THE NEXT DIGIT. IT CAN BF SFEN THAT THE WEIGHTED VALUF IS
SIMPLY @! FINALLY, THE DIGIT IN THF THIRD COLUMN FROM THE RIGHT HAS
THE WEIGHTED VALUE BECAUSF OF ITS POSITION:

WEIGHTED VALUE = 1*((2t(3-1)) =]%((2t2)) = %4 = 4
THEN, BY ADDING UP THE SUM OF THE WEIGHTFD VALUES (SIMILAR TO THAT
DONE FOR THF DFCIMAL EXAMPLF FARLIFR) ONFE CAN SFF THAT THE DFCIMAL
EQUIVFLANT OF 1 2 1 BINARY IS 6

THE BINARY NUMBFR 101

IS FQUAL TO:

1 UNITS = 1
PLUS (+) & TIMES 2 = 2
PLUS (+) 1 TIMES 4 = 4

AND THUS 1| @ 1 IN THE BINARY NUMBERING SYSTEM IS THE SAMF AS § IN THE
_DECIMAL NUMBFERING SYSTFM.

THERE WILL BE MORE TO LFARN ABOUT THFE BINARY NUMBERING SYSTEM.
HOWFVER, THE BRIEF INFORMATION GIVFN WILL BE ENOUGH TO CONTINUE ON VITH
THE DISCUSSION THAT THIS SECTION IS PRIMARILY CONCERNED WITH - THE
BASIC OPFRATION OF A MIN!-COMPUTER. SINCE THE RFADFR IS NOW AVARE THAT
A COMPUTER 1S COMPOSED OF NUMFROUS FLFCTRONIC SVITCHES AND KNOWS THAT
ONE CAN USE A MATHFMATICAL SHORT-HAND TO REPRESENT THE STATUS OF THE
SWITCHES (WHETHER THEY ARE "ON" OR "OFF"), AND IS ALSO AWARF OF THF
FUNDAMENTAL CONCFPT BEHIND A COMPUTER'S OPERATION; IT IS NOW POSSIBLE
TO PROCEED TO SHOW HOW ELECTRONIC SWITCHES CAN BE ARRANGED TO BUILD A
FUNCTIONAL COMPUTER. THAT IS, HOW THF FLFCTRONIC SWITCHFES CAN BF
ARRANGED AND INTFRCONNECTED IN A FASHION THAT WILL ALLOW A MACHINE TO
“FETCH" A PIECE OF INFORMATION FROM A *“MEMORY'" SECTION, DFCODF THF
INFORMATION SO AS TO DETFRMINE AN "INSTRUCTION,' AND ALSO DETFRMINE
WHERF TO OBTAIN THE NEXT INSTRUCTION OR ADDITIONAL *DATA."

TO BFEGIN THIS PART OF THF DISCUSSION IT VILL BFE BFNFFICIAL FOR THE
READER TO PICTURE A GROUP OF CELLS (SIMILAR TO THE. POST-OFFICE BOXES
SHOWN FARLIFR) ARRANGED IN ORDFRLY ROWS AS SHOWN IN FIGURF 3. THIS
TIME, INSTEAD OF FACH CFLL HOLDING A COMPLETE INSTRUCTION, IT CAN BFE
UNDERSTOOD THAT EACH CELL ONLY RFPRESENTS PART OF AN INSTRUCTION AND
THAT IT TAKFS A WHOLE ROV OF CELLS TO MAKE UP AN INSTRUCTION. FURTHER=-

- 10 -

MORE, EACH CELL MAY ONLY CONTAIN THE MATHEMATICAL SYMBOL FOR A ONE
(1) OR A ZERO (@) - OR, IN OTHER WORDS, ITS CONTENTS RFPRESENT THE
STATUS OF AN ELECTRONIC SVITCH!

.......O0..‘..00....0.0..0‘.‘.‘-..

WORD #1 ®* 1 x @ %] * @ x] x @ x] x @ x%
WORD #2 D A A I M
WORD #3 1 xl B x0 %1 %xlxo 0 x
VORD #4 D N I I AR
VORD #5 1kl x 1kl s 0 %0 %8 x0 *
VORD #6 D
VORD #7 D A
WORD #8 xP XD *O HORBxO x B O x
FIGURE 3

AT THIS TIME A FEW MORE COMPUTER TECHNOLOGY DEFINITIONS VILL BE

. ILLUSTRATED. IN FIGURF 3, FACH BOX CONTAINING A BINARY | OR & REPRE-
SENTS WHAT IS CALLED A "BIT" OF INFORMATION. WHILE FEACH CELL MAY

ONLY CONTAIN ONE PIECE OF INFORMATION AT A TIME, A CELL CAN ACTUALLY
REPRESENT ONF OF TWO POSSIBLE STATES OF. INFORMATION. THIS IS BECAUSF
THE CELL CAN BE IN TWO POSSIBLF STATES - IT EITHER CONTAINS A ZERO

OR A ONE. IF ONE STARTS ASSIGNING POSITIONAL VALUES TO THE CELLS. IN

A ROV, IT CAN BE SFEN THAT THE TOTAL NUMBER OF POSSIBLE STATES IN ONE
ROV WILL INCRFASF RAPIDLY. FOR INSTANCE, TWO CELLS IN A ROW CAN REPRE-
SENT UP TO 4 STATES OF INFORMATION. THIS 1S BFCAUSF Two CELLS SIDE-BY-
SIDF, CONTAINING EITHER A @6 OR .1 IN EACH CELL CAN HAVE ONE OF THF
FOLLOWING FOUR STATES AT A PARTICULAR MOMENT IN TIME: | 6, @ 1,

] 1, OR @ #. THREE CELLS. IN A ROW CAN REPRESENT UP TO EIGHT STATES
OF INFORMATION AS THE POSSIBLE STATES OF THREE CELLS SIDE-~-BY-SIDE ARE:
o006, 001, 010, 611, 10866, 1@d1, 1186, 11 1. 1IN FACT,
WHEN EACH CELL CAN REPRESENT A BINARY NUMBER, THE TOTAL NUMBFR OF STATES
OF INFORMATION THAT A ROW OF "N* CELLS CAN RFEPRESENT ISt 2 TO THE N'TH
POVER (2tN). THUS, A ROW OF EIGHT BINARY CELLS CAN REPRESENT 2 TO THE
EIGHTH (256) STATES OF INFORMATION! THAT 1S, THE COMBINATION OF THE
EIGHT CELLS CAN BE FILLED WITH ZEROS AND ONES. IN 256 DIFFERENT PATTERNS!

A GROUP (ROW) OF CELLS. IN A COMPUTER'S MEMORY IS OFTEN REFERRED
TO AS A "WORD."™ A “WORD" IN A COMPUTER'S MEMORY IS A FIXED SIZF GROUP
OF CELLS THAT ARE "ACCESSED" OR MANIPULATED DURING ONE OPFRATIONAL
CYCLF OF THF CENTRAL PROCESSING UNIT (CPU). THE CPU VILL EFFECTIVELY
HANDLE ALL THE CELLS. IN A "WORD" IN MEMORY SIMULTAINEOUSLY WHENEVER IT
PROCESSES INFORMATION IN THE MEMORY. DIGITAL COMPUTERS CAN HAVE VARY-
. ING "WORD LENGTHS" DEPENDING ON HOW THEY ARE ENGINEERED. THE SCELBI=8H
SERIES OF MINI-COMPUTERS HAVE A MEMORY WORD SIZE CONSISTING OF EIGHT
CELLS. THE NUMBER OF CELLS. IN A WORD, AND THE NUMBER OF WORDS IN A
COMPUTER'S MEMORY HAVE A LOT TO DO WITH THE MACHINE'S OVER-ALL CAPABIL-
. ITY« THE SCELBI1-8H SERIES OF MINI-COMPUTERS ALLOV THE MEMORY SIZE OF
THE MACHINE TO BE EASILY EXPANDED TO. INCREASE OVER-~ALL COMPUTING POVER.
TYPICAL SCELB1-8H SYSTEMS HAVE. FROM 256 TO 4,896 "WORDS" IN MEMORY. IN

- 11 =

SPECIAL CASES THIS SIZE CAN BE. INCREASED TO 16,384 WORDS. SINCE EACH
WORD ACTUALLY CONTAINS EIGHT CELLS, THE NUMBER OF CELLS. IN A SCELBI~8H
SYSTEM. 1S EIGHT TIMES THE NUMBER OF WORDS. IN THE MEMORY. THUS TYPICAL
SYSTEMS HAVE FROM 2,048 TO 32,768 CFLLS AND SPECIAL SYSTEFMS CAN HAVE UP
TO 131,872 CELLS. IN MEMORY. THUS, A LARGE AMOUNT OF INFORMATION CAN BE
“STORED" IN THE COMPUTER'S MEMORY AT ANY ONE TIMF.

THE ASTUTE READER MAY HAVE ALREADY FIGURED OUT A VERY SPECIAL ‘
REASON FOR GROUPING CELLS. INTO "WORDS"™ IN MEMORY. IT WAS POINTED OUT
EARLIER THAT A ROV OF EIGHT CELLS COULD REPRESENT UP T0O 256 DIFFEREFNT
PATTERNS. NOW,. IF FACH POSSIBLE PATTERN COULD BE "DECODED" BY ELEC-
TRONIC MEANS SO THAT A PARTICULAR PATTERN COULD SPECIFY A PRECISE
YINSTRUCTION" FOR THE CENTRAL PROCESSOR UNIT, THEN A LARGE GROUP
OF “INSTRUCTIONS"™ WOULD BE AVAILABLE FOR USE BY THE MACHINE. THAT IS
EXACTLY THE CONCEPT USED IN A DIGITAL COMPUTER. PATTERNS OF ONES AND.
ZEROS, ORGANIZED INTO A COMPUTER "“WORD" ARE STORED IN MEMORY. THE CPU
- 1S ABLE TO EXAMINE A WORD IN MEMORY. AND DECODE THE PATTERN CONTAINED
THERE~IN TO DETERMINE THE PRECISE OPERATION THAT IT IS TO PERFORM.

THE SCELBI-8H, BECAUSE OF TECHNICAL RFASONS, DOES NOT DECODF EVERY

ONE OF THE POSSIBLE 256 PATTERNS THAT CAN BE HELD IN A ROV OF FEIGHT
CELLS AS AN. INSTRUCTION. IT DOES, HOWEUVER, HAVE AN “INSTRUCTION SET"
OF ABOUT 178 "INSTRUCTIONS®" WHICH ARE REPRESENTED BY DIFFERENT PATTERNS
OF ONES AND ZEROS IN AN EIGHT CELL MEMORY "WORD."™ FACH PATTERN THAT
REPRESENTS AN “INSTRUCTION* CAN BE DECODED BY THE CPU AND VWILL CAUSE
THE CPU TO PERFORM A SPECIFIC FUNCTION. ALL OF THE FUNCTIONS WILL BE
EXPLAINED IN DETAIL LATER IN THIS MANUAL.

THERE IS ANOTHER INGRFDIENT NECESSARY FOR MAKING THE MACHINE
“AUTOMATIC" IN OPERATION. THAT IS THAT THE CPU MUST '"KNOW" WHERF TO
OBTAIN THE NEXT "INSTRUCTION" IN MEMORY AFTER IT COMPLETES AN OPERATION.
THAT FUNCTION IS GREATLY AIDED BY HAVING THE MEMORY CELLS GROUPED AS
“WORDS."™ THE READFR SHOULD NOTE THAT. IN FIGURE 3 FACH GROUP OF CFLLS
REPRESENTING A WORD WAS LABELED AS: ™“WORD #1," *“WORD #2," ETC.. THFRE
IS A SPECIAL PORTION OF THE CENTRAL PROCESSOR UNIT THAT IS USED TO CON-
TROL WHERE THE NEXT WORD CONTAINING AN INSTRUCTION IN MEMORY IS LOCATED.
TH1IS SPECIAL PART 1S COMMONLY REFERRED TO0 AS THE "PROGRAM COUNTER." ONE
REASON IT WAS GIVEN THE NAME "PROGRAM COUNTER" 1S BECAUSE MOST OF THE
TIME ALL IT DOES IS COUNT! IT COUNTS MEMORY WORDS! EACH WORD. IN MEMORY
IS CONSIDERED TO HAVE AN "ADDRESS." IN FIGURE 3 EACH VORD WAS GIVEN AN
“ADDRESS" BY SIMPLY DESIGNATING EACH WORD WITH A NUMBER. WORD #1 HAS AN
“ADDRESS" OF 1. WORD #2 HAS AN ADDRESS OF 2, ETC.. THE "PROGRAM
COUNTER" PORTION OF THE CPU KEEPS TABS ON WHERE THE CPU SHOULD OBTAIN
THE NEXT INSTRUCTION BY MAINTAINING AN "ADDRESS'" OF THE WORD IN MEMORY
THAT 1S TO BF PROCESSED! ABOUT 98% OF THE TIME ALL THE PROGRAM COUNTER
DOES IS "INCREMENT" THE VALUE IT HAS EACH TIME THE CPU FINISHES DOING
AN OPERATION. THUS, IF THE COMPUTER WERE TO START EXECUTING A SIMPLFE
PROGRAM THAT BEGAN BY. ITS PERFORMING THE INSTRUCTION CONTAINED IN
“YWORD #1*" IN MEMORY - THE VERY PROCESS OF HAVING THE MACHINE START THE
PROGRAM AT THAT LOCATION IN MEMORY WOULD CAUSE THE PROGRAM COUNTER TO
ASSUME A VALUE OF 1. AS SOON AS THE CPU HAD PERFORMED THE FUNCTION THE
"PROGRAM COUNTER®" WOULD. INCREMENT ITS VALUE TO 2. THE CPU WOULD THEN
LOOK AT THE PROGRAM COUNTER AND SEE THAT ITS NEXT INSTRUCTION WAS LOC-
ATED. IN WORD #2 IN MEMORY. WHEN THE INSTRUCTION IN WORD #2 HAD BEEN
PROCESSED THE "PROGRAM COUNTER" WOULD INCREMENT ITS VALUE TO 3. THIS
PROCESS MIGHT CONTINUE UNINTERRUPTED UNTIL THE CPU FOUND AN. INSTRUC-
TION THAT TOLD. IT TO "STOP."

A SHARP READER MIGHT BE STARTING TO ASK "WHY HAVE A PROGRAM COUNT-
ER" IF EACH INSTRUCTION FOLLOWS THE NEXT?" THE ANSWER IS SIMPLY THAT
THE AVAILABILITY OF A "PROGRAM COUNTER" GIVES THE FREEDOM OF NOT HAVING
TO ALWAYS TAKE THE. INSTRUCTION AT THE NEXT '"ADDRESS'". IN MEMORY. THIS

- 12 -

1S BECAUSE THE CONTENTS OF THE "PROGRAM COUNTER" CAN ITSELF BE CHANGED
WHEN THE CPU DETECTS AN “INSTRUCTION* THAT DIRECTS IT TO DO SO! THIS
ENABLES THE COMPUTER TO BE ABLE TO "JUMP" AROUND TO DIFFERENT SECTIONS
IN MEMORY, AND AS WILL BECOME APPARENT LATER, GREATLY INCREASES THE CAP-
ABILITY OF THE MACHINE. THE "PROGRAM COUNTER" IN THE SCELBI-8H SERIES
OF MINI-COMPUTERS HAS SOME VERY SPECIAL CAPABILITIES WHICH ADD EVEN MORE
POWER TO THE MACHINE AS 1T CAN “REMEMBER" A WHOLE GROUP OF MEMORY
ADDRESSES WHICH ENABLES THE MACHINE TO PERFORM VERY COMPLEX OPERATIONS
REFERRED TO AS "SUBROUTINING.™ THESE OPERATIONS WILL BE EXPLAIN~-

ED IN DETAIL FURTHER ON IN THIS MANUAL.

THE PROGRAM COUNTER" IS ACTUALLY JUST A GROUP OF CELLS IN THE CPU
THAT MAY CONTAIN EITHER A BINARY ZERO OR ONE. THE BINARY VALUE IN
THE ROW OF CELLS THAT CONSTITUTE THE PROGRAM COUNTER DETERMINES THE
“ADDRESS™ OF A WORD IN MEMORY. SINCE THE NUMBER OF WORDS IN MEMORY CAN
BE VERY LARGE, AND SINCE THE PROGRAM COUNTER MUST BE CAPABLE OF HOLDING
THE ADDRESS OF ANY POSSIBLE LOCATION IN MEMORY, THE NUMBER OF CELLS
IN A ROW IN THE PROGRAM COUNTER IS LARGER THAN THE NUMBER OF CELLS IN
A WORD IN MEMORY. IN THE SCELBI-8H SERIES OF MINI-COMPUTERS THE NUMBER
OF CELLS IN THE PROGRAM COUNTER IS 14. SINCE 2 TO THE 14TH POVWER 1S
16,384, THE PROGRAM COUNTER CAN PRESENT UP TO 16,384 DIFFERENT PATTERNS.
EACH PATTERN CAN BE USED TO REPRESENT THE "ADDRESS" OF A WORD IN
MEMORY. FIGURE 4 ILLUSTRATES WHAT THE CONTENTS OF THE PROGRAM COUNTER
WOULD LOOK LIKE WHEN IT CONTAINED THE ADDRESS FOR A SPECIFIC WORD IN
MEMORY. THE ADDRESS THE EXAMPLE DISPLAYS IS *“ADDRESS @* WHICH CAN BE
CONSIDERED THE FIRST WORD IN MEMORY. THE READER SHOULD NOTE THAT AN
ADDRESS OF ZERO CAN ACTUALLY REPRESENT A WORD IN MEMORY!

3¢ 3¢ e ok e 24 e e 3¢ e 9 i 3 ke e e e 8 3 e e e 3 3K K R e N A i e 3 Sk A 3k R K K K 30K 3 R K K 3K A K 3K K K R K K

* * * * * * t * * * * * * * *
* @ *x @ x @3 *x B *x @ *x @0 x B x 0@ %@ xF x 3 x @ *x @ %
* * * * * * t * * * * * * * *

3 4 K 3 ok 3 e e ok i K e A ok K ok e 3K ke 3Kk ok ok ok sk 2 K A ok K Kk Ok e ok ki R i i ki i K R ek Ok Kk ok ok K

FIGURE 4

EARLIER IT WAS STATED THAT SOME *“INSTRUCTIONS* CAN ACTUALLY CHANGE
THE VALUE OF THE PROGRAM COUNTER AND THUS ALLOW A PROGRAM TO “JUMP®" TO
DIFFERENT SECTIONS IN MEMORY. HOWEVER, THE READER NOW KNOWS THAT A
WORD IN MEMORY ONLY CONTAINS EIGHT CELLS, AND YET THE PROGRAM COUNTER
CONTAINS 14 CELLS. 1IN ORDER TO CHANGE THE ENTIRE CONTENTS OF THE PRO-
GRAM COUNTER (BY BRINGING IN WORDS FROM MEMORY) IT IS NECESSARY TO USE
MORE THAN ONE MEMORY WORD! THIS CAN BE DONE IF THE PROGRAM COUNTER IS
CONSIDERED TO ACTUALLY BE TWO0 GROUPS OF CELLS CONNECTED TOGETHER. ONE
GROUP CONTAINS EIGHT CELLS, AND THE OTHER SIX. IN ORDER TO CHANGE THE
CONTENTS OF THE ENTIRE PROGRAM COUNTER, ONE WHOLE EIGHT CELL WORD COULD
BE READ FROM A MEMORY LOCATION AND PLACED IN THE RIGHT HAND GROUP OF
EIGHT CELLS OF THE PROGRAM COUNTER. THEN ANOTHER EIGHT CELL WORD COULD
BE READ FROM MEMORY. SINCE ONLY SIX MORE CELLS ARE NEEDED TO FINISH
FILLING THE PROGRAM COUNTER, THE INFORMATION IN TWO OF THE EIGHT CELLS
FROM THE SECOND WORD BROUGHT IN FROM MEMORY COULD BE "DISCARDED.'" IF
THE INFORMATION IN THE TWO LEFT MOST CELLS OF THE WORD IN MEMORY WERE
THROWN AVAY THEN THE REMAINING SIX CELLS WOULD CONTAIN INFORMATION THAT
COULD BE PLACED IN THE SIX UNFILLED LOCATIONS IN THE PROGRAM COUNTER.
THAT 1S PRECISELY THE PROCEDURE UTILIZED IN THE SCELBI-8H MINI-COMPUTER.

IN ORDER TO MAKE IT EASIER FOR A PERSON WORKING WITH THE MACHINE TO
REMEMBER "ADDRESSES' OF WORDS IN MEMORY, A CONCEPT REFERRED TO BY COM-
PUTER TECHNOLOGISTS AS “PAGING" IS UTILIZED. “PAGING" IS THE ARBITRARY

- 13 -

ASSIGNMENT OF "BLOCKS' OF MEMORY WORDS INTO SECTIONS THAT ARE REFERRED
TO FIGURATIVELY AS "PAGES."™ THE READER SHOULD REALIZE THAT THE ACTUAL
PHYSICAL MEMORY UNIT CONSIST OF ALL THE WORDS. IN MEMORY - WITH EACH
VORD ASSIGNED A NUMERICAL ADDRESS THAT THE MACHINE UTILIZES. AS FAR AS
THE MACHINE IS CONCERNED, THE WORDS IN MEMORY ARE ASSIGNED CONSECUTIVE
ADDRESSES FROM WORD #0 ON UP TO THE HIGHEST WORD # CONTAINED IN THE
MEMORY. HOWEVER, PEOPLE USING COMPUTERS HAVE FOUND IT EASIER TO WORK
WITH ADDRESSES BY ARBITRARILY GROUPING "BLOCKS'" OF WORDS INTO PAGES.

IN THE SCELBI~8H "“PAGES" ARE CONSIDERED TO BF '"BLOCKS" OF 256 MEMORY
WORDS. THE FIRST MEMORY WORD ADDRESS IN A SCELBI-8K MINI-COMPUTFR 1S
AT ADDRESS ZERO (8). PROGRAMMERS COULD REFER TN THIS WORD AS WORD #0
ON PAGE #8. THE 256TH WORD IN MEMORY AS FAR AS THE COMPUTER IS CONCERN-
ED HAS AN ADDRESS OF 255. (NOTE: SINCE THE ADDRESS OF @ IS ACTUALLY
ASSIGNED FOR THE FIRST PHYSICAL WORD IN MEMORY, ALL SUCCEEDING WORDS
HAVE AN ADDRESS THAT IS ONE LESS THAN THE PHYSICAL QUANTITY!) A
PROGRAMMER COULD REFER TO THIS WORD AS WORD #255 ON PAGE #8. THF 257TH
WORD IN MEMORY HAS AN ABSOLUTE ADDRESS OF 256 ('N'TH WORD MINUS ONF
SINCE LOCATION @ CONTAINS A MEMORY WORD) AS FAR AS THE MACHINE IS
CONCERNED, BUT A PROGRAMMER COULD REFER TO THAT WORD LOCATION AS BEING
ON PAGE #1 AT LOCATION @! SIMILARLY, THE $13TH WORD IN MEMORY, WHEN
THE PAGING CONCEPT 1S USED, BECOMES WORD #@d ON PAGE #2 FOR A PROGRAM-
MER - BUT IT IS JUST 512 AS FAR AS THE MACHINE IS CONCERNED.

THE READER MIGHT HAVE NOTED A NICE COINCIDENCE IN REGARDS TO THE
ASSIGNMENT OF "PAGING'" FOR THE SCELBI-8H. EACH "“PAGE" REFFRS TO A
"BLOCK" OF MEMORY WORDS THAT CONTAINS 256 LOCATIONS (@ - 255). THE
READER WILL RECALL THAT THAT IS EXACTLY THE NUMBER OF DIFFERENT PATTERNS
THAT CAN BE SPECIFIED BY A GROUP OF EIGHT BINARY CELLS, AND THERE ARE
EIGHT BINARY CELLS. IN A MFMORY "“WORD." THE RELATIONSHIP 1S MORE THAN
COINCIDENTAL! NOTF THAT NOW ONE HAS DFUVISFD A CONUVENIENT WAY FOR A
PERSON TO BE ABLE TO THINK OF MEMORY ADDRESSES AND AT THE SAME TIME BE
ABLE TO SPECIFY A NEW ADDRESS TO THE PROGRAM COUNTER THAT WILL STILL
RESULT IN IT CONTAINING AN “ABSOLUTE'" ADDRESS THAT THF MACHINE CAN USF.
FOR INSTANCE, IF IT WAS DESIRED TO CHANGE THE CONTENTS OF THE 14 CELL
PROGRAM COUNTER FROM AN ABSOLUTE ADDRESS OF WORD #0, SAY TO VWORD #511,
THE FOLLOWING PROCEDURE COULD BE USED: THE PROGRAMMER WOULD FIRST SPEC~
1IFY AN INSTRUCTION THAT THE CPU WOULD DECODE AS MFANING ''CHANGE THE
VALUE. IN THE PROGRAM COUNTER.' (SUCH AN INSTRUCTION MIGHT BE A "JUMP"
INSTRUCTION IN THE SCELBI-8H INSTRUCTION SET.) FOLLOWING THAT INSTRUC-
TION- VOULD BE A WORD THAT HELD THE DESIRED VALUE OF THE “LOW ORDER
ADDRESS'" OR WORD # VWITHIN A “PAGE."™ SINCE A MEMORY WORD ONLY HAS
EIGHT CELLS, SINCE EIGHT CELLS CAN ONLY REPRESENT 256 DIFFERENT PAT-
TERNS, AND SINCE ONE OF THE PATTERNS IS EQUIVALENT TO A VALUE OF ZERO.,
THEN THE LARGEST NUMBER THE EIGHT CELLS CAN RFPRESENT IS 255. HOVEVER,
THIS IS THE LARGEST WORD # THAT IS CONTAINED ON A PAGE. THIS VALUE CAN
BE PLACED IN THE RIGHT-MOST EIGHT CELLS OF THE PROGRAM COUNTER. NOW IT
. 1S NECESSARY TO COMPLETE THE ADDRESS BY GETTING THE CONTENTS OF ANOTHER
WORD FROM MEMORY. THUS, IMMEDIATELY FOLLOWING THE WORD THAT CONTAINED
THE *LOW ADDRESS" WOULD BE ANOTHER WORD THAT CONTAINED THE *PAGE #"

OF THE ADDRESS THAT THE PROGRAM COUNTER WAS TO CONTAIN. IN THIS CASF
THE PAGE NUMBER WOULD BE 1. WHEN THIS VALUE IS PLACED IN THE LEFT

SIX CELLS OF THE PROGRAM COUNTER THE PROGRAM COUNTER WOULD CONTAIN
THE FOLLOWING PATTERN:

3 3¢ 6 5k 3 3k 3K 3 e 2k 3 36 e ok 3 3 ok 3k 3 ke 3 3k K o 3 3 oK e 3k ok S 3 ok 2k 3 2 2 3 2k 2 ke 3 2 3k e ok o e 3 o o ok o e 3k 3k ok
* * * * * * * * * * * * * * *
* @ x @ x @ x @ x @ %] ¢ 1 *)} x | x 1 x §] x | *x] % | x
* * * * * * 1 * x %x * * %* * *
3 3k 3 3 30 e ok 3 ok s ok ok e 3 3k 3K e ok 3 ofe 3 o 2 o 3 ok e o 3k ok 3k ok e o 3 2K 3 2k e ok e 2 ke 3k 3 2k e o e e 3 ok o oK ok K

FIGURE 5

- 14 -

IF DESIRED, THE RFADER CAN VERIFY BY USING THE FORMULA PRESENTED
PREVIOUSLY FOR DETERMINING THE DECIMAL VALUE OF A BINARY NUMBER, THAT
THE PATTERN PRESENTED IN FIGURE 5 CORRESPONDS TO Sil1, AND THUS, BY
USING THE "PAGE #" AND "WORD # ON THE PAGE,' EACH OF WHICH VWILL FIT
. IN AN EIGHT CELL MEMORY WORD, A METHOD HAS BEEN DEMONSTRATED THAT WILL
RESULT IN THE PROGRAM COUNTER BEING SET TO AN ABSOLUTE ADDRESS FOR A
WORD.IN MEMORY. FIGURE 6A AND 6B PROVIDE SOME EXAMPLES AS A SUMMARY.

PAGE #0 VORD #8
*® LB 4
L] * L] L 2
] . e « 1ST PHYSICAL WORD IN
@ ¢ 6 @ ¢ 8 @ © 8 © @ 6 @ 6 MFMORY HAS AN ABSOLUTE
. . ADDRESS OF: @
® 000000 BOSOBBONE NI O PP O OOONSIDIOSESIOSIOOSETISITOGES

ABSOLUTE ADDRESS. IN THE PROGRAM COUNTER

PAGE #0 WORD ¢#255
L) L] L) L
L R B AN LI B Y) LI 2N BN B BN B BN BN) oo 80009000
. . . . 256TH PHYSICAL WORD IN
6 o 6 o8 @6 @ 1 1 v 1 1 1 1 1 MEMORY HAS AN ABSOLUTE
. . ADDRESS OF: 255

® 00 0080000 BOOOIES 0000060000000 008000
L .

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

PAGE #1 WORD #0

.- » . . 257TH PHYSICAL WORD IN
o @ 86 6 ¢ 1 6 &6 6 & 0 0 0 0 MEMORY HAS AN ABSOLUTE
. . ADDRESS OF: 256

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

PAGE #1 WORD #1

. . , . 258TH PHYSICAL WORD_IN
e 0 @6 6 0 |1 6 6 & 86 06 @6 ¢ | MEMORY HAS AN ABSOLUTE
. . ADDRESS O0F: 257

L 2R N N BN BN BN BN 2B BN B N BX BN B BN N NN J ® 0009 00000 BSOOODS

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER
FIGURE 6A

-‘S-

PAGE #1 WORD #2

LA BN s 000 LI BE B R 2 B NN o9 0000000

. .« . « 259TH PHYSICAL WORD. IN
¢ ¢ @ ¢ @ | © @ © @ ¢ 8 1| @ MEMORY HAS AN ABSOLUTE
. : , '« ADDRESS OF: 258

P % 0 00 00000000 0eP O eS ® 0080008000600 090000
[) .

ABSOLUTE ADDRESS. IN THE PROGRAM COUNTER

PAGE #1 WORD #255
e 0000 o600 0 LK IR K 2N B O BN N] ®0 000000
. . . . 512TH PHYSICAL WORD_IN
b 86 6 @6 8 | 1 1+ 1 1 1t 1 1 1 MEMORY HAS AN ABSOLUTE
o . ADDRESS OF: 511

0 8 00000 PP BOERINIOIPSTSTS 00 S8 BS OSSNSO SSDS
[] .

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

PAGE #2 WORD #@

¢ 80000 L2 I B B N S 0000000 o000 00800

. . o . 513TH PHYSICAL WORD IN
6 6 6 6 1 @ e o ¢ 6 06 @& 0 @ MEMORY HAS AN ABSOLUTE
. . ADDRESS OF: 512

® 0000000000060 0000 00 ® 000000000 C 0PN O e

ABSOLUTE ADDRESS. IN THE PROGRAM COUNTER

PAGE #3 WVORD #255
.o o0
®e0o 0000 * 00000 ® 000600000 L 2K 2K S B B BN AN J
. . . . 1824TH PHYSICAL WORD. IN
2 @ © 6 1) 1 r 1 1 1 1 1 1 MEMORY HAS AN ABSOLUTE
. . ADDRESS OF: 1023

00 0000000000000 000 l.I......‘.....C.Q.
L] L]

ABSOLUTE ADDRESS IN THE PROGRAM COUNTER

FIGURE 6B

BY NOW THE READER SHOULD HAVE A PRETTY GOOD UNDERSTANDING OF THE
CONCEPTS REGARDING THE ORGANIZATION OF MEMQRY. INTO ELECTRICAL CELLS
WHICH CAN BE. IN ONE OF TWO POSSIBLE STATES3 THE GROUPING OF THESE
CELLS INTO “WORDS™ WHICH CAN HOLD PATTERNS WHICH THE CPU CAN RECOG-
NIZE AS SPECIFYING PARTICULAR OPERATIONS: AND THE OPERATION OF A
“PROGRAM COUNTER"™ WHICH IS ABLE TO HOLD THE "“ADDRESS"™ OF A WORD. IN
MEMORY FROM WHICH THE CPU IS TO OBTAIN AN. INSTRUCTION.

IT IS NOW TIMF TO DISCUSS THE OPERATION OF THE " SCRATCH PAD" AREFA
FOR A COMPUTER - THE ACCUMULATOR (AND SOMF ADDITIONAL ‘MANIPULATING
REGISTERS" IN THE SCELBI~-8H MINI-COMPUTER.)

AS WAS POINTED QUT EARLIER IN THIS CHAPTER THERF IS A SECTION OF A
COMPUTER THAT IS USED TO PERFORM CALCULATIONS IN AND WHICH CAN HOLD
INFORMATION WHILE THE CPU IS IN THE PROCESS OF "FETCHING'" ANOTHFR IN-
STRUCTION FROM THE MEMORY. THE PORTION WAS TERMED AN 'ACCUMULATOR' BE-
CAUSE IT COULD "ACCUMULATE" INFORMATION OBTAINFD FROM THE CPU PERFORM-
ING A SFRIES OF INSTRUCTIONS UNTIL SUCH TIME AS THE CP!UJ WwAS DIRECTED TO
TRANSFER THF INFORMATION ELSFWHFRE (0OR DISCARD IT.) THE ACCUMULATOR
IS ALSO CONSIDERED TO BE THE PRIMARY “MATHEMATICAL®" CENTER FOR COMPUTFR
OPFRATIONS FOR IT IS THE PLACE WHERE ADDITIONS, SUBTRACTIONS, AND
VARIOUS OTHER MATHEMATICALLY ORIENTED OPFRATIONS (SUCH AS BAALFAN ALGE-
BRA) ARE GENERALLY PERFORMED UNDFR PROGRAM CONTROL.

THE CONCEPT OF AN “ACCUMULATOR'"™ IS NOT DIFFICULT TO UNDERSTAND AND
ITS PHYSICAL STRUCTURE CAN BE READILY FXPLAINED. THE ACTUAL CONTROL OF
AN ACCUMULATOR BY THE CPU CAN BE QUITE COMPLFEX, BUT THESE COMPLFX FLFC~
TRONIC MANIPULATIONS DO NOT HAVE TO BFE UNDERSTOOD BY THF COMPUTER USFR.
IT IS ONLY NECESSARY TO KNOW THE "END RESULTS' OF THE VARIOUS OPFRATIONS
THAT CAN BE PERFORMED WITHIN AN ACCUMULATOR. THF PHYSICAL STRUCTURF AS
WELL AS THE KINDS OF OPERATIONS THAT CAN BE PERFORMED IN THF ACCUMULATOR
VILL BFE DISCUSSED IN THIS SECTION, AND IN ADDITION THE READER WILL LFARN
ABOUT SOME ADDITIONAL "PARTIAL ACCUMULATORS" WHICH ARE IN THE SCELBI-8H
SERIES OF MINI-COMPUTERS AND WHICH SERVE MANY VALUABLFE PURPOSES.

THE ACCUMULATOR IN A SCELBI-8H MACHINE CAN BE CONSIDERED AS A GROUP
OF EIGHT "MEMORY CELLS" SIMILAR TO A “WORD" IN MFMORY EXCEPT THAT THE
INFORMATION IN THE CELLS CAN BE MANIPULATFD IN MANY WAYS THAT ARE NOT
DIRECTLY POSSIBLE IN A WORD IN MFMORY.

a

B 7 B 6 B 5 B 4 B 3 B 2 B 1 B 0®

ok e 3 3 3 2 2 3 e e i 2 e 3 e e A K A AR 3k K K A 0 K K K K K K e ok R K K i 3 K ok ok Xk

* x* * * 3 * * * »
* 1 = @# x 1 x @B * 1 *x @ x 1 *x @A %
* * * * * * %* * *

3K 30 3 2 3 28 e 2 K 3 e 2 K K K A A K e A A K A K 3K K R A K K K K A K K KK kK e 3ok K K ok Xk

FIGURE 7

FIGURE 7 SHOWS A COLLECTION OF EIGHT BINARY CFLLS CONTAINING ONES
AND ZFROS TO REPRESENT AN ACCUMULATOR. THE CELLS ARE NUMBFRED FROM
LEFT TO RIGHT STARTING WITH "B7" DOWN TO "B#." THE DESIGNATIONS REFER
TO “BIT POSITIONS" WITHIN THE ACCUMULATOR. NOTF THAT THE RIGHT-MOST
CELL IS DESIGNATED B @ AND THE FIGHTH CELL (LEFT MOST CELL) IS
DESIGNATED B 7. THE RFADER SHOULD BECOME THOROUGHLY FAMILIAR WITH
THE CONCEPT OF ASSIGNING THE REFERENCE OF "ZERO* TO THE RIGHT-MOST
BIT POSITION IN A ROW OF CFLLS (SIMILAR TO THE CONCFPT OF ASSIGNING
A REFERENCE OF ZFRO TO THE FIRST ADDRESS OF A WORD ON A PAGE IN MFMORY)
AS THE CONVENTION IS FREQUENTLY USFD BY COMPUTER TECHNOLOGISTS. THE
CONUVENTION CAN BE CONFUSING FOR THF BFGINNFR WHO FAILS TO RFMEMBER THAT
THE PHYSICAL QUANTITY IS ONE MORE THAN THE REFFRENCF DESIGNATION. THE
CONVENTION OF LABELING THE FIRST PHYSICAL POSITION AS ZERO MAKES MUCH
MORE SENSE ONCE THE READER LEARNS TO THINK IN TERMS OF THE BINARY
NUMBERING SYSTEM AND THOROUGHLY REALIZES THAT THE *ZERO" REFFRRED TO
SO0 FREQUENTLY IN COMPUTER WORK WHEN DISCUSSING ACTUAL OPERATIONS ACTUAL-
LY REPRESENTS A PHYSICAL STATE (THE STATUS OF AN ELECTRONIC SWITCH) AND

- |7 =

DOES NOT NECESSARILY IMPLY THE MATHEMATICAL NOTION OF “NOTHING." THE
CONCEPT OF ASSIGNING A BIT DESIGNATION TO THE POSITIONS OF THE -CELLS
WITHIN THE ACCUMULATOR WILL ALLOW THE READER TO FOLLOW EXPLANATIONS OF
VARIOQUS ACCUMULATOR OPERATIONS.

ONE OF THE MOST FUNDAMENTAL AND MOST OFTEN USED OPERATIONS OF AN
ACCUMULATOR 1S FOR IT TO SIMPLY HOLD A NUMBER WHILE THE CPU OBTAINS A
SECOND OPERATOR. IN THE SCELBI-8H THE ACCUMULATOR CAN BE "LOADED' WITH
A VALUE OBTAINED FROM A LOCATION IN MEMORY OR ONE OF THFE "PARTIAL ACCUM-
ULATORS.* IT CAN THEN HOLD THIS VALUE UNTIL IT IS TIME TO PERFORM SOMFE
OTHER OPERATION WITH THE ACCUMULATOR. (IT WILL BECOME APPARENT LATER
THAT THE ACCUMULATOR IN THE SCELBI~-8H CAN ALSO RECEIVE INFORMATION FROM
EXTERNAL DEVICES.)

PERHAPS THE SECOND MOST OFTEN USED OPERATION OF AN ACCUMULATOR IS TO
HAVE IT PERFORM MATHEMATICAL OPERATIONS SUCH AS ADDITION OR SUBTRACTION
WITH THE VALUE IT CONTAINS AT THE TIME THE FUNCTION IS PERFORMED AND THFE
CONTENTS OF A MEMORY LOCATION OR ONE OF THE '"PARTIAL ACCUMULATORS.*

THUS IF THE ACCUMULATOR CONTAINED THE BINARY EQUIVALENT OF THE DECIMAL
NUMBER 5, AND AN INSTRUCTION TO ADD THE CONTFENTS OF A SPECIFIC MEMORY
LOCATION WHICH CONTAINED THE BINARY FEQUIVALENT OF THE DECIMAL NUMBER 3
WAS ENCOUNTERED, THE ACCUMULATOR WOULD END UP WITH THE VALUE OF 8

IN BINARY FORM AS SHOWN IN FIGURE 8.

B 7 B 6 B S5 B 4 B 3 B 2 B 1 B @

3256 3 2 K A0 A 3 X K K ok R R o e K Ak Ak 0K K K K K K R 3K K 3 35 2K 3K e K K 3K 3k K 3K 3 kK R K K kK

* * * * * * * * * ORIGINAL CONTENTS
* @ * @4 x B x @ *x g x] *x @ *x 1 x OF THE
* * * * * * * * * ACCUMULATOR

4 3 3 2 3 e e 3 A K K A AR K K K AR KK 3 K 3R AR K 3R K K 2 3k 2Kk K 30K K 5K KK K KK K

3 3 2k 2K 2 3 33K 2K R A 3K K R K K R K e 3 K R K ok e ok 3k 2K 3K 3K K 3 ak oK e 3k k2 i e K 3k 3K KK o

* * * * * * * * * CONTENTS OF THE
*x @ %*x @ *x @9 *x B %*x A *x @ x] x 1 % SPECIFIED WORD IN
* * * * * * * * * MEMORY

4 3 2 2 316 2 e 2k ofe ok o ok e o ik e ok ok 2 ek kK ek e K 2k ek ok k i K ok ak 2k K k3 k3 ok ok 3 K K kK

a2k 3 sk e 2k ok 36 2K 3¢ 3 2 3 2K ke e K A 3 2 2 3 e 6 30 K e e e K e ok e e e fe 3 R ek 3 ek K ok 3 K K

* * * * * * * * * FINAL RESULTS
* @ *x @ *x @ x g x 1 x @ *x @ *x @ * AFTER THE ADDITION
* * * * * * * * * IN THE ACCUMULATOR

K 3¢ 3 2 3 A 2k 3 ek A ok ok ak 2Kk oK K A K Ak 25 K 3k K Ak 3 3K ak e 3 3K 3k 3 Ak 3 2k ok o e kK e ak Ak K kK

FIGURE 8

PERHAPS THE NEXT MOST FREQUENTLY USED GROUP OF OPFRATIONS FOR THE
ACCUMULATOR IS FOR IT TO PERFORM "BOOLEAN" MATHEMATICAL OPERATIONS BE-
TWEEN ITSELF AND/OR OTHER *“PARTIAL ACCUMULATORS" OR WORDS IN MEMORY.
THESE OPERATIONS IN THE SCELBI~8H INCLUDE THE LOGICAL *AND,"™ "OR,'" AND
“"EXCLUSIVE OR" OPERATIONS. THE USE OF THESE "BOOLFEAN" MATHEMATICAL
FUNCTIONS WILL BE DESCRIBED IN MORE DETAIL IN OTHER PARTS OF THIS PUBLI-
CATION.

ANOTHER IMPORTANT CAPABILITY OF THE ACCUMULATOR IS ITS ARILITY TO
"ROTATE"™ ITS CONTENTS. IN THE SCELBI-8H THE CONTENTS OF THE ACCUMULATOR
CAN BE ROTATED EITHER TO THE RIGHT OR LEFT. THIS CAPABILITY HAS MANY
USEFUL FUNCTIONS - AND IS ONE METHOD BY WHICH MATHEMATICAL MULTIPLI=-
CATION OR DIVISION CAN BE PERFORMED. FIGURE 9 ILLUSTRATES THE CONCEPT

- 18 =

OF “ROTATING" THE CONTENTS OF THE ACCUMULATOR.

B 7 B -6 B S B 4 B 3 B 2 B 1 B @

e 2 2 2K 2 2 2 2 3 2K 36 3 K 3 3K 3k 3 K K Rl ok K ok 3K R o ok oK K K 3K o K ok ko K K K sk ok ok 3 ok K

* * * * * * * * * ORIGINAL CONTENTS
* # * @ x*x @ *x P *x @ *x @& x | *x @ =x OF THE ACCUMULATOR
* * * * * K. * x * (EQUAL TO DECIMAL 2)
240 2 3 3 3 e 3 2 3 A e 3 A A K K 2 K e 3K K 3K koK oK 3K 3K 3 3 3K ke 3 K ok 3 K 3K K K K 3K 3K o K K K o K

240 3k 2 e 3 3 ok 3K 3K 2K K 3 3 3K 2K 3K 3 A K 2 K A AR K i A 3K ke K 3K K K K 3K ke K ak K Ak K K ok K K K RESULT WHEN THF
* * *” * * * * * * ACCUMULATOR

x @ * # x @ x @ *x @ *x 1 x g *x @G x IS ROTATED TO THE
* * * * * * * * * LEFT ONE TIMF

303K 5K 5 3 3 6 5K 3 3 S 3k 3 e R ke ok 3 ofc a3 ok ok o ok i ok ok o ok ok ek Rk ok FokokoRKkoR Rk ¥xOk (YALUFRE NOW FQUAL 4)
a0 3k 3 ok 3K R 3 9K K e 5 Ok 3 3 Skl 2K 2k Sk 3 3 ok e 3k e 3 8 3 3 3k 3 kK e o 3K 3 3 K e ek K K K K K A K K RESULT WHEFN THE
* * * * T % * * * * ACCUMULATCR IS NOW
* @ * 6 x 0 *= @ *x* @ *x @& x f = |1 *x ROTATED TO THE RIGHT
* * * * * * * * * TWO TIMES

ek 3 2 3 3 3 ok sk ok 2K oK oK oK 3K 3 i 3k o A ok 3K ok oK ok o ok ok ok FOK K R oK ROROK koK RoR k%% (VALUE NOW EQUAL 1)

24 3% K 2K K 2k 5 3 K 3K 3 i Ak o K K 3 3k kK 3K o 3k 3K K e K e K 3k a3 K ok i ok kK 2k K ok 2k K o K 3K K K ok K K NOTE THAT IF A

* * * * * * * * * ROTATE RIGHT COMMAND
* 1 * @ *x @ %x P *x @ %x @ *x @ x @A x IS DONE AGAIN THAT THE
* * * * * * * * * "i* IN POSITION B @

23 34 2k ok 35 25 K 3¢ ok 3K 3 3 4 30 K K ok K oK K K kK ok ok ok ok ok ok K koK R R CROkok oKk koK Rk KkoKK Rk kkk WILL APPEAR AT B 7 1!

3 3 3 3k e 3 e A A 3k 3K 3K kK 3K 3 3 3k 3 K K ke K 3K K K R 3K K 3 3 3 kK K Ok K K K 3 5K K K ok k3 3K 3k kK K AND THAT NOW A

* * %* * * * * * * ROTATE LEFT COMMAND

*x @A *x P *x A x G *x @ %x A *x B *%x] *x WOULD RESTORE THE

* * * * * * * * * 1" IN POSITION B 7

30300 3K 3 36 46 3 3 3¢ 3K 3K 34 K 2K K 3 K A oK 3 k¢ oK 3K 3K k3K 3K 3K 3 K K 3 Ok ok i ok A K 3K 3K K K i 3K K K KOk K BACK T0O B @ !
FIGURE 9

THE ASTUTE READER MAY NOTICE THAT THE ACCUMULATOR ROTATE CAPABILITY
ALS0O ENABLES THE ACCUMULATOR TO EMULATE A *SHIFT BEGISTER"™ WHICH CAN
BE A VALUABLE FUNCTION IN MANY PRACTICAL APPLICATIONS OF THE COMPUTER.

THE ACCUMULATOR IN THE SCELBI-8H SERVES ANOTHER EXTREMFLY POWERFUL
FUNCTION. WHEN CFERTAIN OPFRATIONS ARE PERFORMED WITH THE ACCUMULATOR
THE SCELBI-8H MINI-COMPUTER IS CAPABLE OF EXAMINING THE RESULTS AND WILL
THEN "SET" OR 'CLEAR"™ A SPECIAL GROUP OF "FLAGS.'" OTHER INSTRUCTIONS
CAN THEN TEST THE STATUS OF THE SPECIAL ' FLAGS'" AND PERFORM OPFRATIONS
BASED ON THE PARTICULAR SETTING(S) OF THE "FLAGS.*" IN THIS MANNER THE
MACHINE IS CAPABLE OF "MODIFYING*' ITS BEHAVIOR WHEN IT PERFORMS OPERA-
TIONS DEPENDING ON THE RESULTS IT OBTAINS AT THE TIME THE OPERATION IS
PERFORMED!

THERE ARE FOUR SPECIAL FLAGS IN THE SCELBI-8H MINI-COMPUTER WHICH
ARE MANIPULATED BY THE RESULTS OF OPERATIONS WITH THE ACCUMULATOR (AND
IN SEVERAL SPECIAL CASES BY OPERATIONS WITH “PARTIAL ACCUMULATORS).
THESE FOUR FLAGS ARE DESCRIBED IN DETAIL BELOW.

THE 'CARRY FLAG" CAN BE CONSIDERED AS A ONE BIT (CELL) EXTENSION OF
THE ACCUMULATOR REGISTER. THIS FLAG IS CHANGED IF THE CONTENTS OF THE
ACCUMULATOR SHOULD “OQVERFLOW" DURING AN ADDITION OPERATION (OR "UNDER-
FLOW" DURING A SUBTRACTION OPERATION). ALSO, THE “CARRY BIT' CAN BE

UTILIZED AS AN EXTENSION OF THE ACCUMULATOR FOR CERTAIN TYPES OF "RO-
TATE* COMMANDS.

THE "SIGN FLAG" IS SET TO A LOGIC STATE OF "1 WHEN THE MOST SIG-
NIFICANT BIT (MSB) OF THE ACCUMULATOR (OR PARTIAL ACCUMULATOR) IS A
1" AFTER CERTAIN TYPES OF INSTRUCTIONS HAVE BEEN PERFORMED. THE NAME
OF THIS FLAG DERIVES FROM THE CONCEPT OF USING TWO'S COMPLEMENT ARITH-
METIC IN A REGISTER WHERE THE MSB IS USED TO DESIGNATE THE SIGN OF
THE NUMBER IN THE REMAINING BIT POSITIONS OF THE REGISTER - CONVENTION-
ALLY, A "1" IN THE MSB DESIGNATES THE NUMBER AS A "NEGATIVE" NUMBER.
IF THE MSB OF THE ACCUMULATOR (OR PARTIAL ACCUMULATOR) IS '@* AFTER CER-
TAIN OPERATIONS THEN THE "SIGN FLAG"™ IS ZERO (INDICATING THAT THE NUMBER
IN THE REGISTER IS A POSITIVE NUMBER BY TW0'S COMPLEMENT CONVENTION.)

THE “ZERO FLAG"™ IS SET TO A LOGIC STATE OF *1" IF ALL THE BITS IN
THE ACCUMULATOR (OR PARTIAL ACCUMULATOR) ARE SET TO ZFRO AFTER CERTAIN
TYPES OF OPERATIONS HAVE BEEN EXECUTED. IT IS SET TO "@" IF ANY ONE OF
THE BITS IS A LOGIC ONE AFTER THESE SAME OPERATIONS. THUS THE *“ZERO
FLAG'" CAN BE UTILIZED TO DETERMINE WHEN THE VALUE IN A PARTICULAR REG-
ISTER IS ZERO.

THE "PARITY FLAG"™ IS SET TO A 1" AFTER CERTAIN TYPFES OF OPERATIONS
WITH THE ACCUMULATOR (OR PARTIAL ACCUMULATORS) WHEN THE NUMBER OF BITS
IN THE REGISTER THAT ARE A LOGIC ONE IS AN EVEN VALUE (WITHOUT REGARD
TO THE POSITIONS OF THE BITS). THE *"PARITY FLAG" IS SET TO "@' AFTER
THESE SAME OPERATIONS IF THE NUMBER OF BITS IN THE REGISTER THAT ARE A
LOGIC ONE IS AN ODD VALUE (1, 3, 5 OR 7). THE "PARITY FLAG" CAN BE
ESPECIALLY VALUABLE WHEN DATA FROM EXTERNAL DEVICES IS BEING RECEIVED
BY THE SCELBI-8H MINI-COMPUTER TO TEST FOR CERTAIN TYPES OF "TRANS-
MISSION ERRORS'" ON THE INFORMATION BEING RECEIlVED.

THERE WILL BE DETAILED DISCUSSION ON THE USE OF THE FOUR FLAGS
IN OTHER SECTIONS OF THIS PUBLICATION. THEIR INTRODUCTION AT THIS TIME
1S SIMPLY TO INFORM THE READER OF THEIR AVAILABILITY AND TO INDICATE
THEIR RELATION TO THE ACCUMULATOR (AND PARTIAL ACCUMULATORS) AS THEIR
FUNCTIONS GREATLY INCREASE THE CAPABILITIES OF THE MACHINE - AND THEY
ARE FUNCTIONALLY CONNECTED WITH THE ACCUMULATOR (AND PARTIAL ACCUMU-
LATORS.)

IN ADDITION TO THE FULL ACCUMULATOR PREVIQUSLY DISCUSSFD THERE ARE
SIX OTHER 8 BIT REGISTERS IN THE SCELBI~8H MINI-COMPUTER REFERRED TO AS
"PARTIAL ACCUMULATORS" BFECAUSE THEY ARE CAPABLE OF PFRFORMING TWQO SPEC-
IAL FUNCTIONS NORMALLY ASSOCIATED WITH AN ACCUMULATOR (IN ADDITION TO
SIMPLY SERVING AS TEMPORARY STORAGE REGISTERS). THE FULL ACCUMULATOR
WILL OFTEN BE ABBREVIATED IN THIS MANUAL AS '"ACC'" OR "REGISTER A."
THE SIX "PARTIAL ACCUMULATORS'" WILL BE REFERRED TO AS "REGISTERS B, C,
D> E» H AND L.*

REGISTERS B, C, D, E» H AND L ARE ALL CAPABLE, UPON BEING DIRECTED
TO DO SO BY A SPECIFIC INSTRUCTION, OF EITHER INCREMENTING OR DECRE-
MENTING THEIR CONTENTS BY ONE. THIS CAPABILITY ALLOWS THEM TO BE USED
AS "COUNTERS"™ AND "POINTERS'" WHICH ARE OFTEN OF TREMENDOUS VALUE IN
COMPUTER PROGRAMS. WHAT MAKES THEM ESPECIALLY VALUABLE IN THE SCELBI-8H
MACHINE IS THAT WHEN THEIR CONTENTS ARE INCREMENTED OR DECREMENTED THE
IMMEDIATE RESULTS OF THAT REGISTER WILL AFFECT THE STATUS OF THE “ZERO.,"
"SIGN," AND "PARITY" FLAGS DISCUSSED ABOVE. THUS IT 1S POSSIBLE FOR
THE PARTICULAR CONTENTS OF THESE REGISTERS TO AFFECT THE OPERATION OF
THE COMPUTER DURING THE COURSE OF A PROGRAMS OPERATION AND THEY CAN
BE USED TO “GUIDE" OR MODIFY A SEQUENCE OF OPERATIONS BASED ON CONDI-
TIONS FOUND AT THE ACTUAL TIME A PROGRAM 1S EXECUTED.

- 20 -

- 1IT SHOULD BE NOTED THAT REGISTERS B, C, D, E, H AND L ARE CAPABLE
OF BEING. INCREMENTED AND DECREMENTED - BUT THE FULL ACCUMULATOR -~ REGI-
STER A - CANNOT_PERFORM THOSE TW0 FUNCTIONS IN THE SAME PRECISE MANNER.
(THE FULL ACCUMULATOR CAN BE INCREMENTED OR DECREMENTED BY ANY VALUE
BY SIMPLY ADDING OR SUBTRACTING THE DESIRED VALUE. THERF 1S NOT, HOW-
EVER, A SIMPLE INCREMENT OR DECREMENT BY ONE INSTRUCTION FOR USE WITH
THE FULL ACCUMULATOR!)

TWO0 OF THE PARTIAL ACCUMULATORS, REGISTERS H AND L, SERVE AN ADDI~
TIONAL PURPOSE. IN THE SCELBI-8H MINI-COMPUTER. THESE TWO REGISTERS CAN
BE USED TO DIRECTLY “POINT" TO A SPECIFIC WORD IN MEMORY SO THAT THE
COMPUTER MAY OBTAIN OR DEPOSIT INFORMATION IN A DIFFERENT PART OF MEMORY
THAN THAT IN WHICH A PROGRAM IS ACTUALLY BEING EXECUTED. THE READER
SHOULD RECALL THAT A SPECIAL PART OF THE CENTRAL PROCESSOR UNIT (CPW)
TERMED THE PROGRAM COUNTER 1S USED TO TELL THE COMPUTER WHERE T0 OBTAIN
THE NEXT INSTRUCTION WHILE EXECUTING A PROGRAM. THE PROGRAM COUNTER
WAS EFFECTIVELY A "DOUBLE WORD LENGTH"™ REGISTER THAT COULD HOLD THE
VALUE OF ANY POSSIBLE ADDRESS IN MEMORY. THE PROGRAM CQUNTER IS ALVWAYS
USED TO TELL THE MACHINE WHERE TO OBTAIN THE NEXT. INSTRUCTION. HOVEVER.,

.IT IS OFTEN DESIRABLE TO HAVE THE MACHINE OBTAIN SOME INFORMATION -
SUCH AS A "DATA WORD" - FROM A LOCATION IN MEMORY THAT IS NOT CONNECTED
VITH WHERE THE NEXT INSTRUCTION TO BE PERFORMED 1S LOCATED. THIS CAN
BE ACCOMPLISHED BY SIMPLY LOADING "“REGISTER H" WITH THE "HIGH ADDRESS"
(PAGE) PORTION OF AN ADDRESS IN MFMORY, THEN LOADING "REGISTER L" WITH
THE "LOV ADDRESS"™ PORTION OF AN ADDRESS IN MEMORY, AND THEN UTILIZING
ONE OF A CLASS OF COMMANDS THAT VWILL DIRECT THE CPU TO FETCH INFOR-
MATION FROM OR DEPOSIT INFORMATION INTO THE LOCATION IN MEMORY THAT. IS
SPECIFIED (“POINTED TO")> BY THE *H"™ AND "L" REGISTER CONTENTS. THIS

. INFORMATION FLOW CAN BE FROM/TO THE LOCATION SPECIFIED. IN MEMORY AND
ANY OF THE CPU REGISTERS.

AT THIS TIME IT WOULD BE BENEFICIAL FOR THE READER TO STUDY FIGURE
14 SHOWN ON THE NEXT PAGE. FIGURE 1@ IS AN EXPANDED BLOCK. DIAGRAM OF
FIGURE 2B AND SHOWS THE UNITS OF THE SCELBl-8H MINI-COMPUTER WHICH HAVE
BEEN PRESENTED. IN THE PREVIOUS SEVERAL PAGES.

UNTIL NOW NO MENTION HAS BEEN MADE OF HOW INFORMATION IS PUT INTO
OR RECEIVED FROM A COMPUTER. NATURALLY, THIS IF A VERY VITAL PART OF
A COMPUTER BECAUSE THE MACHINE WOULD BE RATHER USELESS IF PEOPLE COULD
NOT PUT INFORMATION INTO THE MACHINE UPON WHICH CALCULATIONS OR PROCESS-
-ING COULD BE DONE, AND RECEIVE. INFORMATION BACK FROM THE MACHINE WHEN
THE OPERATION(S) HAD BEEN PERFORMED!

COMMUNICATIONS BETWEEN THE COMPUTER AND EXTERNAL DEVICES - WHETHER
THOSE DEVICES BE SIMPLE SWITCHES, OR TRANSDUCERS, OR TELETYPE MACHINES,
OR CATHODE~RAY-TUBE DISPLAY UNITS, OR KEYBOARDS, OR “MAG-TAPE" AND
"DISK" SYSTEMS -~ OR WHATEVER, ARE COMMONLY REFERRED TO AS. INPUT/OUTPUT
OPERATIONS AND ARE COLLECTIVELY REFERRED TO IN ABBREVIATED FORM AS "I/0"
TRANS FERS.

- IN THE SCELBI~-8H SERIES OF MINI-COMPUTERS ALL 1/0" TRANSFERS ARE
MADE BETWEEN EXTERNAL "I1/0 PORTS" (WHICH CONNECT TO EXTERNAL DEVICES
Vel«A« APPROPRIATE ELECTRONIC CONNECTIONS) AND THE FULL ACCUMULATOR IN
THE COMPUTER. THE STANDARD SCELBI~-8H CAN RECEIVE. INFORMATION FROM SIX._
DIFFERENT *“INPUT PORTS"™ (THE INFORMATION WILL ARRIVE AT THE FULL ACCUMU-
LATOR) OR SEND INFORMATION FROM REGISTER A (THE FULL ACCUMULATOR) TO ANY
ONE OF EIGHT DIFFERENT "OUTPUT PORTS." (SPECIAL SYSTEMS CAN HAVE GREAT-
LY EXPANDED.I1/0 CAPABILITY)s THIS I/0 STRUCTURE MEANS THAT A VHOLE
GROUP OF DEVJCES CAN BE SIMULTAINBEOUSLY HOOKED UP TO THE MINI-COMPUTER
AND THE COMPUTER USED T0 RECEIVE INFORMATION FROM OR TRANSMIT INFORMA-
TION TO A VARIETY OF DEVICES AS DIRECTED BY A "PROGRAM." A SPECIAL SET

- 2] -

25290 0 3 2 2 2 o 900 3 30 8 e ok 2k 2k o 3 3 20 o9 ek e ol e ke o e 3 o ok

* MEMORY *

a0 o o o o o e o o e o o e o o R o ok e ol o e oo o o o ok

* @ x } % @ %x @ %x @ x| x @ x @ % VORD #1 AT PAGE @& LOC 0@

300 396 e 3 2 200 00 2 30 200 00 30 2 2 0 e 2 e 3k e 3 e 3 2 30 3 e e o o ok ok ‘ o
* @ x @ %x @ x @ x @ % B x @ % @ % WORD #2 AT PAGE @ LOC 1

e 3¢ e 2 390 00 2 e 2 3 3 e 3k ok 3 ¢ 3 3 0 K 2 2 e 3 2 3 o 3 o o o K

®* @ % 0 %*x @ x @ x @ %x @ x @ *x] % WORD #3 AT PAGE @0 LOC 2

e 3 80 3 o a0 a0 2 3k 28 3 3 2 3K 3k 3 3 3k ok 3k e 9k 0 ke e o 8k e ke ok o ok

*x 1 % 1 *x @ x f x @ x 1 %x] % | % .
3 e 2 e 3k 3 e o 3k 3 3 2 e o 2 ok 2 3 2 3 2k 3K ok 2 o 2 o 2 ok 2 ok oK ok
* @ x @ *x 1] x| x @ x @ *x @ % | *x o
30 3 sk o e 3 e 3 3 3k 2 ok e ok 2 3k 3k 3k 3k e ok s 3 3¢ ok 3 3 2 e ok e ok ke
*] % | x 1 %] x } % @ x @ x @ x .

e 3k 3¢ 3k 3 20 3 3 3¢ 3K 3k e 3k e 3 3 3k e 3k 3 e e 3k 3k k3 3 e ke ok ok kK
* 1 % 1 ok 1 k1 %1 x 1 x1 % | x WORD #X AT PAGE Y LOC 2
35 3¢ 3jc 34 e 3¢ 3¢ e 3K e e 3 ke ¢ e e 3k 3k 3k ok e e 3K 3k e e 2k e e e e ke
L] L
L] [)
[] *
* ®
3¢ 3¢ 2 s 3 2 3 A e e e e e 3 e 3 e X 3k 3 e 3k 2k o s 3 e 3k Ak K Kk
* PROGRAM COUNTER x
4k 3 3 3 3k e 3 3 3¢ K 3 e 3k e 3¢ ke e 3¢ 3k 2 e i A 2k ke e A 3 A e ek

* *®

* CENTRAL * ;

* * CPU VWITH

* PROCESSOR * PROGRAM COUNTER

* * AND REGISTER STATUS FLAGS
* UNIT *

»* %k

e 29 3 o 3 2 3 2 2 ok 3 2k 3 ok 3k e 2k e 2 e af 3 3k K e kK 3 ok ok ke Ak e kK
* FLAGS: ..CJ'. llz’l' '.S"' & .'P" *
94 30¢ 3¢ 20 2 3k 3¢ 3 3¢ 2 e 2 3 3k 3 e 3k 4 e e 3 e 3k Ak e o 3 A A g ok

L] [] *
[] . L]

30 2 29 ke e 2 3 3k e 24 ok 2k e 3k 20 3k e 3k e 3 e 3 2 ok Ak e 2k ok 3k o ok ok ok

* REGISTER “A"™ * = FULL ACCUMULATOR
e o e o o o o e ok o ko o o ok o o o o o ok ook o o ok ok 3 ok A o

* REGISTER “B" * = PARTIAL ACCUMULATOR
ke a8 2 e ke 3 o e e e ok s e ok e e ok s e o e 3 ok s e o e o o ok ok K ‘ :

* REGISTER *C" * = PARTIAL ACCUMULATOR
e 2 o 3 o 00 3 o 3 ok o 3 o ok ook o o ok ook e e ok e ok ok ok -

* REGISTER "D" * = PARTIAL ACCUMULATOR
o0 o e s e o e o e s e s ok ok ok o ok o ok o ok o ok o KoK h

* REGISTER “E" * = PARTIAL ACCUMULATOR

35 3 25 24 3 35 256 35 28 34 3¢ 35 2 e 2k 346 3 2k 2 3 0 0 38 e 0 e e o e e ok ok ke

* REG “H" & MEMORY PAGE POINTER x = PARTIAL ACCUMULATOR
e e 3 2 20 2 0 30 2 ok ok o o e ek ok ok ok 3 o8 o ke ok ok o ok ok ok o

* REG “L'" & LOV ADDRESS POINTER = = PARTIAL ACCUMULATOR
e 0 2 2 o o 2 ke 2K ok e o e ko o o o e o o ko o ok o ok ok ok ok :

FIGURE 10

OF COMMANDS ARE USED TO INSTRUCT THE COMPUTER AS TO WHICH "1/0 PORT" 1S
TO BE OPERATED AT ANY PARTICULAR INSTANT. WITH APPROPRIATE PROGRAMMING
IT IS THEN POSSIBLE TO HAVE THE COMPUTER "COMMUNICATE"™ WITH A LARGE
VARIETY OF DEVICES IN AN ESSENTIALLY "AUTOMATIC' MODE - FOR INSTANCE
RECEIVING INFORMATION FROM A DIGITAL MULTI-METER AT SPECIFIED TIMES,
THEN POSSIBLY PERFORMING SOME AVERAGING CALCULATIONS, AND THEN OUTPUT-
TING RESULTS TO A TELETYPE MACHINE WITHOUT HUMAN INTERVENTION. OR., IN
OTHER APPLICATIONS - INFORMATION FROM A HUMAN OPERATOR CAN BE TYPED IN
TO THE MACHINE USING A TYPE-WRITER-LIKE KEYBOARD. IN ITS SIMPLIST FORM
A GROUP OF SWITCHES CAN BE USED AS AN INPUT DEVICE AND A GROUP OF LAMPS
USED AS AN OUTPUT DEVICE FOR THE SCELBI-8H MINI-COMPUTER!

HOWEVER, A MORE SOPHISTICATED SYSTEM USED IN MANY APPLICATIONS
WOULD BE TO USE A TELETYPE MACHINE OR A COMBINATION OF A KEYBOARD AND
A CATHODE-RAY-TUBE (CRT) DISPLAY ATTACHED TO INPUT AND OUTPUT PORTS
TO SERVE AS THE PRIMARY MEANS OF 1/0. A PERSON CAN THUS TYPE INFOR-
MATION ON THE KEYBOARD WHICH WILL PASS IT INTO THE COMPUTER, AND THE
COMPUTER CAN DISPLAY THE RESULTS OF ITS OPERATIONS ON THE CRT DISPLAY
(WHICH CAN INCIDENTLY, BE MADE FROM AN ORDINARY OSCILLOSCOPE AND A
SPECIAL SCELBI CRT INTERFACE UNIT!)

PERHAPS THE MOST WONDERFUL AND EXCITING ASPECT ABOUT A DIGITAL
COMPUTER IS ITS TREMENDOUS VERSATILITY. IT HAS BEEN SAID THAT THE
COMPUTER 1S THE MOST VERSATILE MACHINE IN EXISTENCE AND THAT ITS
APPLICATIONS ARE LIMITED ONLY BY MAN'S ABILITY TO DEVELOP PROGRAMS
THAT DIRECT THE OPERATION OF THE MACHINE. IT IS UNDOUBTABLY ONE OF
THE BEST MACHINES FOR ALLOWING MAN TO EXERCISE AND TEST HIS CREATIVE
POWERS THROUGH THE DEVELOPMENT OF PROGRAMS THAT DIRECT THE MACHINE TO
PERFORM COMPLEX OPERATIONS THAT CAN NOT ONLY CONTROL OTHER MACHINES,
OR PERFORM CALCULATIONS MANY TIMES FASTER THAN HUMANLY POSSIBLE - BUT
BECAUSE IT CAN BE USED TO "SIMULATE"™ OR '"MODEL" OTHER SYSTEMS THAT IT
MIGHT BE IMPRACTICAL TO BUILD FOR PURELY EXPERIMENTAL PURPOSES. THUS
MAN CAN CREATE A *“MODEL" IN A COMPUTER PROGRAM AND ACTUALLY “PLAY* WITH
THE SYNTHETIC MODEL WITHOUT ACTUALLY BUILDING THE PHYSICAL DEVICE!

THE COMPUTER'S GREAT VERSATILITY COMES AROUT BECAUSE THE MACHINE IS
CAPABLE OF EXECUTING A LARGE GROUP OF INSTRUCTIONS IN AN ESSENTIALLY
LIMITLESS SERIES OF COMBINATIONS - THESE SERIES OF INSTRUCTIONS ARE
STORED IN THE MEMORY BANK(S) OF THE COMPUTER - AND A NEW SERIES OF
INSTRUCTIONS CAN BE PLACED IN THE MEMORY BANK(S) WHENEVER DESIRED. IN
FACT, THE MEMORY BANK(S) CAN OFTEN HOLD SEVERAL COMPLETLY UNRELATED
"PROGRAMS" IN DIFFERENT SECTIONS AND THUS ONE CAN HAVE A MACHINE THAT
PERFORMS TOTALLY UNRELATED TASKS SIMPLY BY PUSHING A FEW BUTTONS AND
THEREBY DIRECTING THE MACHINE TO START EXECUTING A NEV PROGRAM IN A
DIFFERENT SECTION OF MEMORY! ’ :

THE DIGITAL MINI-COMPUTER IS CAPABLE OF PROVIDING SERVICES TO .
PEOPLE FROM ALL WALKS OF LIFE! A PERSON NEED ONLY CHOOSE (OR DEVELOP)
PROGRAMS AND CONNECT EXTERNAL INSTRUMENTS THAT WILL PROVIDE THE CAPA-
BILITIES DESIRED. '

FOR INSTANCE, A SCIENTIST MIGHT PUT A MATHEMATICAL CALCULATOR PRO-
GRAM INTO THE COMPUTER'S MEMORY AND USE THE MINI-COMPUTER AS A SOPHIS-
TICATED ELECTRONIC CALCULATOR BY USING A CALCULATOR TYPE KEYBOARD AS AN
INPUT DEVICE AND A CRT DISPLAY AS AN OUTPUT DEVICE ON WHICH TO RECEIVE
THE ANSWERS TO COMPLEX MATHEMATICAL CALCULATIONS WHICH THE COMPUTER
PERFORMS. AFTER USING THE COMPUTER AS A CALCULATOR FOR A PERIOD OF TIME
THE SCIENTIST MIGHT DECIDE TO UTILIZE THE SAME COMPUTER TO AUTOMATICALLY
RECORD DATA FROM INSTRUMENTS DURING AN EXPERIMENT. BY SIMPLY PUTTING
A DIFFERENT PROGRAM IN THE COMPUTER'S MEMORY AND PLUGGING IN SOME
PERIPHERAL MEASURING INSTRUMENTS INTO THE COMPUTER'S I/0 PORTS, THE

- 23 -

SCIENTIST COULD HAVE THE COMPUTER PERIODICALLY MAKE MEASUREMENTS

WHILE HE WENT OUT TO LUNCH AND SAVE THE RESULTS IN IT'S MEMORY. AFTER
LUNCH THE SCIENTIST COULD HAVE THE COMPUTER TABULATE AND PRESENT THE
DATA OBTAINED FROM THE EXPERIMENT IN COMPACT FORM. THEN - BY MERELY
PUTTING A DIFFERENT PROGRAM IN THE MEMORY, THE SCIENTIST COULD HAVE THE
COMPUTER HELP HIM SET UP AND ARRANGE A "REFERENCE FILE" ALL SORTED INTO
ALPHABETICAL ORDER OR ANY MANNER THAT WOULD ENABLE HIM TO USE THE COM-
PUTER TO EXTRACT INFORMATION FAR FASTER THAN A MANUALLY OPERATED *"PAPER
FILE CARD" SYSTEM.

SO0 THE SCELBI-8H MINI-COMPUTER CAN BE A VALUABLE TOOL FOR A SCIEN-
TIST - BUT, THE EXACT SAME MACHINE WITH A DIFFERENT PROGRAM IN ITS
MEMORY (AND POSSIBLY DIFFERENT PERIPHERAL DEVICES) COULD BE USED TO CON-
TROL A COMPLEX MANUFACTURING OPERATION SUCH AS A PLASTIC INJECTION MOLD-
ING MACHINE. IN SUCH A CASE 1/0 UNITS THAT COUPLED TO TRANSDUCERS ON
THE INJECTION MOLDING MACHINE MIGHT BE USED TO RELAY INFORMATION TO THE
COMPUTER ON A VARIETY OF PARAMETERS SUCH AS TEMPERATURE OF THE PLASTIC
IN THE FEED BARREL, AMOUNT OF FEED MATERIAL IN THE HOPPER AND INJECTION
BARREL, AVAILABLE PRESSURE TO THE MOLD JAWS AND FEED BARREL, VACANCY OR
FILLED STATUS OF THE MOLD AND OTHER USEFUL PARAMETERS. THE COMPUTER
COULD BE PROGRAMMED TO ANALYZE THIS INFORMATION AND SEND BACK SIGNALS
TO CONTROL THE OPERATION OF HEATERS, PRESSURE VALVES, THE FEED RATE OF
RAW MATERIALS, WHEN TO INJECT PLASTIC INTO THE MOLD, WHEN TO EMPTY
THE MOLD, AND OTHER OPERATIONS TO ENABLE THE PLASTIC INJECTION SYSTEM
TO OPERATE IN AN ESSENTIALLY AUTOMATIC MODE.

OR, A BUSINESSMAN COULD USE THE SAME COMPUTER CONNECTED TO AN ELEC-
TRIC TYPEWRITER, WITH A SUITABLE PROGRAM IN MEMORY, TO COMPOSE, EDIT
AND THEN TYPE OUT “PERSONALIZED FORM LETTERS"” BY DIRECTING THE COMPUTER
TO INSERT PARAGRAPHS FROM A "BANK OF STANDARD PARAGRAPHS'"™ SO AS TO FORM
A PERSONALIZED CUSTOMER ANSWERING SYSTEM THAT WOULD HANDLE ROUTINE IN-
QUIRIES IN A FRACTION OF THE TIME (AND COST)> THAT IT WOULD TAKE A SECRE~
TARY TO PREPARE SUCH LETTERS. OR, THE BUSINESSMAN MIGHT UTILIZE THE
COMPUTER TO HELP HIM CONTROL HIS INVENTORY, OR SPEED UP HIS ACCOUNTING
OPERATIONS.

HOWEVER, A MINI1-COMPUTER THAT COSTS AS LITTLE AS A SCELBI-8H DOES
NOT HAVE TO BE RESTRICTED TO A BUSINESS OR SCIENTIFIC ENVIRONMENT. THE
SCELBI-8H THAT CAN DO ALL THE TYPES OF TASKS MENTIONED ABOVE CAN ALSO

BE USED TO HAVE FUN WITH - OR TO PERFORM VALUABLE SERVICES - TO PRIVATE
INDIVIDUALS.

THE COMPUTER CAN BE USED AS A SOPHISTICATED ELECTRONIC CALCULATOR
BY ALMOST ANYONE. IT CAN BE USED TO COMPOSE LETTERS (USING AN EDITOR
PROGRAM) BY VIRTUALLY ANYONE. PROGRAMS THAT SORT DATA ALPHABETICALLY
OR IN VARIOUS OTHER CATEGORIES CAN BE OF VALUABLE SERVICE TO PEOPLE IN
MANY APPLICATIONS. THE COMPUTER CAN BE USED TO MONITOR AND CONTROL MANY
HOUSEHOLD ITEMS, SERVE AS A SECURITY MONITORING SYSTEM, BE CONNECTED TO
DEVICES THAT WILL DIAL TELEPHONES, AND DO THOUSANDS OF OTHER TASKS.

THE ELECTRONIC HOBBYIST CAN BE KEPT OCCUPIED FOR YEARS WITH A
DIGITAL COMPUTER. FOR INSTANCE, ONE CAN BUILD A LITTLE TEST INSTRU-
MENT THAT PLUGS INTO A FEW 1/0 PORTS ON THE SCELBIl-8H, THEN LOAD PRO~-
GRAMS INTO MEMORY THAT WILL DIRECT THE COMPUTER TO AUTOMATICALLY TEST
ELECTRONIC COMPONENTS (SUCH AS COMPLEX TTL INTEGRATED CIRCUITS) IN A
FRACTION OF A SECOND! (BUSINESSES CAN DO THIS T0O!)

OR A HAM RADIO OPERATOR CAN PUT A PROGRAM INTO MEMORY THAT WILL
ENABLE THE SCELBI-8H MINI-COMPUTER TO RECEIVE MESSAGES TYPED IN FROM A
KEYBOARD, CONVERT THE MESSAGES TO MORSE CODE, AND THEN ACTUATE AN
OSCILLATOR V.I.A. AN OUTPUT PORT TO SEND PERFECTLY TIMED MORSE CODE.

- D4 =

.IN ADDITION, FOR. INSTANCE, THE HAM RADIO OPERATOR MIGHT USE THE COM~-
PUTER VITH AN APPROPRIATE PROGRAM TO SERVE AS A "CONTEST LOGGING AID."
THE “LOGGING AID™ WOULD SERVE AS AN INSTANT REFERENCE FILE WHEREBY THE
OPERATOR COULD ENTER THE CALLS OF STATIONS AS THEY WERE WORKED AND.
HAVE THE COMPUTER VERIFY 1F THE CONTACT WAS A DUPLICATE - THE COMPUTER
COULD DO OTHER TASKS T00, SUCH AS RECORD THE TIME OF THE CONTACT BY
CHECKING AN EXTERNAL DIGITAL CLOCK (OR BY UTILIZING A PROGRAM THAT
WOULD ENABLE THE COMPUTER TO BE USED AS A CLOCK WITHIN. ITSELF!)

AND, THE COMPUTER CAN BE USED TO PLAY NUMEROUS GAMES WITH, SUCH AS
TIC~-TAC-TOE, CHECKERS, WORD GAMES, CARD GAMES - AND A LARGE VARIETY OF
OTHER TYPES OF GAMES THAT ONE CAN PROGRAM A COMPUTER TO PERFORM.

AND PERHAPS MOST. IMPORTANT - FOR THE STUDENT, HOBBYIST, SCIENTIST,
BUSINESSMAN, OR ANYONE. INTERESTED. IN THE EXCITING POSSIBILITIES OF ITS
APPLICATIONS, THE SCELBI1-8H MINI-COMPUTER OFFERS UNLIMITED POSSIBILI-
TIES FOR THE EXPRESSION OF INDIVIDUAL CREATIVITY. FOR, THE DEVELOPMENT
OF COMPUTER PROGRAMS CAN BE AN EXTREMELY CREATIVE, EXCITING, AND PERSON=-
ALLY REVARDING PASTIME AND OFFERS ESSENTIALLY LIMITLESS WAYS TO
EXERCISE ONE'S CREATIVE CAPABILITIES IN DEVELOPING "ALGORITHMS'™ THAT
WILL ENABLE THE MACHINE TO PERFORM DESIRED TASKS!

THE REMAINDER OF THIS BOOK IS AIMED AT SHOVING THE READERS HOW TO
UTILIZE THE SCELBI-8H MINI-COMPUTER TO SERVE THEIR PERSONAL NEEDS.
THIS BOOK WILL PROVIDE INFORMATION ON HOWV TO OPFRATE THE SCELBI-8H MINI=~
COMPUTER, . HOW TO OPERATE VARIOUS TYPES OF PROGRAMS THAT ARF AVAILABLF
FOR THE SCELBI-8H AS STANDARD PROGRAMS, HOV TO DEVELOPE NEV PROGRAMS IN
“MACHINE LANGUAGE,' AND HOV TO. IMPLEMENT PERIPHERAL. INTERFACES SO
THAT THE COMPUTER CAN COMMUNICATE WITH EXTERNAL DEVICES THAT THE READER
MAY WISH TO HAVE CONNECTED TO THE COMPUTER.

AT THIS POINT, HAVING READ THIS CHAPTER, THE RFADER ALREADY KNOWS
THE BASIC STRUCTURE OF THE MACHINE. THE NEXT CHAPTER VWILL PRESENT THE
"INSTRUCTION SET," THAT IS THE PRECISE TYPES OF INSTRUCTIONS THAT THE
MACHINE IS ABLE TO PERFORM, IN DETAIL. PRIOR TO BEGINNING THE NEXT
CHAPTER. IT WOULD BE BENEFICIAL FOR THE READFR TO BECOME FAMILIAR VWITH
A COMMONLY USED ''SHORTHAND" FOR REPRESENTING STRINGS OF BINARY NUMBERS.
THIS SHORTHAND. IS SIMPLY TO GROUP THREE BINARY "BITS*" (CELLS) OF INFOR-
MATION AND TAKE THE VALUE OF THE THREE BITS AS AN OCTAL NUMBER! A
FEW DIAGRAMS WILL CLARIFY THE PROCESS.

FIGURE 11 REPRESENTS AN FEIGHT CELL REGISTER SIMILAR TO A WORD OF
MEMORY IN A SCELBI~-8H MINI-COMPUTER. THE EIGHT CELLS ARE FILLED WITH
ONES AND ZEROS WHICH REPRESENT THE TW0O POSSIBLE STATES OF THE ELEC-
TRONIC SWITCHES THAT ARE USED BY THE COMPUTER. THE CONTENTS OF THIS
REGISTER ACTUALLY REPRESENTS A PATTERN THAT WOULD BE. INTERPRETED BY THE
COMPUTER AS SPECIFYING A SPECIFIC. INSTRUCTION. IN THE NEXT CHAPTER THE
READER VWILL SEE THAT THE MACHINE CAN RECOGNIZE ABOUT 178 (OF THE 256
POSSIBLE PATTERNS THAT CAN BE PUT. IN AN FEIGHT CELL REGISTER) AND THEN
PERFORM A SPECIFIC FUNCTION AS A RESULT OF RECOGNIZING A SPECIFIC PAT-
TERN. EACH PATTERN THUS REPRESENTS A COMPUTER “INSTRUCTION.'" IN ORDER
FOR HUMANS TO OPERATE AND PROGRAM THE MACHINE. IT IS OFTEN NECESSARY FOR
THEM TO ALSO BE ABLE TO RECOGNIZE AND “DECODE™ THE PATTERNS OF ONES AND
ZEROS. PEOPLE DO THIS BY REMEMBERING THE PATTERNS IN THEIR MINDS. HOV-
EVER, PEOPLE HAVE FOUND THAT IT CAN BE RATHER DIFFICULT TO REMEMBER
STRINGS OF BINARY DIGITS. ESPECIALLY WHEN THEY MUST LFARN A LOT OF DIF-
FERENT PATTFRNS. PEOPLE HAVE LEARNED THAT THE HUMAN MIND CAN HANDLE THE
TASK MUCH EASIER. IF THE BINARY DIGITS ARE GROUPED. IN SETS OF THREE CELLS
AND THE PATTERN REPRESENTED BY THE GROUPS OF THREE BITS CONVERTED TO AN
OCTAL DIGIT!

NOTE THAT IN FIGURE 11 THAT THE LEFT MOST TWO BITS IN THE EIGHT
CELL REGISTER CAN STILL BE ASSIGNED AN OCTAL EQUIVELANT BY ASSUMING
THAT A THIRD CELL EXISTS WITH A BINARY VALUE OF ZERO (ILLUSTRATED BY
THE DOTTED CELL) SO THAT THE OCTAL VALUE OF THE LEFT MOST GROUP CAN
NOT EXCEED THREE. IT SHOULD BE APPARENT THAT THE OCTAL NUMBERING SYS-
TEM USES THE DIGITS @ THROUGH 7. NOTE HOW IT IS MUCH EASIER TO RE=-
MEMBER THE OCTAL NUMBERS: 1 @ 4 THAN IT IS TO REMEMBER THE BINARY
STRING OF NUMBERS: & 1| 6 6 06 1 @ @ .

EIGHT CELL REGISTER

o o oo o o ARORAR K K K o oK A KK oK KK R K K 3K K oK e A o e o o o K ok ok o ek ok o o ok oK

R * * * x *) % x *
« B %X A % 1 t B8 x @ % @ t 1 * g x @ *x
. * * * * *) * * *

o o o 0 o o AN K K K A 3K K 3K 23 3 3 A 2k 3 e 3 38 3 3K e 3 A8 34 2 0 e e e K A 3 A e 3¢ AR 3K 3¢ e e ke K

. . . .

EEEREEE] esce0ssssssscsee R R R RN NI NI W sevccsce
v e . o . o

. L] L

1 a
FIGURE 11

CONVERTING AN EIGHT BIT REGISTER FROM BINARY TO OCTAL
NUMBERS SO THAT THE PATTERN CAN BE MORE EASILY
REMEMBERED BY PROGRAMMERS.

FIGURE 12 ILLUSTRATES THE RELATIONSHIP BETWEEN THE BINARY AND OCTAL
SYSTEMS FOR ALL THE POSSIBLE PATTERNS WITH THREE CELLS AS AN AlID TO
LEARNING THE CONVERSION TECHNIQUE.

BINARY PATTERN REPRESENTATIVE OCTAL #
e 8 @ o
o & |1 1
e 1 @ 2
e 1 1 3
i 6 @ 4
1 e 1 5
1 1 @ 6
I 1 1 7
FIGURE 12

THE REMAINDER OF THIS BOOK ASSUMES THAT THE READER UNDERSTANDS THE
BINARY TO OCTAL CONVERSION PROCESS (AND VICE-VERSA) AND IT IS RECOM=-
MENDED THAT THE READER TAKE WHATEVER TIME IS NECESSARY TO THOROUGHLY

UNDERSTAND THE RELATIONSHIP BEFORE PROCEEDING TO READ FURTHER IN THIS
BOOK.

- 26 =

SCELBI~-8H PROGRAMMING INSTRUCTION SET

THIS MINI-COMPUTER HAS QUITF A COMPREHENSIVE INSTRUCTION SET
THAT CONSISTS OF 48 BASIC. INSTRUCTIONS, WHICH, WHEN THE POSSIBLF

PERMUTATIONS ARE CONSIDERED, RESULT. IN A TOTAL SET OF ABOUT 178
INSTRUCTIONS.

THE INSTRUCTION SET ALLOWS THE USER TO DIRECT THE COMPUTER TO
PERFORM OPERATIONS WITH MEMORY, WITH THE 7 BASIC REGISTERS IN THE
CPU, AND WITH INPUT AND OUTPUT PORTS.

IT SHOULD BE POINTED OUT THAT THE 7 BASIC REGISTERS IN THE CPU
CONSIST OF ONE ACCUMULATOR - THAT IS A REGISTER THAT CAN PERFORM
ADDITIONS, SUBTRACTIONS, ROTATES ETC., AND 6 ADDITIONAL REGISTERS
WHICH WHILE NOT HAVING THE FULL CAPABILITY OF THE ACCUMULATOR, CAN
PERFORM CERTAIN OPERATIONS (INCREMENT AND. DECREMENT), CAN STORE
DATA, AND CAN OPFRATE WITH THE ACCUMULATOR. TWO OF THE SIX REGISTERS
HAVE SPECIAL SIGNIFICANCE BECAUSE THEY MAY BE USED TO "POINT* TO AN
ADDRESS. IN MEMORY.

THE SEVEN CPU REGISTERS HAVE ARBITRARILY BEEN GIVEN SYMBOLS SO
THAT WE MAY REFER TO THEM. IN A COMMON LANGUAGE. THE FIRST REGISTER
. 1S DESIGNATED BY THE SYMBOL "A". IN THE FOLLOWING DISCUSSION AND WILL
BE CONSIDERED THE ACCUMULATOR REGISTER. THE NEXT FOUR REGISTERS VILL
BE REFERRED TO AS THE "B," “C,' "D," AND "E," REGISTERS, AND THE RE~
MAINING TVw0 SPECIAL MEMORY POINTING REGISTERS SHALL BE DESIGNATED
THE '*H"™ (FOR THE HIGH PORTION OF A MEMORY ADDRESS) AND THE *L" (FOR
THE LOW PORTION OF A MEMORY ADDRESS) REGISTERS.

THE CPU ALSO HAS SEVERAL FLIP-FLOPS VHICH SHALL BE REFERRED TO
AS "FLAGS." THESE FLIP-FLOPS ARE SET AS THE RESULT OF CERTAIN OPERA-
TIONS AND ARE IMPORTANT BECAUSE THEY CAN BE "TESTED" BY MANY OF THE
INSTRUCTIONS AND THE INSTRUCTION'S MEANING CHANGED AS A CONSEQUENCE
OF THE FLAGS PARTICULAR STATUS AT THF TIME IT IS TESTED. THERE ARE

FOUR BASIC FLAGS WHICH WILL BE REFERRFD TO IN THIS MANUAL DESIGNATED
AS FOLLOWS:

THE “C* FLAG REFERS TO THF CARRY BIT STATUS. THE CARRY

BIT IS A | UNIT REGISTER WHICH CHANGES STATE WHEN THE ACCUM-
ULATOR OVER~-FLOVS OR UNDFR-FLOWS. THIS BIT CAN ALSO BE

SET TO A KNOWN CONDITION BY CERTAIN TYPES OF. INSTRUCTIONS.
THIS 1S IMPORTANT TO REMEMBER WHEN DEVELOPING A PROGRAM BE~-
CAUSE QUITE OFTEN A PROGRAM VILL HAVE A LONG STRING OF

. INSTRUCTIONS WHICH DO NOT UTILIZE THE CARRY BIT OR CARE ABOUT
ITS STATUS, BUT WHICH WILL BE CAUSING THE CARRY BIT TO CHANGE
ITS STATUS FROM TIME TO TIME. THUS, WHEN ONE PREPARES TO DO
A SFRIES OF OPERATIONS THAT WILL RELY ON THE CARRY BIT, ONF
OFTEN DESIRES TO SET THE CARRY BIT TO A KNOVN STATE.

THE "“Z" FOR ZERO FLAG REFERS TO A 1| UNIT REGISTER THAT VHEN
DESIRED WILL. INDICATE WHETHER THE VALUE OF THE ACCUMULATOR
1S EXACTLY EQUAL TO ZERO. . IN ADDITION, IMMEDIATELY AFTER
AN INCREMENT OR DECREMENT OF THE B, C, D, E, H OR L REGIS-
TERS, THIS FLAG WILL ALSO. INDICATE VHETHER THE. INCREMENT
OR DECREMENT CAUSED THAT PARTICULAR REGISTER TO GO TO ZERO.

THE “S" FOR SIGN FLAG REFERS TO A | UNIT REGISTER THAT INDI~-
CATES WHETHER THE VALUE IN THE ACCUMULATOR IS A POSITIVE OR
NEGATIVE VALUE (BASED ON TW0'S COMPLEMENT NOMENCLATURE.)
ESSENTIALLY, THIS FLAG MONITORS THE MOST SIGNIFICANT BIT. IN
THE ACCUMULATOR AND 1S “SET" WHEN IT IS A ONE.

THE "P*" FLAG REFERS TO THE LAST FLAG IN THE GROUP WHICH
IS FOR INDICATING WHEN THF ACCUMULATOR CONTAINS A VALUE
WHICH HAS EVEN PARITY. PARITY IS USEFUL FOR A NUMBFR OF
REASONS AND IS USUALLY USED IN CONJUNCTION VITH TESTING
FOR FRROR CONDITIONS ON WORDS OF DATA PARTICULARLY WHEN
INPUTTING DATA FROM EXTERNAL SOURCES. EVEN PARITY OCCURS
WHEN THE NUMBFR OF BITS THAT ARE A "1" IN THE ACCUMU-
LATOR (OUT OF THE EIGHT POSSIBLE) IS AN EVEN VALUE, 1.E..,
2, 4, 6, OR 83 REGARDLESS OF VWHAT ORDFR THEY MAY BE IN
THE ACCUMULATOR REGISTER.

IT IS IMPORTANT TO NOTE THAT THE "Z,"™ *S,' AND "P" FLAGS (AS
WELL AS THE PREVIOUSLY MENTIONED "C" FLAG) CAN ALL BE SET TO KNOWN
STATES BY CERTAIN INSTRUCTIONS. 1IT 1S ALSO IMPORTANT TO NOTE THAT
SOME INSTRUCTIONS DO NOT RESULT IN THE FLAGS BEING SET SO THAT IF
THE PROGRAMMER DESIRES TO HAVE THE PROGRAM MAKE “DECISIONS'™ BASED
ON THE STATUS OF FLAGS, THE PROGRAMMER SHOULD ENSURE THAT THE PROPER
INSTRUCTION, OR SEQUENCE OF INSTRUCTIONS 1S UTILIZED. . IT IS PARTIC-
ULARLY IMPORTANT TO NOTE THAT "LOAD REGISTER" INSTRUCTIONS DO NOT
BY THEMSFLVES SET THE FLAGS. SINCE IT 1S OFTEN DESIRABLE TO OBTAIN
A DATA WORD (l1.E. LOAD IT INTO THE ACCUMULATOR) AND TEST ITS STATUS
FOR SUCH PARAMETERS AS WHETHER OR NOT THE VALUE 1S ZFRO, OF A NEG-
ATIVE NUMBER ETC., THE PROGRAMMER MUST REMFMBER TO FOLLOV A LOAD
INSTRUCTION BY A LOGICAL INSTRUCTION (SUCH AS THE NDA - "AND THE
ACCUMULATOR") IN ORDER TO SET THE FLAGS BEFORE USING AN INSTRUCTION
THAT 1S CONDITIONAL IN REGARDS TO THE FLAG STATUS.

THE DESCRIPTION OF THE VARIQUS TYPES OF INSTRUCTIONS AVAILABLF
ON THE SCELBIl=-8H WHICH FOLLOWS WILL PROVIDE BOTH THE MACHINE
LANGUAGE CODE FOR THE INSTRUCTION GIVEN AS 3 OCTAL DIGITS, AND ALSO
A MNEMONIC NAME SUITABLE FOR WRITING PROGRAMS IN SYMBOLIC TYPE LANG-
UAGE WHICH 1S USUVALLY EASIER THAN TRYING TO RFMEMBFR OCTAL CODES! IT
MAY BE NOTED THAT THE SYMBOLIC LANGUAGE USED IS THE SAME AS THAT
UTILIZED BY. INTEL CORPORATION VWHICH DEVELOFED THE 80668 (RTM) “CPU-
ON=-A=-CHIP*" WHICH IS AT THE HEART OF THE SCELBI-8H, AND HENCE THE USE
OF THIS MNEMONIC LANGUAGE WILL ALLOW PROGRAMS. DEVFLOPFD FOR THE
SCELBI=-8H TO BE COMPATIBLE WITH OTHER TYPES OF COMPUTING SYSTEMS WHICH
UTILIZE THE INTEL 8@@8& (RTM) DEVICE. IF THE PROGRAMMER IS NOT AL-
READY AVARE OF IT, THE USE OF MNEMONICS FACILITATES WORKING WITH AN
"ASSEMELER" PROGRAM WHEN IT IS DESIRED TO DEVELOPE RELATIVFLY
LAFGE PROGRAMS. = THUS THE PROGRAMMER IS URGED TO CONCENTRATE ON
LFARNING THE MNEMONICS FOR THE INSTRUCTIONS AND NOT WASTE TIME MEMORI-
ZING THE OCTAL CODES. AFTER A PROGRAM HAS BFEN WRITTEN USING THE
MNEMONIC CODES, THE PROGRAMMER CAN ALWAYS USE A LOOKUP TABLE TO CON-
VERET TO THE MACHINE CODE IF AN ASSEMBLER PROGRAM IS NOT AVAILABLE.
ITS A LOT EASIER TECHNIQUE (AND. LESS SUBJECT TO ERROR) THAN TRYING TO
MEMORIZE THE 170 OR SO 3 DIGIT COMBINATIONS VHICH MAKE UP THE MACHINE
- INSTRUCTION CODE SET!

THE PROGRAMMER MUST ALSO BE AWARE, THAT. IN THIS MACHINE, SOME

. INSTRUCTIONS REQUIRE MORE THAN ONE "WORD" IN MEMORY. “IMMEDIATE"
TYPE COMMANDS REGUIRE TWO0 CONSECUTIVE WORDS AND JUMP AND CALL COM-
MANDS REQUIRE THREE CONSECUTIVE WORDS. THE REMAINING TYPES OF INS~-
TRUCTIONS ONLY REQUIRE ONE WORD. THIS WILL BE PRESENTED IN DETAIL
- IN THE DESCRIPTION FOR EACH TYPE OF INSTRUCTION.

THE FIRST GROUP OF INSTRUCTIONS TO BE PRESENTED ARE THOSE THAT
ARE USED TO "LOAD' DATA FROM ONE CPU REGISTER TO ANOTHER, OR FROM
A CPU REGISTER TO A WORD IN MEMORY, OR VICE-VERSA. THIS GROUP OF
INSTRUCTIONS REQUIRES JUST ONE WORD OF MEMORY. IT IS IMPORTANT TO
NOTE THAT NONE OF THE INSTRUCTIONS IN THIS GROUP AFFECT THE “FLAGS."

-2-

LOAD DATA FROM ONE CPU REGISTFR TO ANOTHER CPU REGISTER

MNEMONIC MACHINE CODE

LAA 3080
LBA 310
LAB 30!

THE LOAD REGISTER GROUP OF INSTRUCTIONS ALLOWS THE PROGRAMMER
TO MOVE THE CONTENTS OF ONE CPU REGISTER INTO ANOTHER CPU REGISTER.
THE CONTENTS OF THE ORIGINATING (FROM) REGISTER 1S NOT CHANGED. THE
CONTENTS OF THF DESTINATION (TO) REGISTER BECOMES THE SAME AS THE,
ORIGINATING REGISTER. ANY CPU REGISTFR CAN BE LOADED INTO ANY CPU
REGISTER. NOTE THAT FOR INSTANCE LOADING REGISTER “A* INTO REGISTER
“A*' 1S ESSENTIALLY A "NOP" (NO OPERATION) COMMAND. WHEN USING
MNEMONICS THE LOAD SYMBOL IS THE LETTFR '"L" FOLLOVED BY THE " TO“
REGISTER AND THEN THE “FROM" REGISTER. THE MNEMONIC *“LBA'" MEANS
THE THE CONTENTS OF REGISTER "A" (THE ACCUMULATOR) IS TO BE LOADED
INTO REGISTER “B.*' THE MNEMONIC "LAB* STATES THAT REGISTER "B" IS
TO HAVE ITS CONTENTS LOADED INTO REGISTER "A." IT CAN BE SEEN THAT
TH1IS BASIC INSTRUCTION HAS MANY VARIATIONS. THE MACHINE LANGUAGE
CODING FOR THIS INSTRUCTION IS IN THE SAME FORMAT AS THE MNEMONIC
CODE EXCEPT THAT THE LETTERS USED TO REPRESENT THE REGISTERS ARE
REPLACED BY NUMBERS THAT THE MACHINFE CAN USE. USING OCTAL CODE, THE
7 CPU REGISTERS ARE CODFED AS FOLLOVS:

REG "“A" = @
REG "B" = |
REG "C" = 2
REG "D" = 3
R EG (1] E'. = h
REG "H"* = §
REG “L" = 6

ALSO SINCE THE MACHINE CAN ONLY UTILIZF NUMBERS, THE OCTAL NUMBER 3
IN THE MOST SIGNIFICANT LOCATION OF A VWORD SIGNIFIES THAT THE COMP=-
UTER IS TO PERFORM A "LOAD" OPERATION. THUS, IN MACHINE CODING, THE
INSTRUCTION FOR LOADING REGISTER “B* WITH THE CONTENTS OF REGISTFER
“A'" BECOMES: 3 1 @ (IN OCTAL FORM) OR, IF ONE WANTED TO GET VERY
DETAILED, THE ACTUAL BINARY CODING FOR THE 8 BITS OF INFORMATION IN
THE INSTRUCTION WORD WOULD BE: .1 1 6 81 @ 6 6. IT 1S IMPORTANT
TO NOTE THAT THE LOAD INSTRUCTIONS DO NOT AFFECT ANY OF THE “FLAGS."™

LOAD DATA FROM ANY CPU REGISTER TO A LOCATION IN MEMORY
LMA 3178
LMB 371
LmC 372
LMD 373
LME 37 4
LMH 3765
LML 376

THIS INSTRUCTION IS VERY SIMILAR TO THE PREVIQUS GROUP OF
INSTRUCTIONS EXCFPT THAT NOV THE CONTENTS OF A CPU REGISTER VILL BE
LOADED INTO A SPECIFIED MEMORY. LOCATION. THE MFMORY LOCATION THAT
WILL RECEIVE THE CONTENTS OF THE PARTICULAR CPU REGISTER I5 THAT
WHOSE ADDRESS 1S SPECIFIED BY THE CONTENTS OF THE CPU "H" AND “L“
REGISTERS AT THE TIME THE INSTRUCTION IS EXECUTED. THE "H" CPU
REGISTER SPECIFIES THE “"HIGH" PORTION OF THE ADDRESS DESIRED, AND
THE "L' CPU REGISTER SPECIFIES THE "LOWV" PORTION OF THE ADDRESS

-7 .

'INTO VHICH DATA FROM THE SELECTED CPU REGISTER. 1S TO BE LOADED.
.NOTE THAT THERE ARE 7 DIFFERENT. INSTRUCTIONS IN THIS GROUP AS ANY
CPU REGISTER CAN HAVE. ITS CONTENTS LOADED. INTO ANY LOCATION IN

MEMORY. THIS GROUP OF INSTRUCTIONS DOES NOT AFFECT ANY OF THE
“FLAGS."

LOAD DATA FROM A MEMORY LOCATION TO ANY CPU REGISTER

LAM

387
LBM 317
LCM™ 3279
LDM 337
LEM 3 a7
LHM 3857
LLM 3 617

THIS GROUP OF INSTRUCTIONS CAN BE CONSIDERED THE OPPOSITE
OF THE PREVIOUS GROUP. NOV, THE CONTENTS OF THE WORD. IN MEMORY
WHOSE ADDRESS. IS SPECIFIED BY THE "H" (FOR THE HIGH PORTION OF
THE ADDRESS) AND "L*" (LOW PORTION OF THE ADDRESS) REGISTERS WILL
BE LOADED INTO THE CPU REGISTER SPECIFIED BY THE INSTRUCTION.
ONCE AGAIN, THIS GROUP OF INSTRUCTIONS HAS NO AFFECT ON THE
STATUS OF THE “FLAGS."

LOAD “IMMEDIATE" DATA. INTO A CPU REGISTER

LAl 6 0 6
LBI @1 6
LCI a2 6
LDI @ 3 6
LE1 @ 4 6
LHI 6 5 6
LLI @ 6 6

AN " IMMEDIATE" TYPE OF INSTRUCTION REQUIRES TWO WORDS IN ORDER
TO BE COMPLETELY SPECIFIED. THE FIRST WORD IS THE INSTRUCTION IT-
SELF, THE SECOND WORD, OR "IMMEDIATELY. FOLLOWING" WORD, MUST CONTAIN
THE DATA UPON WHICH IMMEDIATE ACTION IS TAKEN. THUS, A LOAD “IMMED-
IATE” INSTRUCTION IN THIS GROUP MEANS THAT THE CONTENTS OF THE WORD
IMMEDIATELY FOLLOVWING THE INSTRUCTION WORD IS TO BE LOADED INTO THE
SPECIFIED REGISTER. FOR EXAMPLE, A TYPICAL LOAD. IMMEDIATE INSTRUC-
TION WOULD BE: LAI @#@1. THIS WOULD RESULT. IN THE VALUE 881 BEING
PLACED. IN THE “A* REGISTER WHEN THE INSTRUCTION WAS EXECUTED. 1IT IS
IMPORTANT TO REMEMBER THAT ALL "IMMEDIATE'" TYPE INSTRUCTIONS MUST BE
FOLLOWED BY A DATA WORD. AN INSTRUCTION SUCH AS LDI ALONE WOULD
RESULT. IN IMPROPER OPERATION BECAUSE THE COMPUTER WOULD ASSUME THE
NEXT WORD CONTAINED DATA, AND IF THE PROGRAMMER HAS MISTAKENLY LEFT
OUT THE DATA WORD, AND IN ITS PLACE HAD ANOTHER. INSTRUCTION, THE
COMPUTER WOULD NOT REALIZE THE OPERATORS "MISTAKE" AND HENCE THE PRO-
GRAM WOULD BE “FOULED-UP!" NOTE TOO, THAT THE LOAD "IMMEDIATE"
GROUP OF INSTRUCTIONS DOES NOT AFFECT THE “FLAGS."™

LOAD "IMMEDIATE" DATA INTO A MEMORY LOCATION
LMI 876

THIS INSTRUCTION IS ESSENTIALLY THE SAME AS THE LOAD IMMEDIATE
. INTO THE CPU REGISTER GROUP EXCEPT THAT NOVW, USING THE CONTENTS OF

—‘-

THE *“H" AND "L" REGISTERS AS "POINTERS™ TO THE DESIRED ADDRESS IN
MEMORY, THE CONTENTS OF THE "IMMEDIATFELY FOLLOWING WORD" VWILL BE
PLACED IN THE MEMORY LOCATION SPECIFIED. THIS INSTRUCTION DOES NOT
AFFECT THE STATUS OF THE "FLAGS."

THE ABOVE RATHER LARGE GROUP OF "LOAD™. INSTRUCTIONS PERMIT THE
PROGRAMMER TO DIRECT THE COMPUTFR TO MOVE DATA ABOUT. THEY ARE
USED TO BRING IN DATA FROM MEMORY WHERE 1T CAN BE_OPERATED ON BY
THE CPU, OR TO TEMPORARILY STORE INTERMEDIATE RESULTS IN THF CPU
REGISTER DURING COMPLICATED AND EXTENDED CALCULATIONS, AND OF COURSE
ALLOW DATA, SUCH AS RESULTS ETC., TO BE PLACED BACK INTO MEMORY FOR
LONG TERM STORAGE. SINCE NONE OF THEM VWILL ALTER THE CONTENTS OF
THE FOUR CPU FLAGS, THESE INSTRUCTIONS CAN BE CALLED UPON TO, FOR
EXAMPLE, SET UP DATA, BEFORE INSTRUCTIONS THAT MAY AFFFCT OR UTILIZF
THE FLAGS® STATUS ARE EXECUTED. THE PROGRAMMER WILL USE INSTRUCTIONS
FROM THIS SET FREQUENTLY. THE MNEMONIC NAMES FOR THE INSTRUCTIONS
ARE EASY TO REMEMBER AS THEY ARE WELL ORDERED. THE MQOST IMPORTANT
. ITEM TO REMEMBER ABOUT THE MNEMONICS IS THAT THE "TO" REGISTER IS
ALVAYS INDICATED FIRST IN THE MNEMONIC, AND THEN THE *FROM" REGISTER.
THUS “LBA*" = “LOAD TO REGISTER "B" FROM REGISTER "A."

INCREMENT THE VALUE OF A CPU REGISTER BY |

INB 10
INC 626
IND 6 380
INF g 4age
INH 6 56
INL 2 680

THIS GROUP OF INSTRUCTIONS ALLCWS THE PROGRAMMER TO “ADD 1" TO
THE PRESENT VALUE OF ANY OF THE CPU REGISTERS EXCEPT THF ACCUMULATOR.
(NOTE CABREFULLY THAT THE ACCUMULATOR CAN NOT BE INCREMENTED BY THIS
TYPE OF INSTRUCTION. IN ORDER TO "ADD 1" TO THE ACCUMULATOR A MATH-
EMATICAL ADDITION INSTRUCTION, DESCRIBED LATER, MUST BE USED.) THIS
INSTRUCTION FOR INCREMENTING THE DEFINED CPU REGISTERS IS VERY VAL~
UABLE IN A NUMBER OF APPLICATIONS. FOR ONE THING, IT IS AN EASY
WAY TO HAVE THE “L'" REGISTER SUCCESSIVELY "POINT” TO A STRING OF LOC~
ATIONS IN MEMORY. A FEATURE THAT MAKES THI1S TYPE OF INSTRUCTION FVEN
MORE POWERFUL, IS THAT THE RESULT OF THE INCREMENTED REGISTER WILL
AFFECT THE "Z,"™ "S," AND "P" FLAGS. (IT VWILL NOT CHANGE THE "C"™ OR
*“CARRY" FLAG.) THUS, AFTER A CPU REGISTER HAS BEEN INCREMENTED BY
THIS INSTRUCTION, ONE CAN UTILIZE A “FLAG TEST" INSTRUCTION (SUCH AS
THE JUMP AND CALL. INSTRUCTIONS TO BE DESCRIBED LATER) TO DETERMINE
WHETHER THAT PARTICULAR REGISTER HAS A VALUE OF ZERO ("Z" FLAG), OR
IF IT IS A NEGATIVE NUMBER (*S"™ FLAG), OR EVEN PARITY ("P*" FLAG.)
IT IS IMPORTANT TO NOTE THAT THIS GROUP OF INSTRUCTIONS, AND THE
DECREMENT GROUP (DESCRIBED IN THE NEXT PARAGRAPH) ARE THE ONLY. INSTR-
UCTIONS WHICH ALLOVW THE “FLAGS" TO BE MANIPULATED BY OPERATIONS THAT
ARE NOT CONCERNED VWITH THE ACCUMULATOR ("A") REGISTER.

DECREMENT THE VALUE OF A CPU REGISTER BY 1
DCB e 11
DCC 8 21
DCD e 31
DCE 0 41
DCH 8 51
DCL 2 6l

THE DECREMENT GROUP OF INSTRUCTIONS 1S SIMILAR TO THE INCREMENT
GROUP EXCEPT THAT NOVW THE VALUE | VWILL BE SUBTRACTED FROM THE SPECI-
FIED CPU REGISTER. THIS INSTRUCTION VILL NOT AFFECT THE "C" FLAG
BUT IT DOES AFFECT THE “Z,™ "S," AND "P" FLAGS. .I1T SHOULD ALSO BE
NOTED THAT THIS GROUP, AS WITH THE INCREMENT GROUP, DOES NOT INCLUDE
THE ACCUMULATOR REGISTER. A SEPARATE MATHEMATICAL. INSTRUCTION
MUST BE USED TO SUBTRACT | FROM THE ACCUMULATOR.

ARITHMETIC INSTRUCTIONS USING THE ACCUMULATOR

THE FOLLOWING GROUP OF INSTRUCTIONS ALLOW THE PROGRAMMER TO
DIRECT THE COMPUTER TO PERFORM ARITHMETIC OPERATIONS BETVEEN OTHFR
CPU REGISTERS AND THE ACCUMULATOR, OR BETWEEN THE CONTENTS OF VWORDS
- IN MEMORY AND THE ACCUMULATOR. ALL OF THE OPERATIONS FOR THE DES-
CRIBED ADDITION, SUBTRACTION, AND COMPARE INSTRUCTIONS AFFECT THE
STATUS OF THE ' FLAGS."

ADD THE CONTENTS OF A CPU REGISTER TO THE ACCUMULATOR

ADA 200
ADB 201
ADC 26 2
ADD 283
ADE 208 4
ADH 205
ADL 29 6

THIS GROUP OF INSTRUCTIONS WILL SIMPLY ADD THE PRESENT CONTENTS
OF THE ACCUMULATOR REGISTER TO THE PRESENT VALUE OF THE SPECIFIED
CPU REGISTER AND LFAVE THE RESULT IN THE ACCUMULATOR. THE VALUE OF
THE SPECIFIED REGISTER. IS UNCHANGED EXCEPT IN THE CASE OF THE "“ADA"
. INSTRUCTION. NOTE THAT THE "ADA"™ INSTRUCTION ESSENTIALLY ALLOVWS THE
PROGRAMMER TO DOUBLE THE VALUE OF THE ACCUMULATOR (WHICH IS THE “A"
REGISTER!)> IF THE ADDITION CAUSES AN "“OVER=-FLOW" OR "UNDER-FLOW"
THEN THE *“CARRY" ("C*' FLAG) WILL BE AFFECTED.

ADD THE CONTENTS OF A CPU REGISTER ?LGS THE VALﬁE OF THE
CARRY FLAG TO THE ACCUMULATOR

ACA 2160
ACB 211
ACC 21 2
ACD 213
ACE 21 4
ACH 215
ACL 21 6

THIS GROUP 1S IDENTICAL TO THE PREVIOUS GROUP EXCEPT THAT NOW
THE CONTENT OF THE CARRY FLAG IS CONSIDFRED AS AN ADDITIQONAL BIT
(MSB) IN THE SPECIFIED CPU REGISTER AND THE COMBINED VALUE OF THE
CARRY BIT PLUS THE CONTENTS OF THE SPECIFIED CPU REGISTER ARE ADDED
TO THE VALUE IN THE ACCUMULATOR. THE RESULTS ARE LEFT IN THE ACCUM-
UWATOR. AGAIN, VITH THE EXCEPTION OF THE "ACA®" INSTRUCTION, THE
CONTENTS OF THE SPECIFIED CPU REGISTER IS LEFT UNCHANGED. AGAIN T0O.,
THE CARRY BIT ("C* FLAG) VILL BE AFFECTED BY THE RESULTS OF THE OPER-
ATION.

SUBTRACT THFE CONTENTS OF A CPU REGISTER FROM THE ACCUMULATOR

SUA 2260
SUB 2 21
sucC 222
suD 223
SUE 2 2 a
SUH 225
SUL 22 6

THIS GROUP OF INSTRUCTIONS WILL CAUSE THE PRESENT VALUE OF THE _
SPECIFIED CPU REGISTER TO0 BE SUBTRACTED FROM THE VALUE IN THE ACCUMU-
LATOR. THE VALUE OF THE SPECIFIED REGISTER. IS NOT CHANGED EXCEPT IN
THE CASE OF THE "SUA"™ INSTRUCTION. (NOTE THAT THE *“SUA" INSTRUCTION
IS A CONVENIENT INSTRUCTION WITH WHICH TO *CLEAR" THE_ ACCUMULATOR.)

THE CARRY FLAG WILL BE AFFECTED BY THE RESULTS OF A SUBTRACT. INSTRUC-
TION.

SUBTRACT THE CONTENTS OF A CPﬁ REGISTER AND THE VALUE OF THE
CARRY FLAG FROM THE ACCUMULATOR

SBA 2360
SBB 2 31
sSBC 2 32
SBD 2 33
SBE 2 3 4
SBH 2 35
SBL 2 3 6

TH1S GROUP IS IDENTICAL TO THE PREVIOUS GROUP EXCEPT THAT NOW
THE CONTENT OF THE CARRY FLAG IS CONSIDERED AS AN ADDITIONAL BIT
(MSB) IN THE SPECIFIED CPU REGISTER AND THE COMBINED VALUE OF THE
CARRY BIT PLUS THE CONTENTS OF THE SPECIFIED CPU REGISTER ARE SUB=-
TRACTED FROM THE VALUE IN THE ACCUMULATOR. THE RESULTS ARE LEFT IN
THE ACCUMULATOR, AND THE CARRY BIT (“C" FLAG) 1S AFFECTED BY THE
RESULT OF THE OPERATION. WITH THE EXCEPTION OF THE " SBA"™ INSTRUC-
TION THE CONTENTS OF THE SPECIFIED CPU REGISTER IS LEFT UNCHANGED.

COMPARE THE VALUE. IN THE ACCUMULATOR AGAINST
THE CONTENTS OF A CPU REGISTER

CPA 2780
CPB. 2 71
CPC 2 72
CPD 2 7 3
CPE 2 7 4
CPH 2 75
CPL 2 7 6

THE ''COMPARE' GROUP OF INSTRUCTIONS ARE A VERY POVWERFUL AND
SOMEWHAT UNIQUE SET OF INSTRUCTIONS. THEY DIRECT THE COMPUTER TO
COMPARE THE CONTENTS OF THE ACCUMULATOR AGAINST ANOTHER REGISTER
AND TO SET THE “FLAGS"™ AS A RESULT OF THE COMPARING OPERATION.

IT 1S ESSENTIALLY A SUBTRACTION OPERATION WITH THE VALUE OF THE
SPECIFIED REGISTER BEING SUBTRACTED FROM THE VALUE OF THE ACCUMU-
LATOR EXCEPT THAT THE VALUE OF THE ACCUMULATOR IS5 NOT ACTUALLY
ALTERED BY THE OPERATION. HOWEVER, THE “FLAGS" ARE SET IN THE SAME
MANNER AS THOUGH AN ACTUAL SUBTRACTION OPERATION HAD OCCURED. THUS,
BY SUBSEQUENTLY TESTING THE STATUS OF THE VARIOUS FLAGS AFTER A COM-

- 7 -

PARE INSTRUCTION HAS BEEN EXECUTED, THE PROGRAM CAN DETERMINE WHETHER
THE "COMPARE"™ OPERATION RESULTED IN A MATCH, OR NON-MATCH, AND IN THE
CASE OF A NON-MATCH WHETHER THE COMPARED REGISTER CONTAINED A VALUE
GREATER OR LESS THAN THAT IN THE ACCUMULATOR. THIS WOULD BE ACCOMP~-
LISHED BY TESTING THE 'Z" FLAG AND "C* FLAG RESPECTIVELY UTILIZING

A “JUMP" OR "“CALL*" FLAG TESTING INSTRUCTION (WHICH WILL BE DESCRIBED
LATER.)

ADDITION, SUBTRACTIbNa AND COMPARE INSTRUCTIONS THAT USE
WORDS IN MEMORY AS OPERANDS

THE FIVE TYPES OF MATHEMATICAL OPERATIONS: ADD, ADD WITH CARRY,
SUBTRACT, SUBTRACT WITH CARRY, AND THE COMPARE; WHICH HAVE JUST
BEFEN PRESENTED FOR PERFORMING THE OPFRATIONS WITH THE CONTENTS OF
THE CPU REGISTERS, CAN ALL ALSO BE PERFORMED WITH WORDS THAT ARE IN
MEMOFY. AS WITH THE '"LOAD" INSTRUCTIONS WITH MEMORY, THE "H" AND "L*"
REGISTERS MUST CONTAIN THF ADDRESS OF THE WORD IN MEMORY THAT IT IS
DESIRED TO ADD, SUBTRACT, OR COMPARE TO THE ACCUMULATOR. THE SAME
CONDITIONS FOR THE OPERATIONS AS WAS DETAILED WHEN USING THE CPU RFGIS-
TERS APPLY. THUS, FOR MATHEMATICAL OPERATIONS WITH A WORD IN MEM-
ORY, THE FOLLOWING INSTRUCTIONS ARE USED:

ADD THE CONTENTS OF A MEMORY WOED TO THE ACCUMULATOR
ADM 207
ADD THE CONTENTS OF A MEMORY WORD PLUS THE VALUE OF THE
CARRY FLAG TO THE ACCUMULATOR
ACM 217
SUBTRACT THE CONTENTS OF A MEMORY WORD FROM THE ACCUMULATOR
SUM 2 27
SUBTRACT THE CONTENTS OF A MEMORY WORD AND THE VALUE OF THE
CARRY FLAG FROM THE ACCUMULATOR
SBM 2 317
COMPARE THE VALUE IN THE ACCUMULATOR AGAINST
THE CONTENTS OF A MEMORY WORD

CPM 277

*IMMEDIATE" TYPE ADDITIONS, SUBTRACTIONS, AND COMPARE. INSTRUCTIONS

THE 5 TYPES OF MATHEMATICAL OFPERATIONS DISCUSSED CAN ALSO BF PFR-
FORMED WITH THE OPERAND BEING THE WORD OF DATA IMMEDIATELY AFTER THE
. INSTRUCTION. THIS GROUP OF INSTRUCTIONS 1S SIMILAR IN FORMAT TO THE
PREVIOUSLY DESCRIBED “LOAD IMMEDIATE" INSTRUCTIONS. THE SAME CONDI-
TIONS FOR THE MATHEMATIC OPERATIONS AS DISCUSSED FOR THE OPERATIONS
WITH THE CPU REGISTERS APPLY.

ADD "IMMEDIATE"

ADI 0 4

ADD WITH CARRY “IMMEDIATE"

ACI 21 4

SUBTRACT " IMMEDIATE"

Sul P24

SUBTRACT WITH CARRY "IMMEDIATE"

SBI @ 3 4

COMPARE "IMMEDIATE"™

CPI 0 7 4

LOGICAL INSTRUCTIONS WITH THE ACCUMULATOR

THERE ARE SEVERAL GROUPS OF INSTRUCTIONS WHICH ALLOV BOOLEAN
LOGIC OPERATIONS TO BE PERFORMED BETWEEN THE CONTENTS OF THE CPU
REGISTERS AND THE A" OR ACCUMULATOR REGISTER, AS WELL AS BETVEEN
CONTENTS OF LOCATIONS IN MEMORY AND THFE “A*" REGISTER. IN ADDITION
THERE ARE LOGIC "IMMEDIATE" TYPE INSTRUCTIONS. THE BOOLEAN LOGIC
OPERATIONS ARE VALUABLE IN A NUMBER OF PROGRAMMING APPLICATIONS.
THE INSTRUCTION SET ALLOWS THREE BASIC BOOLEAN OPERATIONS TO BE PFR=-
FORMED. THESF ARE THE: “LOGICAL AND3" "“LOGICAL OR3" AND "EXCLUSIVE
OR" OPERATIONS. EACH TYPE OF LOGIC OPERATION IS PERFORMED ON A "BIT-
BY-BIT" BASIS BETWEEN THE ACCUMULATOR REGISTER AND THE CPU REGISTER
OR MEMORY LOCATION SPECIFIED BY THE INSTRUCTION. A DETAILED EXPLANA-
TION OF EACH TYPE OF LOGIC OPERATION, AND THE APPROPRIATE INSTRUCTIONS
FOR EACH TYPE 1S PRESENTED BELOW. THE LOGIC INSTRUCTION SET IS ALSO
VALUABLE BECAUSE ALL OF THEM WILL CAUSE THE CARRY (*C'") FLAG TO BE
SET TO THE *@" CONDITION. THIS IS IMPORTANT IF ONE IS GOING TO PER-
FORM A SEQUENCE OF INSTRUCTIONS THAT WILL EVENTUALLY USE THE STATUS
OF THE 'C" FLAG TO ARRIVE AT A DECISION AS IT ALLOWS THE PROGRAMMER
TO SET THE *C" FLAG TO A KNOWN STATE AT THE START OF THE SEQUENCE.
ALL OTHER “FLAGS" ARE SET IN ACCORDANCE WITH RESULT OF THE LOGIC OPER-
ATION AND HENCE THE GROUP OFTEN HAS VALUE WHEN THE PROGRAMMER DESIRES
TO DETERMINE THE CONTENTS OF A REGISTER THAT HAS JUST BEFN "LOADED"
.INTO A REGISTER (SINCE THE 'LOAD" INSTRUCTIONS DO NOT AFFECT THE STATE
OF THE "FLAGS."™)

THE BOOLEAN “AND" OPERATION AND INSTRUCTION SET

WHEN THE BOOLEAN "AND" INSTRUCTION IS EXECUTED, EACH BIT OF THE
ACCUMULATOR WILL BE COMPARED WITH THE CORRESPONDING BIT IN THE REGISTER
OR MEMORY LOCATION SPECIFIED BY THE INSTRUCTION. AS FACH BIT IS
COMPARED A LOGIC RESULT WILL BE PLACED IN THE ACCUMULATOR FOR EACH
BIT COMPARISON. THE LOGIC RESULT IS DETERMINED AS FOLLOWS: 1IF BOTH
THE BIT IN THE ACCUMULATOR AND THE BIT IN THE REGISTER WITH WHICH THE
OPERATION IS BEING PERFORMED ARE A 1, THEN THE ACCUMULATOR BIT

-9 -

WILL BE LEFT AS A "l." FOR ALL OTHER POSSIBLE COMBINATIONS (I.E.,
THE. ACCUMULATOR BIT = @ AND THE OTHER REGISTER'S BIT = |, OR IF

TE ACCUMULATOR BIT = 1| AND THFE OTHER REGISTER'S BIT = @, OR IF BOTH
THE ACCUMULATOR AND THE OTHER REGISTER HAVE THE PARTICULAR BIT = @),
THEN THE ACCUMULATOR BIT WILL BE SET TO “@." AN EXAMPLE WILL ILLUS~-
TRATE THE LOGICAL "“AND" OPERATION:

INITIAL STATE OF THE ACCUMULATOR: 191061 0616@
CONTENTS OF OPERAND REGISTER: 11061100
FINAL STATE OF THE ACCUMULATOR: 1 o0 61060680

THERE ARE 7 LOGICAL "AND" INSTRUCTIONS THAT ALLOW ANY CPU REGISTER
TO BE USED AS THE '"AND" OPFRAND. THEY ARE AS FOLLOWS:

NDA 2 40
NDB 2 41
NDC 2 42
NDD 2 4 3
NDE 2 4 4
NDH 2 45
NDL 2 4 6

THE CONTENTS OF THE OPERAND REGISTER IS NOT ALTERED BY AN "AND"
1LOGICAL INSTRUCTION.

THERE IS ALSO A LOGICAL *“AND' INSTRUCTION THAT ALLOWS A WORD IN
MEMORY TO BE USED AS AN OPERAND. THE ADDRESS OF THE WORD IN MEMORY
THAT WILL BE USED IS “POINTED TO" BY THE CONTENTS OF THE “H* AND '"L*™
CPU REGISTERS.

NDM 2 4 7

AND FINALLY THERE IS ALSO A LOGICAL '"AND" "“IMMEDIATE" TYPE OF
- INSTRUCTION THAT WILL USE THE CONTENTS OF THE WORD IMMEDIATELY FOLLOV=-
- ING THE INSTRUCTION AS THE OPERAND.

NDI 8 4 4

THE NEXT GROUP OF BOOLEAN LOGIC INSTRUCTIONS DIRECT THE
COMPUTER TO PERFORM THE LOGICAL *OR" OPERATION ON A “BIT-BY-BIT" BASIS
WITH THE ACCUMULATOR AND THE CONTENTS OF A CPU REGISTER OR_A WORD IN
MEMORY. THE LOGICAL ™OR'" OPFRATION VWILL RESULT IN THE ACCUMULATOR
HAVING A BIT SET TO "1" IF EITHER THAT BIT IN THE ACCUMULATOR, OR
THE CORRESPONDING BIT IN THE OPERAND REGISTER (IS A *"1.'" SINCE
THE CASE WHERE BOTH THE ACCUMULATOR BIT AND THE OPERAND BIT IS A “1"
ALSO SATISFIES THE RELATIONSHIP, THAT CONDITION WILL ALSO RESULT IN
THE ACCUMULATOR BIT BEING A '1." IF NEITHFR REGISTER HAS A ONE
IN THE BIT POSITION, THEN THE ACCUMULATOR BIT REMAINS "@.' AN
EXAMPLE ILLUSTRATES THE RESULTS OF A LOGICAL *OR'" OPERATION:

INITIAL STATE OF THE ACCUMULATOR: 161010618
CONTENTS OF THE OPERAND REGISTER: 11861160680
FINAL STATE OF THE ACCUMULATOR: 11121110

THERE ARE 7 LOGICAL '"OR" INSTRUCTIONS THAT ALLOVW ANY CPU REGIS-
TER TO BE USED AS THE "OR" OPERAND. THEY ARE:

ORA 2 680
ORB 2 61
ORC 2 62
ORD 2 63
ORE 2 6 4
ORH 2 65
ORL 2 6 6

AND, BY USING THE "H'" AND "L* REGISTERS AS "POINTERS" ONE CAN
ALSO USE A WORD.IN MEMORY AS AN "OR' OPERAND:

ORM 2 617

THERE 1S ALSO THE LOGICAL "OR" " IMMEDIATE". INSTRUCTION:
ORI @ 6 4

AS VITH THE LOGICAL “AND" GROUP OF INSTRUCTIONS, THE LOGICAL *“OR"
- INSTRUCTION DOES NOT ALTER THE CONTENTS OF THE OPERAND REGISTER.

THE LAST GROUP OF BOOLEAN LOGIC INSTRUCTIONS IS A VARIATION OF
THE LOGIC "OR." THE VARIATION IS TERMED THE LOGICAL *“EXCLUSIVE
OR."” THE "EXCLUSIVE OR" OPERATION 1S SIMILAR TO THE "OR" EXCEPT THAT
WHEN THE CORRESPONDING BITS IN BOTH THE ACCUMULATOR AND THE OPERAND
REGISTER ARE A '"1*" THEM THE ACCUMULATOR BIT VWILL BE SET TO “@.' THUS,
THE ACCUMULATOR BIT WILL BE A "1" AFTER THE OPERATION ONLY IF JUST
ONE OF THE REGISTERS (ACCUMULATOR REGISTER OR OPERAND REGISTER) HAS
A 1" IN THE BIT POSITION. (AGAIN, THE OPERATION 1S PERFORMED ON A
BIT-BY-BIT BASIS.) AN EXAMPLE PROVIDES CLARIFICATION:

INITIAL STATE OF THE ACCUMULATOR: 191010 1¢@
CONTENTS OF THE OPERAND REGISTER: 1109861t 1080
FINAL STATE OF THE ACCUMULATOR: 11006118

THE 7 INSTRUCTIONS THAT ALLOW THE CPU REGISTERS TO BE USED AS
OPERANDS ARE:

XRA 2 580
XRB 2 51
XRC 2 52
XRD 2 53
XRE 2 5 4
XRH 2 55
XRL 2 5 6

THE INSTRUCTION THAT USES REGISTERS "H"™ AND "L™ AS POINTERS TO A
MEMORY LOCATION IS:

XRM 2 5 7
AND THE "EXCLUSIVE OR" "“IMMEDIATE" TYPE. INSTRUCTION IS:

XRI 8 5 4

AS.IN THE CASE OF THE LOGICAL '"OR" OPERATION, THE OPERAND REGISTER
- 18§ NOT ALTERED EXCEPT FOR THE SPECIAL CASE WHEN THE “XRA"™. INSTRUCTION
IS USEDe THIS INSTRUCTION, WHICH DIRECTS THE COMPUTER TO "EXCLUSIVE
OR" THE ACCUMULATOR (CPU REGISTER “A") WITH ITSELF, VWILL CAUSE THE
OPERAND REGISTER -~ SINCE. IT IS ALSO THE ACCUMULATOR, TQ HAVE ITS CON-
TENTS ALTERED (UNLESS. IT IS ZFRO AT THE TIME THE INSTRUCTION 1S]SS-
UED.) THIS 1S BECAUSE, REGARDLESS OF WHAT VALUE 1S IN THE ACCUMU-
LATOR, IF IT IS "EXCLUSIVE-ORED" WITH ITSELF, THE RESULT WILL ALWAYS
BE ZERO! THE EXAMPLE ILLUSTRATES:

ORIGINAL VALUE OF THE ACCUMULATOR: 1121010
YEXCLUSIVE OR" VITH ITSELF: 101081861080
FINAL VALUE OF THE ACCUMULATOR: 600000080

THIS ONLY OCCURS WHEN THE LOGICAL “EXCLUSIVE OR". 1S PERFORMED
ON THE ACCUMULATOR. ITSELF. IT CAN BE SHOWN THAT THE RESULTS OF PFR-
FORMING THE LOGICAL *OR"™ OR LOGICAL "AND" BETWEEN THE ACCUMULATOR
AND. ITSELF WILL RESULT. IN THE ORIGINAL ACCUMULATOR VALUE BEING
RETAINED.

INSTRUCTIONS FOR ROTATING THE CONTENTS OF THE ACCUMULATOR

IT IS OFTEN DESIRABLE TO BE ABLE TO "SHIFT" THE CONTENTS OF THE
ACCUMULATOR EITHER RIGHT OR LEFT. . IN A FIXED LENGTH REGISTER, A SIM-
PLE SHIFT OPERATION WOULD RESULT IN SOME INFORMATION BEING LOST BE-
CAUSE WHAT WAS IN THE MSB OR LSB (DEPENDING ON. IN WHICH DIRECTION THE
SHIFT OCCURED) WOULD JUST BE SHIFTED RIGHT OUT OF THE REGISTER! THERE~-
FORE, INSTEAD OF JUST SHIFTING THE CONTENTS OF A REGISTER, AN OPERATION
TERMED *ROTATING™ 1S UTILIZED. NOV,. INSTEAD OF JUST SHIFTING A BIT
OFF THE END OF THE REGISTER, THE BIT. 1S BROUGHT AROUND TO THE OTHER
END OF THE REGISTER. FOR INSTANCE, IF THE REGISTER IS "ROTATED" TO
THE RIGHT, THE LSB (LEAST SIGNIFICANT BIT) WOULD BE BROUGHT AROUND TO
THE POSITION OF THE MSB (MOST SIGNIFICANT BIT) IN THE REGISTER WHICH
WOULD HAVE BEEN VACATED BY THE SHIFTING OF. ITS ORIGINAL CONTENTS TO THE
RIGHT. OR, IN THE CASE OF A SHIFT TO THE LEFT, THE MSB VWOULD BE
BROUGHT. AROUND TO THE POSITION OF THE LSB.

SINCE THE CARRY BIT (CARRY OR "C*" FLAG) CAN BE CONSIDERED AS AN
EXTENSION OF THE ACCUMULATOR REGISTER,. IT IS OFTEN DESIRED THAT THE
CARRY BIT BE CONSIDERED AS PART OF THE ACCUMULATOR (THE MSB) DURING
A ROTATE OPERATION. THE INSTRUCTION SET FOR THIS MACHINE ALLOVS TWO
TYPES OF ROTATE INSTRUCTIONS. ONE CONSIDERS THE CARRY BIT TO BE PART
OF THE ACCUMULATOR REGISTER FOR THE ROTATE OPERATION, AND THE OTHER
TYPE DOES NOT. . IN ADDITION, EACH TYPE OF ROTATE CAN BE DONE EITHER
TO THE RIGHT, OR TO THE LEFT.

- IT SHOULD BE NOTED THAT THE ROTATE OPERATIONS ARE_PARTICﬁLAHLY
VALUABLE VHEN. IT 1S DESIRED TO MULTIPLY A NUMBER BECAUSE SHIFTING THE
CONTENTS OF A REGISTER TO THE LEFT. IS A QUICK VAY TO MULTIPLY A BINARY

NUMBER BY POWERS OF TWO, AND SHIFTING TO THE RIGHT PROVIDES THE INVERSE
OPERATION.

ROTATING THE ACCUMULATOR LEFT

RLC g 82

- 12 =

ROTATATING THE ACCUMULATOR LEFT WITH THE *“RLC" INSTRUCTION MEANS
THE MSB OF THE ACCUMULATOR ¥ILL BE BROUGHT AROUND TO THE LSB POSITION
AND ALL OTHER BITS ARE SHIFTED ONE POSITION TO THE LEFT. WHILE THIS
. INSTRUCTION DOES NOT SHIFT THROUGH THE CARRY BIT, THE CARRY BIT WILL
BE SET BY THE STATUS OF THE MSB OF THE ACCUMULATOR AT THE START OF
THE ROTATE OPERATION. (THIS FEATURE ALLOWS THE PROGRAMMER TO DETER-
MINE WHAT THE MSB VWAS PRIOR T0. THE SHIFTING OPERATION BY TESTING THE
C FLAG AFTER THE ROTATE INSTRUCTION HAS BEEN EXECUTED.)

ROTATING THE ACCUMULATOR LEFT THROUGH THE CARRY BIT
RAL P22

THE “RAL" INSTRUCTION VILL CAUSE THE MSB OF THE ACCUMULATOR TO GO
INTO THE CARRY BIT. THE INITIAL VALUE OF THE CARRY BIT VILL BE SHIFT-
ED AROUND TO THE LSB OF THE ACCUMULATOR. ALL OTHER BITS ARE SHIFTED
ONE POSITION TO THE LEFT.

ROTATING THE ACCUMULATOR RIGHT
RRC g1 2

THE "RRC" INSTRUCTION IS SIMILAR TO THE “RLC" INSTRUCTION EXCEPT
THAT NOW THE LSB OF THE ACCUMULATOR 1S PLACFD IN THFE MSB OF THE AC-~-
CUMULATOR AND ALL OTHER BITS ARE SHIFTED ONE POSITION TO THE RIGHT.
ALS0, THE CARRY BIT WILL BE SET TO THE INITIAL VALUE OF THE LSB OF THE
ACCUMULATOR AT THE START OF THE OPERATION.

ROTATING THE ACCUMULATOR RIGHT THROUGH THE CARRY BIT
RAR A 32

HERE, THE LSB OF THE ACCUMULATOR IS BROUGHT AROUND TO THE CARRY
BIT AND THE INITIAL VALUE OF THE CARRY BIT IS SHIFTED TO THE MSB OF
THE ACCUMULATOR. ALL OTHER BITS ARE SHIFTED A POSITION TO THE RIGHT.

IT SHOULD BY NOTED THAT THE *"C" FLAG IS THE ONLY FLAG. THAT CAN BFE
ALTERED BY A ROTATE INSTRUCTION. ALL OTHER FLAGS REMAIN UNCHANGED.

JUMP INSTRUCTIONS

THE INSTRUCTIONS DISCUSSED SO FAR HAVE ALL BEEN SORT OF “DIRECT
ACTION'" INSTRUCTIONS. THE PROGRAMMER ARRANGES A SEQUENCE OF THESE
TYPES OF INSTRUCTIONS IN MEMORY AND WHEN THE PROGRAM 1S STARTED THE
COMPUTER PROCEEDS TO EXECUTE THE INSTRUCTIONS IN THE ORDER IN WHICH
THEY ARE ENCOUNTERED. THE COMPUTER AUTOMATICALLY READS THE CONTENTS
OF A MEMORY LOCATION, EXECUTES THE INSTRUCTION IT FINDS THERE, AND
THEN AUTOMATICALLY INCREMENTS A SPECIAL ADDRESS REGISTFR CALLED A
“"PROGRAM COUNTER" THAT WILL RESULT IN THE MACHINE READING THE. INFOR-
MATION CONTAINED IN THE NEXT SEQUENTIAL MEMORY LOCATION. HOVEVER, IT
IS OFTEN DESIRABLE TO PERFORM A SERIES OF INSTRUCTIONS LOCATED IN ONE
SECTION OF MEMORY, AND THEN SKIP OVER A GROUP OF MEMORY LOCATIONS AND
START EXECUTING INSTRUCTIONS IN ANOTHER SECTION OF MEMORY. THIS ACT-
ION CAN BE ACCOMPLISHFED BY A GROUP OF INSTRUCTIONS THAT VWILL CAUSE A
NEW ADDRESS VALUE TO BE PLACED IN THE "PROGRAM COUNTER." THIS VWILL
CAUSE THE COMPUTER TO GO TO A NEW SECTION OF MEMORY AND TO CONTINUE
EXECUTING INSTRUCTIONS SEQUENTIALLY FROM THE NEW MEMORY LOCATION.

- 13 -

THE "JUMP" INSTRUCTIONS IN THIS COMPUTER ADD CONSIDERABLE POVER
TO THE MACHINE'S CAPABILITIES BECAUSE THERE ARE A SERIES OF *"CONDI~-
TIONAL" JUMP INSTRUCTIONS AVAILABLE. THAT IS, THE COMPUTER CAN BE
DIRECTED TO TEST THE STATUS OF A PARTICULAR FLAG (Y C,' "Z," *S,*
OR "P") AND IF THE STATUS OF THE FLAG IS THE DESIRED ONE, THEN A
“"JUMP" VWILL BE PERFORMED. IF IT IS NOT, THE MACHINE WILL CONTINUE
TO EXECUTE THE NEXT INSTRUCTION IN THE CURRENT SEQUENCE. THIS CAPA-
BILITY PROVIDES A MEANS FOR THE COMPUTER TO '"MAKE DECISIONS' AND TO
MODIFY ITS OPERATION AS A FUNCTION OF THE STATUS OF THE VARIOUS
FLAGS AT THE TIME THAT THE PROGRAM IS BEING EXECUTED.

IN A MANNER SIMILAR TO "IMMEDIATE'" TYPES OF INSTRUCTIONS, THE
“JUMP* INSTRUCTIONS REQUIRE MORE THAN ONE WORD OF MEMORY. A JUMP
INSTRUCTION REQUIRES THREE WORDS TO BE PROPERLY DEFINED. (REMEMBER
THAT "IMMEDIATE" TYPE INSTRUCTIONS REQUIRED TWO WORDS.) THE “'JUMP"
INSTRUCTION ITSELF 1S THE FIRST WORD. THE SECOND WORD MUST CONTAIN
THE *“LOW ADDRESS' PORTION OF THE ADDRESS OF THE WORD IN MEMORY THAT
THE '"PROGRAM COUNTER" IS TO BE SET FOR - IN OTHER WORDS, THE NEW LOC-
ATION FROM WHICH THE NEXT INSTRUCTION IS TO BE TAKEN. THE THIRD WORD
MUST CONTAIN THE "HIGH ADDRESS" (PAGE) OF THE MEMORY ADDRESS THAT THE
"PROGRAM COUNTER" WILL BE SET TO, HENCE, THE “PAGE" OR HIGH ORDER POR-
TION OF THE ADDRESS THAT THE COMPUTER WILL "“JUMP TO" TO OBTAIN ITS
NEXT INSTRUCTION.

THE UNCONDITIONAL JUMP INSTRUCTION
JMP 1 X 4

NOTE: THE MACHINE CODE 1 X 4 INDICATES THAT ANY CODE FOR THE
SECOND OCTAL DIGIT OF THE MACHINE CODE IS VALID. IT IS RECOMMENDED
AS A STANDARD PRACTICE THAT THE CODE @ BE USED THUS THE TYPICAL
MACHINE CODE WOULD BE 1 @ 4.

REMEMBER, THE JUMP INSTRUCTION MUST BE FOLLOWED BY Tw0O MORE
WORDS WHICH CONTAIN THE LOW, AND THEN THE HIGH (PAGE) PORTION OF THE
ADDRESS THAT THE PROGRAM IS TO "JUMP" TO!

JUMP 1F THE DESIGNATED FLAG IS TRUE (CONDITIONAL JUMP)

JTC
JTZ
JTS
JTP

L
(SRS ISR

N0k

AS WITH THE UNCONDITIONAL JUMP INSTRUCTION, THE CONDITIONAL JUMP
INSTRUCTIONS MUST BE FOLLOWED BY TW0 WORDS OF INFORMATION - THE LOW
PORTION, THEN THE HIGH PORTION, OF THE ADDRESS THAT PROGRAM EXECUTION
IS TO CONTINUE FROM 1F THE JUMP 1S EXECUTED. THE "JUMP 1F TRUE"

GROUP OF INSTRUCTIONS WILL ONLY JUMP TO THE DESIGNATED ADDRESS IF THE
CONDITION OF THE APPROPRIATE FLAG IS TRUE (LOGICAL *1*"): THUS THE
"JTC* INSTRUCTION STATES THAT IF THE CARRY FLAG ("C") IS A LOGICAL "1*
(TRUE) THEN THE JUMP IS TO BE EXECUTED. IF IT IS A LOGICAL "@* (FALSE)
THEN PROGRAM EXECUTION IS TO CONTINUE WITH THE NEXT INSTRUCTION IN THE
CURRENT SEQUENCE OF INSTRUCTIONS. IN A SIMILAR MANNER THE “JTZ"
INSTRUCTION STATES THAT IF THE ZERO FLAG IS TRUE THEN THE JUMP IS TO
BE PERFORMED. OTHERWISE THE NEXT INSTRUCTION IN THE PRESENT SEQUENCE
IS EXECUTED. LIKEWISE FOR THE "JTS'" AND "JTP* INSTRUCTIONS.

JUMP IF THE DESIGNATED FLAG IS FALSE (CONDITIONAL JUMP)

JFC 1086
JFZ 110
JFS 128
JFP 1 360

AS WITH ALL JUMP INSTRUCTIONS THESE INSTRUCTIONS MUST BF FOLLOVED
BY THE LOW ADDRESS THEN HIGH ADDRESS OF THE MEMORY LOCATION THAT PRO~-
GRAM EXECUTION 1S TO CONTINUE FROM IF THE JUMP IS EXECUTED. THIS
GROUP OF INSTRUCTIONS IS THE OPPOSITE OF THE JUMP IF THE FLAG IS TRUE
GROUP. FOR INSTANCE THE “JFC" INSTRUCTION COMMANDS THE COMPUTER TO
TEST THE STATUS OF THE CARRY (“C*") FLAG. IF THE FLAG 1S "FALSE," 1l.F.
A LOGIC "0, THEN THE JUMP 1S TO BE PERFORMED. IF IT IS "TRUE"™ THEN
PROGRAM EXECUTION IS TO CONTINUE WITH THE NEXT INSTRUCTION IN THE CUR-
RENT SEQUENCE OF INSTRUCTIONS. THE SAME PROCEDURE HOLLS. FOR THE "“JFZ,"
"JFS," AND "JFP' INSTRUCTIONS.

SUBROUTINE CALLING. INSTRUCTIONS

OUITE OFTEN WHEN A PROGRAMMER IS DEVELOPING COMPUTER PROGRAMS THE
PROGRAMMER WILL FIND THAT A PARTICULAR ALGORITHM (SEQEUNCE OF INSTRUC-
TIONS FOR PERFORMING A FUNCTION) CAN BE USED MANY TIMES IN DIFFERENT
PARTS OF THE PROGRAM. RATHER THAN HAVE TO KEEP ENTERING THE SAME
SEQUENCE OF INSTRUCTIONS AT DIFFERENT LOCATIONS IN MEMORY -~ WHICH
WULD NOT ONLY CONSUME THE TIME OF THE PROGRAMMER BUT WOULD ALSO RE-
SULT IN A LOT OF MEMORY BEING USED TO PERFORM ONE PARTICULAR FUNCTION,
.IT 1S DESIRABLF TO BE ABLE TO PUT AN OFTEN USED SEQUENCE OF COMMANDS

- IN ONE LOCATION IN MEMORY. THEN, WHENEVER THE PARTICULAR ALGORITHM
. 1S REQUIRED BY ANOTHER PART OF THE PROGRAM, IT WOULD BE CONVENIENT TO
"JUMP" TO THE SECTION THAT CONTAINED THE OFTEN USED ALGORITHM, PERFORM
THE SEQUENCE OF INSTRUCTIONS, AND THEN RETURN BACK TQ THE “MAIN" PART
OF THE PROGRAM. THIS IS A STANDARD PRACTICE IN COMPUTER OPERATIONS.
THE FREQUENTLY USED ALGORITHM CAN BE DESIGNATED AS A "SUBROUTINE." A
SPECIAL SET OF INSTRUCTIONS ALLOWS THE PROGRAMMER TO “CALL" - IN OTHER
WORDS SPECIFY A SPECIAL TYPE OF "JUMP TO,' A SUBROUTINE. A SECOND
TYPE OF INSTRUCTION IS USED TO TERMINATE A SEQUENCE OF INSTRUCTIONS
THAT IS TO BE CONSIDERED A SUBROUTINE. THIS SPECIAL TERMINATOR WILL
CAUSE THE PROGRAM OPERATION TO REVERT BACK TO THE NEXT SEQUENTIAL LOC~-
ATION IN MEMORY FOLLOWING THE INSTRUCTION THAT "CALLED" THE "“SUB-
ROUTINE." A GREAT DEAL OF COMPUTER POVER IS PROVIDED BY THE INSTRUC-
TION SET. IN THIS MACHINE FOR "CALLING" AND "RETURNING" FROM SUBROUTINES.
THIS 1S BECAUSE, IN A MANNER SIMILAR TO THE CONDITIONAL JUMP. INSTRUC-
TIONS, THERE ARE A NUMBER OF “CONDITIONAL CALLING" COMMANDS AND A NUM-
BER OF "“CONDITIONAL RETURN' COMMANDS. IN THE INSTRUCTION SET.

LIKE THE “JUMP*" INSTRUCTIONS, THE "CALL" INSTRUCTIONS ALL REQUIRE
THREE WORDS IN ORDER TO BE FULLY SPECIFIED. THE FIRST WORD IS THE
**CALL' INSTRUCTION. ITSELF. THE NEXT TW0 WORDS MUST CONTAIN THE LOV
AND HIGH PORTIONS OF THE STARTING ADDRESS OF THE SUBROUTINE THAT IS
BEING "“CALLED."

WHEN A "CALLY. INSTRUCTION IS ENCOUNTERED BY THE COMPUTER, THE
“CPU" WILL ACTUALLY SAVE THE CURRENT VALUE OF ITS PROGRAM COUNTER BY
STORING. IT IN A SPECIAL “PROGRAM COUNTER PUSH-DOWN STACK.'" THIS STACK
. 1S CAPABLE OF HOLDING 7 ADDRESSES PLUS THE CURRENT OPERATING_ADDRESS.
WHAT THIS MEANS IS THAT THE MACHINE. IS CAPABLE OF “NESTING" UP TO 7
SUBROUTINES AT ANY ONE TIME. THUS ONE CAN HAVE A SUBROUTINE, THAT IN
TURN CALLS ANOTHER SUBROUTINE - THAT IN TURN CALLS ANOTHER ETC., UP
TO 7 LEVELS AND THE MACHINE WILL BE ABLE TO "RETURN™ TO THE INITIAL

LOCATION. THE PRQGRAMMER MUST ENSURE THAT SUBROUTINES ARE NOT "NEST-
ED" AT MORE THAN 7 LEVELS OTHERWISE THE “PROGRAM COUNTER PUSH-DOWN
STACK" VWILL "PUSH" THE ORIGINAL CALLING ADDRESS(ES) COMPLETELY OUT

OF THE “PUSH-DOWN STACK" AND THE PROGRAM COULD NO LONGER AUTOMATICALLY
RETURN TO THE INITIAL "CALLING" ROUTINE.

THE "RETURN" INSTRUCTION WHICH TERMINATES A SUBRQUTINE ONLY RE-
QUIRES ONE WORD. WHEN THE CPU ENCOUNTERS A "RETURN" INSTRUCTION IT
CAUSES THE “PROGRAM_ COUNTER PUSH-DOWN STACK" TO "POP" UP ONE LEVEL.
THIS EFFECTIVELY CAUSES THE ADDRESS "SAVED"™ IN THE STACK BY THE CALLING
ROUTINE TO BE TAKEN AS THE NEW "PROGRAM COUNTER" AND HFNCE PROGRAM
EXECUTION RETURNS TO THE CALLING ROUTINE.

THE UNCONDITIONAL CALL INSTRUCTION
CAL 1 X 6

THIS INSTRUCTION FOLLOWED BY TWO WORDS CONTAINING THE LOWV AND THEN
THE HIGH ORDER OF THE STARTING ADDRESS OF THE SUBROUTINE THAT IS TO BE
EXECUTED IS AN UNCONDITIONAL *“CALL." THE SUBROUTINE VWILL BE EXECUTED
REGARDLESS OF THE STATUS OF THE “FLAGS." THE NEXT SEQUENTIAL ADDRESS
AFTER THE *“CAL" INSTRUCTION 1S SAVED IN THE "PROGRAM COUNTER PUSH-DOWN

STACK."
THE UNCONDITIONAL RETURN INSTRUCTION
RET @ X 7
THIS INSTRUCTION DIRECTS THE CPU TO UNCONDITIONALLY "POP' THE

“"PROGRAM COUNTER PUSH-DOWN STACK™ UP ONE LEVEL. THUS PROGRAM EXECU-

TION WILL CONTINUE FROM THE ADDRESS SAVED BY THE SUBROUTINE CALLING
INSTRUCTION.

CALL A SUBROUTINE IF THE DESIGNATED FLAG IS TRUE

CcTC 1 4 2
cTZ 1 52
CTS 1 6 2
CTP 1 72

IN A MANNER SIMILAR TO THE CONDITIONAL "JUMP IF TRUE" INSTRUCTIONS
THESE INSTRUCTIONS (WHICH MUST ALL BE FOLLOVED BY THE LOW AND HIGH
PORTIONS OF THE CALLED SUBROUTINE'S STARTING ADDRESS) WILL ONLY PER-
FORM THE "CALL' IF THE DESIGNATED FLAG IS IN THE TRUE (LOGICAL "1'")
STATE. IF THE DESIGNATED FLAG IS FALSE THEN THE “CALL"™ INSTRUCTION IS

IGNORED AND PROGRAM EXECUTION CONTINUES WITH THE NEXT SEQUENTIAL IN-
STRUCTION.

RETURN FROM A SUBROUTINE IF THE DESIGNATED FLAG IS TRUE

RTC 4 43
RTZ 6 53
RTS 2 63
RTP @ 73

THESE ONE WORD INSTRUCTIONS WILL CAUSE A SOBRO&TINE TO BE TERMI=-
NATED ONLY IF THE DESIGNATED FLAG IS IN THE LOGICAL “1" (TRUE) STATE.

- 16 =

CALL A SUBROUTINE IF THE DESIGNATED FLAG.1S FALSE

CFC 162
CFZ i1 2
CFS 122
CFP 1 3 2

THESE. INSTRUCTIONS ARE THE OPPOSITE OF THE PREVIOUS GROUP OF
CALLING. COMMANDS. THE SUBROUTINE IS CALLED ONLY. IF THE DESIGNATED.
FLAG.1S IN THE FALSE (LOGICAL @) CONDITION. REMEMBER, THESE INSTRUC~-
TIONS MUST BE FOLLOVED BY TWO WORDS WHICH CONTAIN THE LOV AND THEN
HIGH PART OF THE STARTING ADDRESS OF THE SUBROUTINE THAT.1S TO BE
EXECUTED. IF THE DESIGNATED FLAG.IS FALSE. IF THE FLAG IS TRUE, THE
SUBROUTINE WILL NOT BE CALLED AND PROGRAM OPERATION WILL CONTINUE
VITH THE NEXT INSTRUCTION IN THE CURRENT SEQUENCE.

RETURN FROM A SUBROUTINE IF THE DESIGNATED FLAG IS FALSE

RFC @23
RFZ 613
RFS e 23
RFP g 33

THESE ONE WORD. INSTRUCTIONS WILL TERMINATE A SUBROUTINE (POP THE
“*PROGRAM COUNTER STACK"™ UP ONE LEVEL). IF THE DESIGNATED FLAG.IS FALSE.
QTHERWISE THE INSTRUCTION IS IGNORED AND PROGRAM OPERATION. 1S CONTIN=-
UED WITH THE NEXT INSTRUCTION IN THE SUBROUTINE.

THE SPECIAL “RESTART" SUBROUTINE CALL. INSTRUCTIONS

THERE. IS A SPECIAL PURPOSE. INSTRUCTION AVAILABLE THAT EFFECTIVELY
SERVES AS A ONE VORD SUBROUTINE CALL (REMEMBER THAT. IT NORMALLY RE~-

. QUIRES THREE WORDS TO SPECIFY A SUBROUTINE CALL.) THIS SPECIAL. IN=-
STRUCTION ALLOWS THE PROGRAMMER TO CALL A SUBROUTINE THAT STARTS AT
ANY ONE OF EIGHT SPECIALLY. DESIGNATED MEMORY LOCATIONS. THE EIGHT
SPECIAL MEMORY LOCATIONS ARE AT LOCATIONS: 0006, @10, 020, 0634, 040,
950, @960 AND @70 ON PAGE ZERO. THERE ARE EIGHT VARIATIONS OF THE RE=-
START. INSTRUCTION - ONE FOR EACH OF THE ABOVE ADDRESSES. THUS, THE
ONE WORD. INSTRUCTION CAN SERVE TO "“CALL" A SUBROUTINE AT THE SPECI-
FIED STARTING LOCATION (INSTEAD OF HAVING TW0O ADDITIONAL WORDS TO SPEC-

-IFY THE STARTING ADDRESS OF THE SUBROUTINE.) IT.IS OFTEN CONVENIENT
TO _UTILIZE A RESTART COMMAND AS A QUICK *"CALL" TO AN OFTEN USED SUB-
ROUTINE, OR AS AN EASY WAY TO CALL SHORT "STARTING" ROUTINES FOR LARGE
PROGRAMS - HENCE THE NAME FOR THE TYPE OF INSTRUCTION, THE EIGHT _
RESTART INSTRUCTIONS - ALONG WITH THE STARTING ADDRESS OF THE SUBROUT-

- INE THAT EACH WILL AUTOMATICALLY “CALL". IS AS FOLLOWS:

. INSTRUCTION MACHINE SUBROUTINE
(MNEMONIC) CODE STARTING ADDRESS
RST @ 8 e5S /o6 @60
RST 1 61Ss fce o010
RST 2 2 2S5 860 @20
RST 3 35S 000 B30
RST 4 P 4s 6o 0B4af
RST § @ 55 ooe ese
RST 6 2 65 o008 o860
RST 7 8 75 eeo 070

-17 -

INPUT INSTRUCTIONS

- IN ORDER TO RECEIVE INFORMATION FROM AN EXTERNAL DEVICE THE COM-
PUTER MUST UTILIZE A GROUP OF SPECIAL SIGNAL LINES. THE SCELBI-8H
-COMPUTER. 1S DFESIGNED TO HANDLE UP TO SIX GROUPS (EACH GROUP HAVING
EIGHT SIGNAL LINES) OF INPUT SIGNALS. A GROUP OF SIGNALS. IS ACCEPTED
AT THE COMPUTER BY WHAT. IS REFERRED TO AS AN “INPUT PORT." THE
COMPUTER CONTROLS THE OPERATION OF THE "INPUT PORTS." UNDER PROCGRAM
CONTROL, THE COMPUTER CAN BE DIRECTED TO OBTAIN THE INFORMATION THAT
.1S ON THE GROUP OF LINES COMING IN TO ANY "INPUT PORT" AND BRING IT
.INTO THE ACCUMULATOR. VARIOUS TYPES OF EXTERNAL EQUIPMENT - SUCH
AS A KEYBOARD - CAN BE CONNECTED TO THE INPUT PORT(S). WHEN IT IS
DESIRED TO HAVE INFORMATION OBTAINED FROM A SPECIFIC YINPUT PORT" AN
. INPUT . INSTRUCTION MUST BE USED. THE INPUT INSTRUCTION SIMPLY IDENTI-
FIES WHICH INPUT PORT IS TO BE OPERATED AND WHEN EXECUTED CAUSES THE
SIGNAL LEVELS ON THE SELECTED INPUT PORT TO BE BROUGHT INTO THE "A“
CPU REGISTER (ACCUMULATOR). THE SIX STANDARD. INPUT PORTS ON THE
SCELBI-8BH MINI COMPUTER ARE DESIGNATED AS INPUT PORTS @ - S.

INP @ 1 81
INP 1 1 @3
INP 2 185
INP 3 1 6 7
INP & 1 11
INP 5§ 113

AN INPUT. INSTRUCTION ONLY REQUIRES ONE MACHINE COCE WORD. IT IS
ALSO IMPORTANT TO NOTE THAT AN INPUT INSTRUCTION - WHICH BRINGS NEW
DATA INTO THE ACCUMULATOR - DOES NOT AFFECT THE STATUS OF ANY OF THE
CPU FLAGS.

OUTPUT INSTRUCTIONS

IN ORDER TO OUTPUT. INFORMATION TO AN EXTERNAL DEVICE THE COMPUTER
UTILIZES ANOTHER GROUP OF SIGNAL LINES WHICH ARE REFERRED TO AS "0OUT-
PUT PORTS.' THE SCELBI-8H 1S STANDARDLY EQUIPPED TO SERVICE UP TO
EIGHT “OUTPUT PORTS." (EACH OUTPUT PORT ACTUALLY CONSIST OF EIGHT
SIGNAL LINES.) AN QUTPUT INSTRUCTION CAUSES THE CONTENTS OF THE CPU
“A*" REGISTER (ACCUMULATOR) TO BE TRANSFERRED TO THE SIGNAL LINES OF THE
DESIGNATED OUTPUT PORT. THE STANDARLY EQUIPPED OUTPUT PORTS ARE DFSIG-
NATED AS OUTPUT PORTS 10 - 17. ‘

ouUT 1@ 1 21
oUT 11 1 23
ouT 12 125
ouT 13 1 27
oUT 14 1 31
OUT 15 1 33
oUT 16 1 35
oUT 17 1 3 7

AN OUTPUT INSTRUCTION ONLY REQUIRES ONE MACHINE CODE WORD. 1IT
DOES NOT AFFECT THE STATUS OF ANY OF THE CPU FLAGS. OUTPUT PORT(S)
ARE CONNECTED TO EXTERNAL DEVICES - SUCH AS AN OSCILLOSCOPE DISPLAY
SYSTEM, AND PROVIDE CAPABILITY FOR THE COMPUTER TO DISPLAY INFORMATION
OR OTHERWISE CONTROL THE OPERATION OF EXTERNAL. DEVICES.

THE HALT INSTRUCTION

THERE 1S ONE MORE INSTRUCTION FOR THE COMPUTER'S INSTRUCTION SET.
THIS INSTRUCTION DIRECTS THE CPU TO STOP ALL OPERATIONS AND TO REMAIN
-IN THAT STATE UNTIL AN "INTERRUPT" SIGNAL 1S RECEIVED. IN THE STAND-
ARD SCELBI-8H AN *INTERRUPT®" SIGNAL MUST BE GENERATED BY THE OPERATOR
PRESSING A SWITCH ON THE FRONT PANEL OF THE COMPUTER. THIS INSTRUCT-
.ION 1S NORMALLY USFD WHEN THE PROGRAMMER DESIRES TO HAVE A PROGRAM BFE
TERMINATED, OR WHEN IT IS DESIRFD TO HAVE THE MACHINE WAIT FOR AN
OPERATOR TO SET UP EXTFRNAL CONDITIONS ETCe.. THERE ARF THREE MACHINE
GODE INSTRUCTIONS THAT MAY BE USFD FOR THE HALT COMMAND:

HLT 00
HLT o 21
HLT 37717

THE HALT INSTRUCTION DOES NOT AFFECT THE STATUS OF THE CPU FLAGS.
.IT IS A ONF WORD INSTRUCTION.

INFORMATION ON INSTRUCTION EXECUTION TIMES

WHEN PROGRAMMING FOR REAL TIME APPLICATIONS IT IS IMPORTANT TO KNOW
HOW MUCH TIME EACH TYPE OF INSTRUCTION REQUIRES TO BE EXECUTED. WITH
THIS INFORMATION THE PROGRAMMER CAN DEVELOPE "“TIMING LOOPS" OR DETER-
MINE WITH SUBSTANTUAL ACCURACY HOV MUCH TIME IT TAKES TO PERFORM A PART~
. ICULAR SERIES OF INSTRUCTIONS. THIS INFORMATION 1S ESPECIALLY IMPORTANT
WHEN DEALING WITH PROGRAMS THAT CONTROL THE OPERATION OF EXTERNAL DE-
VICES WHICH REQUIRE EVENTS TO OCCUR AT SPECIFIC TIMES.

THE FOLLOWING TABLE PROVIDES THE NOMINAL INSTRUCTION EXEGUTION TIME
FOR EACH CATEGORY OF INSTRUGCTION USED IN A STANDARD SCELBI-8H SYSTEM.
THE MASTER CLOCK IN A SCELBI-8H MINI-COMPUTER HAS AN ACCURACY RATED AT
PLUS OR MINUS 2% OF THE NOMINAL VALUE. THE TABLE SHOWS THE NUMBFR OF
“CYCLE STATES" REQUIRED BY THE TYPE OF INSTRUCTION FOLLOVED BY THE
NOMINAL TIME REQUIRED TO PERFORM THE ENTIRE INSTRUCTION. SINCE EACH
STATE EXECUTES IN 4 MICROSECONDS (U*SECS) THE TOTAL TIME REQUIRED TO
PERFORM THE. INSTRUCTION AS SHOWN IN THE TABLE IS OBTAINED BY MULTIPLYING
THE NUMBER 0S STATES BY 4 MICROSECONDS. BY KNOWING THE NUMBER OF STATES
REQUIRED FOR EACH INSTRUCTION THE PROGRAMMER CAN OFTEN REARRANGE AN
ALGORITHM OR SUBSTITUTE DIFFERENT TYPES OF INSTRUCTIONS TO PROVIDE PRO-
GRAMS THAT HAVE SPECIFIC EVENTS OCCURRING AT PRECISELY TIMED INTERVALS.

INSTRUCTION EXECUTION TIME TABLE

TYPE OF INSTRUCTION # OF STATES TOTAL EXECUTION TIME

LOAD DATA FROM ONE CPU
REGISTER TO ANOTHER CPU 5 20 U'SECS
REGISTER

® 8 6 6000 00000000000 VE OO SO OGO POOODOED SO0V O CES OOPOPOSOOENOSOOSINOSOESOSOENDSSPOEDS

LOAD DATA FROM A CPU
REGISTER TO A LOCATION 7 28 U'SECS
. IN MEMORY

INSTRUCTION EXECUTION TIME TABLE

TYPE OF INSTRUCTION # OF STATES TOTAL EXECUTION TIME

L X R L X D T W N D D G R G R Y D R WS S ER D P P D GO M G W S G R D P N NR ED SR R G G N GD WP S T P WP R W W W

LOAD DATA FROM A
LOCATION IN MEMORY 8 32 U'SECS
TO A CPU REGISTER

® 6 0 0 0 000000 000600 P 0 OP B OE DO PO OOO PO OO O U OEEC 0Lt EDNOLENOOEEONNNS NSNS OSEDS

LOAD “IMMEDIATE" DATA 8 32 U'SEES
INTO A CPU REGISTER

S O 0 8 0 0000005 800 OD OB DE PO O CON OO I OO NSNS0 NNNS OSSNSO NSRe GOSN eSS

LOAD “IMMEDIATE" DATA
INTO A LOCATION IN 9 36 U'SECS
MEMORY

0 0 0 6 00 0 E P B O 600G OO OP OO OO OO OCEOEOOPEOOO NP PO O EN OO NN NN SO NOENSSOEOESES NS

INCREMENT OR DECREMENT 5 20 U'SECS
A CPU REGISTER

® O 9 68 0 8 OO OGO PP OB SO0 OO OOOONPOPN OO LSOO O ONSPES SO0 O 0RO SPSONSSES S TDEEES

ARITHMETIC INSTRUCTION
BETYEEN THE ACCUMULATOR 5 280 U°'SECS
AND A CPU REGISTER

® 6 0 5 0608 06000060000 0000 00 ¢ 0500606005000 00 0008008000008 05000000 0006000060000 060000

COMPARE BETWEEN THE
ACCUMULATOR AND A 5 20 U'SECS
CPU REGISTER

® 8 5 00 0 0 0 050 GO0 OO O E O OB OO OB P OOS O OON OO TONON OSSNSO OO OOSeESOOSESES SN POSS

ARITHMETIC OR COMPARE

INSTRUCTION BETWEEN 8 32 U'SECS
THE ACCUMULATOR AND A

WORD IN MEMORY

® 8 0 0 0 9 0000 GO CE OO OGO OCE OGO O OCC OO NN OO OO OO O O OEOD PSSP0 00000 OO S SN EDNOIGSDS

"IMMEDIATE" TYPE
ARITHMETIC AND COMPARE & 32 U'SECS
INSTRUCTIONS

O S 6 9 8 00 ¢ 00O OOV OCOOOR DTS00 ODOORNOD D OO L OO RLOENOOENBOPOD NN SNBOSSSSSS

BOOLEAN MATH OPERATIONS
BETWEEN ACCUMULATOR AND S 28 U'SECS
CPU REGISTERS

® 0 0 0 00 0 000805000V OO D PN I OO LD BO OB SEEOOP G000 OCNOOPSONSCSSPOOLEBSELIOSOESEEBSEPSOSEOSECEDS

- 20 -

INSTRUCTION EXECYTION TIME TABLE

TYPE OF INSTRUCTION # OF STATES " TOTAL EXECUTION TIME

" D G S G WD Gy MmN G G G G N G S SN AR BR R R TS G D W WP W R G TR ND G R G G A R G D D G S R T D AP S T G B B G D OB AR S AR D AR S G e A G B

BOOLEAN MATH OPERATIONS
BETWEEN ACCUMULATOR AND 8 32 U'SECS
A LOCATION IN MEMORY

00 0 0000 00 00BN H PP OCE VOO OSOEIONOEBOBDNOOOOSOOEP BN P COR0000000OCCESLIOOSEORESTPOSNDLSLIEIDYS

BOOLEAN “IMMEDIATE" 8 32 U'SECS
INSTRUCTIONS

PSS SV D OO OO0 P COOLOOOPPEIDPCOOOCOENONNREO PSPPI O0OCRS OO POOORSSOINSOEOSEDBNPOEDLIDOSOEDNDS

ACCUMULATOR ROTATE S 20 U'SECS
INSTRUCTIONS

G 6 0 000 00 00T S OO OOOOOCO PN OO OO OO D DOOGO OGS L OO AR ONGOOPOOSesSOEBOEBSLOEOIOGDS

UNCONDITIONAL JUMP OR 11 44 U*SECS
CALL INSTRUCTIONS

B0 6 0000000000 OB O OEOOR PO OO OO0 OGN OGO OO SOCOOOCSON0POOCSLOEOLESIOEILIOIEOESTOSTOINOETSDBIODN

CONDITIONAL JUMP OR CALL
INSTRUCTIONS WHEN CONDI- 9 36 U'SECS
TION IS NOT SATISFIED

AND CONDITIONAL JUMP
OR CALL INSTRUCTIONS WHEN 11 44 U'SECS
CONDITION IS SATISFIED

........C..Q..l..."....'.‘..0..........'.‘..O.........0.0........0..‘..

UNCONDITIONAL RETURN 5 28 U'SECS
INSTRUCTION

PO D 0 00000000 00000000 BB OPOOODOBOOO OO EOBOLOLS 0000 P0080000000ONBSOSEOETSLOIEBIOEIOS

CONDITIONAL RETURN
INSTRUCTION WHEN CONDI- 3 12 U'SECS
TION IS NOT SATISFIED

CONDITIONAL RETURN

INSTRUCTION WHEN CONDI~ 5 20 U'SECS
TION 1S SATISFIED

0 0 00 000D O OOBOES OO IO NOLN GO NGOI IO NOOPOPOCOONPOOVSOSONLNINOEOEOSNOELIPBSIPOEOS

RESTART INSTRUCTION 5 28 U'SECS
....Q‘.....Q..I...........‘.......‘........C...‘........'.'.,..........
OUTPUT INSTRUCTION 6 24 U'SECS
0 0000000000000 O00D P00 ONOO0POPOCOIPCNIINTPONLONBEERPSROCCEOECEOIERSEOPOES®EOEOINOOIOIEONINOIOIOLEOLES
INPUT INSTRUCTION 8 32 U'SECS
00 0060068000000 0080000000080 0000006000 000P0CBLET0C00CCECCECRSICEECICEIIONOOIOCIOIETOCIDOIOENIDOIOGIOIOLOIOIOEOCPETS
HALT INSTRUCTION 4 16 U'SECS

000000000000 0000008000000 0000060000000 0000000600080060000C6000060600000COOCBRROGEEES

SCELBI=-8H OPERATING INFORMATION

THF. STANDARD SCELBl-8H MINI-COMPUTER IS OPERATED THROUGH THE
USE OF 11 CHASSIS PANEL SWITCHES. THE STATUS OF THF COMPUTER AND
THF RESULTS OF VARIOUS OPEFRATIONS CAN BE OBSFRUFD ON THE SCELBI llﬂa-
FRONT PANEL CARD.

THE CHASS1S PANEL SWITCHES, FROM LFFT TO RIGHT, CONSIST OF THREE
MOMENTARY PUSH BUTTON SWITCHES AND E1GHT TOGGLE SWITCHES.

THE LEFT=MOST PUSH BUTTON SWITCH IS THE “INTERRUPT" BUTTON.
WHENFVER THIS BUTTON IS DEPRESSED THE CENTRAL PROCESSOR UNIT (CPWU)
WILL RECFIVF A SIGNAL THAT INDICATES IT 1S TO INTERRUPT THE PROCESS
IT IS ENGAGED IN AND PREPARE TO RECEIVF AN INSTRUCTION FROM THE
CHASSIS PANFL TOGGLF SWITCHFS. UPON RECFIPT OF THIS SIGNAL THF CPU
VILL FINISH PERFORMING ANY INSTRUCTION IT MIGHT BF EXFCUTING AND THEN
ACKNOVLEDGE RECEIPT OF THF INTERRUPT COMMAND BY LIGHTING THE “INT"
LAMP ON THE SCELBI 1104- FRONT PANEL CARD. NOTE THAT THE LFNGTH OF
TIME BEFORE THE "INT" LAMP ON THE FRONT PANFL CARD COMES ON IS A
FUNCTION OF THF STATE OF THF MACHINE AT THE TIMFE THE INTERRUPT BUTTON
WS DEPRESSED. THE POSSIBLE CONDITIONS CAN BE SUMMARIZED AS FOLLOVS:

1« IF THE SCFLBI-&H WAS IN THE *RUN" MODE THE “INT* LAMP VOULD
APPFAR TO COME ON INSTANTANFOUSLY AND THE '"RUN" LAMP ON THE
FRONT PANEL CARD WOULD SIMULTANFOUSLY EXTINGUISH.

2. 1F THE MACHINE WAS IN THE “STOP'" STATE THFE “INT"™ LIGHT WOULD
IMMFDIATELY TURN ON AND THE *“STOP" LAMP WOULD TURN OFF.

3. 1IF THE MACHINE WAS OPERATING IN THF STEP" MODE (BY USE OF
THE "STEP'" PUSH BUTTON SWITCH) THEN THE *"INT" LAMP VWOULD NOT
LIGHT UP UNTIL THE OPFRATOR FINISHFD STEPPING THROUGH THF CUR-
RENT INSTRUCTION BEING EXECUTED BY THE MACHINE.

4. IF THE “INTERRUPT" BUTTON WAS DFPRESSED WHILF THE "INT"
LAMP VWAS ALREADY ON (INDICATING AN INSTRUCTION WAS CURRENTLY
BEING EXECUTED IN THE “INTERRUPT" MODE) THEN THE “INT" LAMP
VOULD RFMAIN ON AFTFR THE FIRST INTFRRUPT INSTRUCTION VWAS EX-
ECUTED. THF END OF THE PREVIOUS INTERRUPT COMMAND AND THF
START OF THE NEV INTFRRUPT COMMAND WOULD HAVE TO BE DISCERNED
BY CAREFUL OBSFRVATION OF THE CYCLE *"STATUS" LAMPS ON THE
FRONT PANFL CARD WHOSE SIGNIFICANCF VILL BE EXPLAINED IN DE-
TAIL LATER IN THIS CHAPTER.

THE NEXT PUSH BUTTON IS THE “STEP" BUTTON. THIS BUTTON ALLOVS
THE OPERATOR TO EXECUTF INSTRUCTIONS IN SINGLE STFPS. VWHEN ENTERING
A MULTI!-VORD INSTRUCTION IN THE “"INTFRRUPT" MODF THIS BUTTON ALLOWS
THE MACHINEFE TO PAUSE AT EACH WORD SO THAT THE CHASSIS TOGGLF SVITCH=-
ES CAN BE SET UP FOR THE NEXT WORD OF THE INSTRUCTION. THIS BUTTON WILL
ALSO ALLOW AN OPFRATOR TO STFP SLOVLY THROUGH EACH INSTRUCTION IN A
PROGRAM WHILE THE FRONT PANEL CARD LIGHTS ARE OBSERVED AS AN AID TO
PROGRAM VERIFICATION OR MONITORING.

THE THIRD PUSH BUTTON IS THF “RUN" BUTTON. DEPRESSING THIS BUTTON
CAUSES THF COMPUTFR TO RESUME FXFCUTING A PROGRAM IN MEMORY AT THE NOR-
MAL AUTOMATIC RATE. PROGRAM EXECUTION WILL CONTINUE FROM THE MEMORY

WORD LOCATION SPFCIFIED BY THE CURRENT CONTENTS OF THE CPU'S PROGRAM
COUNTER.

THE EIGHT TOGGLE SWITCHES ON THE CHASSIS PANEL ALLOV INSTRUCTIONS
AND DATA TO BE FED TO THE COMPUTER BY THE OPERATOR IN CONJUNCTION VITH
THE "INTERRUPT" AND “STEP" PUSH BUTTONS. THE LEFT-MOST TOGGLE SWITCH
CONTROLS THE INPUT OF BIT B7 (THE MOST SIGNIFICANT BIT) AND THE SVWITCHES
ARE ARRANGED IN DESCENDING BIT ORDFR DOWN TO THE RIGHT-MOST TOGCLF
SWITCH WHICH IS FOR BIT BO (THE LFAST SIGNIFICANT BIT.)

~ THE 11 CHASS1S PANEL SVWITCHES ALLOW THE OPFRATOR: TO LOAD PROGRAMS
INTO THE MEMORY OR ALTER MFMORY CONTENTS. TO EXAMINF THE CONTENTS OF
WORDS IN MEMORY OR THE CONTENTS OF CPU REGISTERS (USING THE FRONT
PANFL CARD INDICATORS). TO ALTFR THE CONTENTS OF CPU REGISTERS. TO
PERFORM INPUT/OUTPUT (1/0) OPERATIONS. TO START AND STOP EXECUTION OF
PROGRAMS IN MEMORY. TO INSERT OR “JAM" IN INSTRUCTIONS VIA THE
"INTERRUPT" FACILITY IN BETWEEN INSTRUCTIONS THAT ARE BEING EXECUTED -
FROM MEMORY AND THUS ALTER THE RFESULTS OF A COMPUTATION OR ENTER
NEW DATA INTO A PROGRAM WITHOUT ACTUALLY CHANGING THE PROGRAM STORED
IN MEMORY. IN SUMMARY, THE SWITCHES ALLOV THE OPERATOR TO MANUALLY
CONTROL THE GOMPLETE OPERATION OF A SCFLBI-8H MINI-COMPUTER.

THE SCELBI 1104~ FRONT PANFEL CARD MAKES OPERATING THE SCELBI-8H
MINI-COMPUTER A REFAL PLEASURF. A CLFVERLY DESIGNED DISPLAY SYSTEM ON
THE 1104~ CARD ALLOWS THE OPFRATOR TO ASCEFRTAIN THE STATUS OF THE
MACHINE AT ALL TIMES. THE LAMPS MAY BE USED: TO DISPLAY THE CONTENTS
OF SPECIFIC MEMORY LOCATIONS OR CPU REGISTERS. TO OBSERVE THE TRANS-
FER OF INFORMATION FROM AND TO EXTERNAL (1/0) DEVICES. TO OBSFRVE

THF STEP-BY-STFP EXECUTION OF PROGRAMS STORED IN MEMORY. TO ASCERTAIN
THE GENFRAL TYPE OF OPERATIONS (STATUS) BEING PERFORMED BY THFE MACHINE
AS WELL AS ITS MODE OF OPERATION (RUN, STOP, OR INTERRUPT). THE CARD
ALSO HAS LAMPS THAT VERIFY THE PRESENCE OF NORMAL POWER SUPPLY VOLTAGES
TO THE SCELBI-8H MINI-COMPUTER.

THE LIGHTS ON THE FRONT PANEL CARD ARF ARRANGED IN THE FOLLOWING
PATTERNS.

ALONG THE TOP ROW: THE FIRST Tw0 LAMPS ON THE LFEFT SIDE OF THE
ROV ARE USED TO INDICATE THE PRESENCE OF THE +5 VOLT AND -9 VOLT
POWER SUPPLY VOLTAGES. WHENEVER THE COMPUTER IS ON BOTH OF THESE
LAMPS SHOULD GLOW BRIGHTLY AND STEADILY. IF ONE OR BOTH OF THESE
LAMPS SHOULD FAIL TO COME ON WHEN POWEFR IS INITIALLY APPLIED TO THE
COMPUTER, OR SHOULD SUDDENLY GO OUT, THEN ALL POWER TO THE COMPUTER
SHOULD BE IMMEDIATLY DISCONNECTED AS IT INDICATES THAT THE RESPECTIVE
POWER SUPPLY VOLTAGE 1S NOT PRESENT. NO ATTEMPT SHOULD BE MADE TO
OPERATE THE COMPUTER 1F EITHER POVER SUPPLY VOLTAGF IS ABSENT!

THE NEXT SIX LAMPS ON THE TOP ROV OF THE LEFT HAND SIDE OF THE
CARD ARE ARRANGED IN TWO GROUPS OF THREE LAMPS. THESE LAMPS ARE USED
TO INDICATE SEVERAL TYPES OF INFORMATION DFPENDING ON THE STATUS
OF THE MACHINE. FOR THE MAJORITY OF INSTRUCTIONS FXECUTED BY THE
MACHINE THESE LAMPS VILL INDICATE WHICH 'PAGE" (HIGH ORDER PORTION
OF A MEMORY ADDRESS) WILL NEXT BE ACCESSED BY THE COMPUTER. FACH
GROUP OF LAMPS CAN REPRESENT AN OCTAL NUMBER FROM @ TO 7 DEPENDING ON
WHICH LAMPS ARE LIT. THUS THE TWO GROUPS OF THREFE LAMPS CAN DENOTE
ALL THE POSSIBLE PAGES OF MEMORY THAT A SCELBI-8H COULD ACCESS. THAT
IS PAGE 08 TO PAGE 77 (OCTAL). FOR A SMALL GROUP OF INSTRUCTIONS,
NOTABLY THOSE RELATED TO 1/0 OPERATIONS, THESE LAMPS WILL DISPLAY OTHER
INFORMATION WHICH IS EXPLAINED LATFR IN TH1S CHAPTER. HOWEVER, SINCE
THEY ARE USED PRIMARILY TO DENOTE THF "PAGE" ADDRESS THEY ARE APPROP-
RIATELY LABELED AS THE “PAGE" INDICATORS.

FIGURE 1 ILLUSTRATES THE LIGHTS THAT ARE ON THE LEFT HAND TOP ROV

-2 -

ON THE FRONT PANEL CARD AND THEIR LABELS.

+5V -9V PAGE
0 0 0 0 0 0 (o} o
FIGURE 1

THE TOP ROW OF LIGHTS ON THE RIGHT HAND SIDE OF THE CARD ARE
REPRESENTED PICTORIALLY. IN FIGURE 2. THESE LIGHTS GENERALLY ARE USED
TO DISPLAY THE LOVW ORDER ADDRESS (LOCATION ON A PAGE) OF THE NEXT WORD
IN MEMORY THAT VILL BE ACCESSED BY THE COMPUTER. HOWEVER, FOR A FFWVW
INSTRUCTIONS, SUCH AS 1/0 OPERATIONS, THEY DISPLAY INFORMATION RELATED
TO0O THE 1/0 TRANSFER. THESE LIGHTS ARE LABELED “MEMORY ADDRESS* IN
KEEPING WITH THE INFORMATION THAT THEY USUALLY DISPLAY.

MEM O RY ADDRESS

0 0 0 0 0 0 0 0
FIGURE 2

THE MEMORY ADDRESS LAMPS ARE GROUPED TO ALLOV EASY REPRESENTATION
OF OCTAL NUMBERS. THE LAMPS AS GROUPFD CAN INDICATF THE OCTAL NUMBERS
FROM 860 TO 377 WHICH ARE ALL THE POSSIBLE ADDRESSES ON A "PAGE"™ IN
MEMORY .

THE SECOND ROW OF LIGHTS ON THE RIGHT HAND SIDE OF THE FRONT PANEL
CARD ARE ARRANGED AND LABELED AS FOLLOWVS.

0 0 0 o o 0 0 0

MEMORY CONTENTS

FIGURE 3

THESE LIGHTS SERVE PRIMARILY TO SHOW THE CONTENTS OF THE LAST WORD
IN MEMORY THAT WAS ACCESSED BY THE COMPUTFR. THE USER IS CAUTIONED TO
NOTE THAT THE MEMORY CONTENTS BEING DISPLAYED ARE GENERALLY THOSE OF
THE WORD IN MEMORY WHOSE ADDRESS IS ONE LFSS THAN THAT CURRENTLY DIS-~
PLAYED BY THE “PAGE"™ AND "MEMORY ADDRESS" LAMPS BECAUSE THOSE LAMPS
GENERALLY SHOW THE NEXT WORD IN MEMORY THAT WILL BF ACCESSED WHILE THE
“MEMORY CONTENTS'" LAMPS SHOW THE CONTENTS OF THE LAST MEMORY LOCATION
ACCESSED BY THE COMPUTER. THIS CONVENTION IS EASILY LEARNED BY THE
OPERATOR AND IS OF PARTICULAR VALUF WHEN THE MACHINE IS PERFORMING
“JMP" (JUMP) AND "CAL'" (CALL) INSTRUCTIONS AS THE OPERATOR CAN EASILY
SEE THAT THE COMPUTER IS GOING TO A NEW SECTION IN MEMORY. AN EXCEP-
TION TO THE CONVENTION OGCURS WHEN A "HLT" (HALT) INSTRUCTION HAS BEEN
EXECUTED BY THE COMPUTER. THE SPECIFIC RELATIONSHIP BETWEEN THE "MEM-
ORY CONTENTS' LAMPS AND THE ADDRESSING LAMPS FOR EACH TYPE OF INSTRUC-
TION 1S PRESENTED IN A COMPREHENSIVE TABLE LATER IN TH1S CHAPTER.

-3-

IN ADDITION TO SHOWING THE CONTENTS OF THE LAST MEMORY LOCATION
ACCESSED BY THE COMPUTER, THESE LAMPS ALSO SERVE TO PRESENT THE CON-
TENTS OF CPU REGISTERS AND CAN PROVIDE OTHER TYPES OF INFORMATION WHICH
WILL BE PRESENTED LATER IN THIS CHAPTER. THEY ARE LABELED THE "MEMORY

CONTENTS" LAMPS AS A REMINDER OF THE TYPE OF INFORMATION THEY MOST
OFTEN DISPLAY.

THE SECOND ROW OF LIGHTS ON THE LEFT HAND SIDE OF THE CARD ARE
ARRANGED AND LABELED AS SHOWN IN FIGURE 4.

o 0 0 0 0
RUN INT STATUS STOP
FIGURE 4

THE LAMP LABELED "RUN" 1S LIT WHEN THE COMPUTER IS OPERATING UNDER
PROGRAM CONTROL AT THF NORMAL MACHINE EXECUTION RATE.

THE LAMP LABELED *STOP" LIGHTS TO SIGNIFY THAT THF COMPUTER HAS

ENCOUNTERED A HLT" (HALT) INSTRUCTION AND THAT THE COMPUTER IS IN THE
“STOPPED" CONDITION.

- NOTI1CE-~-

WHENEVFR THE SCELBI-8H ENCOUNTERS A "HLT* (HALT) INSTRUCTION THE
*STOP" LAMP VILL LIGHT. IN ORDER TO RESUME OPFRATION THE OPER=-
ATOR MUST DEPRESS THE “INT® PUSH BUTTON SVWITCH ON THE CHASSIS AND
CAUSE AT LEAST ONE INSTRUCTION TO BE EXECUTED VIA THE INTFRRUPT
MODFE. QUITF OFTEN IT WILL BE DESIRABLE TO ISSUE A °*JMP* (JUMP)
COMMAND OR OTHER SPECIFIC INSTRUCTION AT SUCH A POINT. HOVWEVER,
IN THE EVENT THE USER DESIRES TO SIMPLY CONTINUE FXFCUTING A PRO-
GRAM (VWITH THE INSTRUCTION IN MFEMORY IMMEDIATELY FOLLOWING THE
ONE THAT CAUSED THE COMPUTER TO HALT) IT IS RFCOMMFNDED THAT A
"NO OPERATION® (NOP) TYPF OF INSTRUCTION BE USED AS THE INTFRRUPT
COMMAND. A GOOD “NO OPERATIONM™ INSTRUCTION TO USE IS THFE "LAA"
(LOAD REGISTER A TO REGISTER A) INSTRUCTION. THIS INSTRUCTION
WILL NOT DISTURB THE RESULTS OF ANY PROGRAM THAT THE MACHINF
MIGHT BE PROCESSING AND WILL SATISFY THE RFQUIREMENT OF ISSUE-

ING AN "INTERRUPT' COMMAND TO MOVE THFE MACHINE OUT OF THE "STOP-
ED' CONDITION.

THE MIDDLE GROUP OF THREE LAMPS LABELFD “INT" AND "STATUS" ARE
VERY IMPORTANT INDICATORS FOR THE COMPUTER OPERATOR. THE "INT" LIGHT
IS TURNED ON WHENEVER THE COMPUTER 1S PROCESSING AN “INTERRUPT" COMMAND
VIA THE CHASSIS SVITCHES. THE NEXT TWO LAMPS LABELFD "STATUS" ARE
USFD TO INFORM THE OPERATOR JUST WHAT TYPE OF OPERATION THE COMPUTER
1S CURRENTLY PERFORMING. THESE LAMPS ARE PARTICULARLY IMPORTANT DURING
MULTI1-WORD INSTRUCTIONS AS THEIR CONDITION 1S USED TO INFOFM THE OPER-
ATOR WHEN TO SET UP THE CHASS1S TOGGLE SWITCHES TO PROVIDE NEW CODES
FOR THE NEXT WORD OF A MULTI-WORD OPERATION, SUCH AS WHEN “IMMEDIATE"
OR "JMP" INSTRUCTIONS ARE BFING INSERTED VIA THE CHASSIS SVITCHES.
THE STATUS LAMPS ARE ALSO VALUABLFE AS PROGRAM VERIFICATION AIDS AS THEY
INFORM THE OPERATOR AS TO JUST WHAT TYPE OF OPERATION IS BEING PERFOFMED
BY THE CPU AT FACH STEP IN THF EXECUTION OF A PROGRAM.

- -

THE MEANINGS OF THE STATUS LAMPS SHOULD BE MEMORIZED BY THE USER.
THE TWO LAMPS CAN REPRESENT FOUR POSSIBLE CONDITIONS AS PRESENTED IN
THE ILLUSTRATION BELOV.

CONDITION OF STATUS LAMPS - TYPE OF COMPUTER PROCESS

0 0 ‘ THE CPU IS PERFORMING A ONE
WORD INSTRUCTION OR READING
BOTH LAMPS OFF THE FIRST WORD OF A MULTI-

WORD INSTRUCTION.

»* 0 THE SPU IS READING THE NEXT
WORD OF A MULTI-WORD INSTRUC~
LEFT STATUS LAMP IS ON TION OR PERFORMING THE LATTER
RIGHT STATUS LAMP 1S OFF PART OF A MULTI-WORD COMMAND.
4] * COMPUTER 1S PFRFORMING AN I1/0

CINPUT/0UTPUT) OPERATION.
RIGHT STATUS LAMP IS ON
LEFT STATUS LAMP 1S OFF

* * COMPUTER IS PERFORMING A
' MEMORY WRITE OPERATION.
BOTH STATUS LAMPS ARE ON

FIGURE S
INITIALIZING THE SCELBl1-8H FOLLOVWING POVFR TURN-ON

WHEN POVER 1S INITIALLY APPLIED TO THE STANDARD SCELBI-8H MINI-
COMPUTER THERE VILL NOT BE ANY PROGRAM IN THE MACHINE'S MEMORY (UNLESS
IT 1S EQUIPPED WITH SPECIAL READ-ONLY-MEMORY (ROM) ELEMENTS), AS THE
STANDARD SEMI-CONDUCTOR “RAM" MEMORY ELEMENTS CANNOT RETAIN INFOR-
ATION WHEN POWER 1S NOT APPLIED. IN ADDITION, WHEN THE COMPUTER IS
FIRST TURNED ON THE CIRCUITS IN THE CPU VILL BE IN VARIOUS RANDOM
STATES. IT 1S THUS NECESSARY TO PERFORM A SEQUENCE OF OPERATIONS VIA
THE CHASSIS SWITCHES TO BRING THE COMPUTER TO A SET OF CONDITIONS FROM
WHICH NORMAL OPERATIONS CAN PROCEED. THE RECOMMENDED PROCEDURE TO BE
PERFORMED IMMEDIATELY FOLLOVING POWER TURN-ON IS DETAILED BELOVW. IT
CONSISTS OF USING THE INTERRUPT CAPABILITY TO “INSERT" AN INSTRUCTION
INTO THE CPU DIRECTING IT TO JUMP TO A NON-EXISTANT ADDRESS IN MEMORY.
IN STANDARD SCELBI-8H SYSTEMS THIS IS READILY ACCOMPLISHED BY USING AN
ADDRESS ON PAGE 77 (OCTAL) BECAUSE THERE WILL NOT BE ANY MEMORY ELE-
MENTS ASSIGNED TO SUCH A HIGH ADDRESS. THIS PROCEDURE WILL CAUSE THE
PROGRAM COUNTER IN THE CPU TO BE SET TO AN ADDRESS THAT DOES NOT ACT-
UALLY CONTAIN ANY MEMORY CELLS. IN THE SCELBI-8H, IF THE CPU ATTEMPTS
TO READ INFORMATION FROM A NON-EXISTANT AREA OF MEMORY IT VILL RECEIVE
THE CODE 377 (OCTAL) WHICH IT INTERPRETS AS A “HLT" INSTRUCTION. THUS.,

PERFORMING TH1S PROCEDURE WHEN POWER IS INITIALLY APPLIED (OR WHENEVER
IT 1S DESIRED TO LOAD PROGRAMS OR PERFORM OTHER EXTENSIVE OPERATIONS
UNDER MANUAL CONTROL) IS RECOMMENDED BECAUSE OF THE SPECIAL VAY IN
WHICH THE SCELBIl-8H INTERRUPT FACILITY OPERATES. THAT IS THE FACT
THAT AN INSTRUCTION ISSUED TO THE COMPUTER IN THE INTERRUPT MODE
ACTUALLY CAUSES THE INSTRUCTION TO BE “INSERTED" VIA THE CHASSIS
TOGGLE SWITCHES DIRECTLY INTO THE CPU WHILE IT IS IN BETVEEN THE
PROCESS OF EXECUTING INSTRUCTIONS FROM MEMORY. THUS, AS SOON AS TH
INSTRUCTION THAT HAS BEEN INSERTED THROUGH THE INTERRUPT PROCESS HAS
BEEN PERFORMED, THE CPU WILL RESUME OPERATIONS BY EXECUTING THE NEXT
INSTRUCTION AT THE ADDRESS SPECIFIED BY THE CONTENTS OF THE PROGRAM
COUNTER. THIS FEATURE OF HAVING THE "INTERRUPT" FACILITY ACTUALLY
INSERT INSTRUCTIONS TO THE CPU IN BETWEEN THE CPU'S PROCESS OF EXEC=-
UTING INSTRUCTIONS FROM MEMORY IS EXTREMELY VALUABLE AT CERTAIN TIMES,
SUCH AS WHEN IT 1S DESIRED TO MANUALLY ALTER A PROGRAM'S OPERATION
WITHOUT ACTUALLY PLACING A NEV INSTRUCTION IN MEMORY. BUT, IT CAN
ALSO CAUSE DIFFICULTIES IF ONF 1S NOT FULLY FAMILIAR VWITH WHAT 1S
ACTUALLY OCCURRING WHEN ONF DESIRFS TO PERFORM EXTENSIVE MANUAL OPER=-
ATIONS. IF PRECAUTIONS ARE NOT TAKEN AT SUCH TIMES, THE CPU MAY PER-
FORM INSTRUCTIONS FROM MEMORY (IN BETWEEN THE RECEIPT OF COMMANDS

FROM THE INTERRUPT FACILITY) THAT COULD INTERFFRE WITH THE MANUAL
PROCEDURES. THIS POTENTIAL PROBLEM IS READILY AVOIDED IF THE PROGRAM
COUNTER HAS BEEN SET TO AN ADDRESS THAT DOES NOT CONTAIN ANY ACTUAL
MEMORY ELEMENTS BECAUSE THEN ANY COMMAND IT RECEIVES FROM SUCH A
MEMORY ADDRESS WILL SIMPLY BE A "HLT" INSTRUCTION - WHICH WILL NOT:
INTERFERE VITH THE MANUAL PROCESS. THF PRECISE PROCEDURE TO ESTABLISH
TH1S DESIRED CONDITION WHEN POVER IS FIRST APPLIED TO THE COMPUTER, OR
WHEN A PROGRAM 1S BEING MANUALLY LOADED, OR WHFN OTHER TYPES OF EXTEN-
SIVE MANUAL OPFRATIONS ARE TO BE PERFORMED, 1S SHOWN BELOV.

l« AFTER INITIALLY TURNING THE POVER ON, OR WHENEVER IT IS DE-
SIRED TO DO EXTENSIVE OPERATIONS WITH THE CHASSIS SVITCHES -
FIRST SET THE CHASSIS TOGGLE SWITCHES TO REPRESENT THE OCTAL CODE
1 8 4., (SVITCHES B6 AND B2 UP, ALL OTHERS DOWN.) 1| @ 4 1S

THE MACHINE LANGUAGE CODE FOR A “JMP"™ (JUMP) INSTRUCTION.

2. DEPRESS THF “INT" PUSH BUTTON SWITCH ON THE CHASSIS.

3« NOW DEPRESS THE “STEP' SWITCH ONE OR MORE TIMES UNTIL THE
"INT"” LIGHT ON THE FRONT PANEL CARD LIGHTS UP AND ACKNOVLEDGES
RECEIPT OF THE INTFRRUPT COMMAND. (THIS MAY REQUIRE SEVERAL
OPERATIONS OF THE "“STFP" BUTTON AS THE COMPUTER MIGHT BE IN THE
PROCESS OF EXECUTING A MULTI-WORD INSTRUCTION AT THE TIME THE
INTERRUPT COMMAND 1S RECEIVED. THE CPU WILL FINISH PERFORMING
THE ENTIRE INSTRUCTION IT WAS OPERATING ON BEFORE ACKNOVLEDGING
THE INTERRUPT COMMAND.)

4+ AFTER THE INTERRUPT LIGHT COMES ON DEPRESS THE STEP SVITCH
ONCE MORE. THIS WILL CAUSE THE LEFT “STATUS"™ LAMP TO LIGHT
INDICATING THAT THF COMPUTER 1S READY TO ACCEPT THE NEXT WORD
OF THE MULTI-VWORD "JMP*" INSTRUCTION THAT 1S BEING INSERTED.

5. NOW CHANGE THE CHASS1S TOGGLE SWITCHES TO REPRESENT 877
OCTAL. (B7 AND B6 DOWN, BS THROUGH B8 UP.)

6. DEPRESS THE STEP SWITCH ONE TIME. THIS VILL CAUSE THE CODE
@77 TO BE RECEIVED FROM THE CHASSIS SWITCHES AS THE LOW ORDER
ADDRESS PORTION OF THE "JMP" INSTRUCTION. THERE WILL BE NO
CHANGES ON THE FRONT PANEL CARD LAMPS.,

7. DEPRESS THE “STEP" SWITCH AGAIN. AT THIS TIME THE "INT"

AND THE LEFT STATUS LAMP WILL EXTINGUISH SIGNIFYING THE COMP-
LETION OF THE INTERRUPT COMMAND INSTRUCTION. IN ADDITION IT

CAN BE OBSERVED THAT THE MEMORY ADDRESS (MA) LAMPS ON THE TOP
ROV OF THE FRONT PANEL CARD SHOW AN ADDRESS OF PAGE 77 LOCATION
#77. IF THE OPERATOR WERE TO PRESS THE "STEP" BUTTON AGAIN (IT
1S NOT NECESSARY TO DO SO BUT IT MAY BE DONE AS AN ILLUSTRATION)
THE OPERATOR WOULD SEF ALL THE MEMORY CONTENTS (MC) LAMPS LIGHT
AND THEFE "STOP" LAMP TUEN ON INDICATING THAT THE COMPUTER TRIED TO
OBTAIN AN INSTRUCTION FROM MEMORY (AFTER COMPLETION OF THE *“JMP"
INSTRUCTION ISSUED BY THE INTERRUPT COMMAND) AT THE ADDRESS PAGE
77 LOCATION 877. SINCE A BASIC SCELBI-8H DOES NOT HAVE THE
16,000 WORDS OF MEMORY NECESSARY TO UTILIZE SUCH A HIGH ADDRESS,
THE MACHINE WOULD OBTAIN THE 377 "HLT" CODE FROM THAT ADDRESS
WHICH IT INTERPRETS AS A HALT INSTRUCTION.

TYPICAL MANUAL OPERATIONS AFTER INITIALIZATION PROCEDURES

ONCE THE PROGRAM COUNTER HAS BEEN SET TO AN “OFF-MEMORY'" ADDRESS
NUMEROUS TYPES OF PROCEDURES CAN BE PERFORMFED VIA THE CHASSIS TOGGLE
SWITCHES -~ SUCH AS MANUALLY LOADING A PROGRAM INT0 A SECTION OF MEMORY.
THE BASIC PROCEDURE TO MANUALLY LOAD A PROGRAM INTO MEMORY IS DETAILED
BELOV.

FIRST THE "H'" REGISTER MUST BE SET TO THE PAGE IN MEMORY WHFRE
THE PROGRAM (OR PORTION OF A PROGRAM) IS TO RESIDE. NEXT THE *"L" REGI-
STER IS SET TO THE LOCATION ON THE PAGE WHERE IT IS DESIRED TO START
LOADING THE PROGRAM. THEN A LOAD MEMORY IMMEDIATE INSTRUCTION IS USED
TO PLACE AN INSTRUCTION (OR DATA) INTO THE MEMORY LOCATION CURRENTLY
SPECIFIED BY THE CONTENTS OF THF “H" AND "L REGISTERS. THEN REGISTER
“L* 1S INCREMENTED BY ONE TO PREPARE FOR LOADING INFORMATION INTO THE
NEXT SEQUENTIAL LOCATION IN MEMORY. THIS IS FOLLOWED BY ANOTHER *“LMI"
TYPE INSTRUCTION. THE SEQUENCE OF USING "LMI” INSTRUCTIONS AND THEN
INCREMENTING REGISTER “L" TO POINT TO THE NEXT ADDRESS IN MEMORY IS
USED UNTIL ONE HAS LOADED THE DESIRED PROGRAM. (SOMETIMES, IF A PRO~-
GRAM EXTENDS OVER MORE THAN ONE "PAGE" IT VWILL BE NECESSARY TO ALSO
INCREMENT REGISTER "H" AT SOME TIME DURING THE LOADING PROCEDURE.)

TO ILLUSTRATE THE PROCESS A SIMPLE ONE INSTRUCTION PROGRAM VILL
BE DEMONSTRATED. THE INSTRUCTION “JUMP TO LOCATION @888 ON PAGE 08" VILL
BE PLACED IN MEMORY BEGINNING AT LOCATION @868 ON PAGE #€6. WHEN THIS
INSTRUCTION IS EXECUTED THE COMPUTER WILL SIMPLY BE PLACED IN A "LOOP"
AND VILL REPEATEDLY EXECUTE THE SAME INSTRUCTION. IT IS AN INTERESTING
LITTLE ONE INSTRUCTION PROGRAM THAT CAN EVEN SERVE A PURPOSE BEYOND
THAT OF A SIMPLE DEMONSTRATION ~ ITS OPERATION IS A QUICK CHECK ON THE
COMPUTER'S GENERAL OPERABILITY!

THE *“JMP* INSTRUCTION (REFER TO CHAPTER TWO0 WHEN NECESSARY) IS AN
INSTRUCTION THAT REQUIRES THREE CONSECUTIVE WORDS IN MEMORY. THE FIRST
WORD CONTAINS THE ACTUAL MACHINE CODE FOR THE JUMP COMMAND. THE NEXT
WORD MUST THEN CONTAIN THE *"LOV ADDRESS" (LOCATION ON A PAGE) OF WHERE
THE PROGRAM IS TO GO. THE THIRD WORD CONTAINS THE PAGE NUMBER OF THE
MEMORY LOCATION WHERE THE MACHINE IS TO GET ITS NEXT INSTRUCTION. (RE=-
MEMBER THAT *“JMP" AND “CAL"™ INSTRUCTIONS ACTUALLY LOAD THE ADDRESS VWORDS

. INTO THE CPU'S PROGRAM COUNTER TO AFFECT THE ADDRESSING OPERATION OF THE
MACHINE.) .

THE OCTAL MACHINE CODE FOR THE “JMP* INSTRUCTION IS | @ 4. THE FULL
THREE WORD INSTRUCTION TO JUMP TO LOCATION 900 ON PAGE 86 WOULD APPEAR

-7-

IN THREE CONSECUTIVE WORDS AS SHOWN IN FIGURE 6.

10 4
600

e cao0
FIGURE 6

WHILE THIS PARTICULAR INSTRUCTION COULD HAVE BEEN PLACED AT ANY
LOCATION IN MEMORY = IN ORDER TO HAVE THE COMPUTER OPERATE ON IT AND
FORM A "LOOP TO ITSELF" IT IS NECESSARY TO PLACE IT IN THE SPECIFIC

MEMORY ADDRESS LOCATION STARTING AT LOCATION 088 ON PAGE 88 AS IS
ILLUSTRATED IN FIGURE 7.

ADDRESS MEMORY
PAGE LOCATION CONTENTS
1) g0 184
o pol eeao
1) b2 | 089
FIGURF 7

IN ORDER TO START LOADING THE INSTRUCTION INTO MEMORY IT WILL FIRST
BE NECESSARY TO SET CPU REGISTER “H*" TO €68 BY USING THE INTERRUPT FAC-
ILITY TO INSERT THE INSTRUCTION "LOAD REGISTER H IMMEDIATE WITH @éae"
(LH1 @#88) AS DETAILED BELOWV.

l« SET THE CHASSIS TOGGLE SWITCHES TO #56 (OCTAL). NOW

DEPRESS THE " STEP" BUTTON UNTIL THE "INT" LIGHT ON THE FRONT PANEL
CARD COMES ON.

2. PRESS THE “STEP" BUTTON ONCE MORE. THE LEFT STATUS LAMP LIGHT
WILL TURN ON INDICATING THAT THE COMPUTER 1S READY FOR THE NEXT
WORD OF THE TWO VWORD INSTRUCTION.

3. NOW SET THE CHASSIS TOGGLE SWITCHES TO @06@.

4. PRESS THE “STEP" BUTTON AGAIN. THE "INT" AND LEFT STATUS

LAMP WILL EXTINGUISH. REGISTFR “H" IN THE CPU HAS NOV BEEN SET
TO THE OCTAL VALUE @06@.

NEXT REGISTER “L* MUST BE SET TO @40 IN ORDER TO SPECIFY THE LOC-
ATION ON THE MEMORY PAGE. . THIS IS ACCOMPLISHED IN A SIMILAR MANNER BY
INSERTING A “LOAD REGISTER L IMMEDIATE WITH 860" (LMI #66) INSTRUCTION
VIA. THE INTERRUPT MODE. THE PROCEDURE 1S EXACTLY THE SAME AS THAT
FOR THE “LHI 800" INSTRUCTION ILLUSTRATED ABOVE EXCEPT THAT THE CHASSIS
SWITCHES ARE SET TO 866 -~ THE OCTAL MACHINE CODE FOR AN *“LLI"™ COHHAND -
IN STEP NUMBER | OF THE ABOVE PROCEDURE.

-8 -

CPU REGISTERS "H"™ AND "L" WILL NOV BE SET TO POINT TO THE DESIRED
LOCATION IN MEMORY WHERE THE FIRST WORD OF THE "JMP" INSTRUCTION IS TO
BE PLACED. IT 1S NOV AN EASY MATTER TO USE A “LOAD MEMORY IMMEDIATE"
TYPE INSTRUCTION VIA THE INTERRUPT MODE TO ACTUALLY LOAD THE OCTAL
CODE 1| @ 4 (THE FIRST WORD FOR A "JMP*™ INSTRUCTION) INTO THE COM-
PUTER'S MEMORY.

le SET THE CHASS1S TOGGLE SWITCHES TO @876.

2. DEPRESS THE "INT" PUSH BUTTON SWITCH AND THEN ADVANCE THE
PROCESSOR VWITH THE “STEP" BUTTON UNTIL THE “INT" LAMP LIGHTS.

3. PUSH THE “STEP"™ BUTTON ONCE MORE. THE LEFT STATUS LAMP :
WILL LIGHT. THE COMPUTER 1S NOW READY TO ACCEPT THE "IMMEDIATE"
PART OF THE *“LMI"™ INSTRUCTION.

4. SET THE TOGGLE SVITCHES TO 1| @ 4.

S. DEPRESS THE “STEP" SWITCH. AT THIS TIME THE ADDRESS LAMPS
WILL SHOW AN ADDRESS OF PAGE 90 LOCATION €808 (THUS VERIFYING
THAT THE “H" AND "L" REGISTERS HAVE BEEN SET TO THE PROPER AD-
DRESS.) BOTH STATUS LAMPS VILL NOW BE LIT INDICATING THAT THE
MACHINE 1S READY TO WRITE A WORD INTO MEMORY (AT THE ADDRESS
SHOWN BY THE ADDRESS LAMPS.)

6. DEPRESS THE "STFP" SVITCH ONE MORE TIME. AT THIS POINT THE
MEMORY CONTENTS WILL SHOW 1 @ 4 THUS VERIFYING THAT THE CODE

1 @ 4 WAS SENT TO THE COMPUTER'S MEMORY. (NOTE. AT THIS POINT
THE MEMORY ADDRESS LAMPS VILL NO LONGER SHOW THE ADDRESS OF THE
LOCATION THAT WAS WRITTEN INTO - THEIR INDICATIONS MAY BE IGNORED
AT THIS STEP.) ALSO, AT THIS TIME THE "INT" LAMP AND THE STATUS
LAMPS WILL EXTINGUISH INDICATING THAT THE INSTRUCTION HAS BEEN
COMPLETED.

IN ORDER TO LOAD THE NEXT WORD IN MEMORY IT IS NECESSARY TO ADVANCE
THE “L" REGISTER SO THAT IT POINTS TO LOCATION 861 ON THE CURRENT PAGE
(WHICH IS STILL PAGE 86.) TO DO THIS AN "INCREMENT CPU REGISTER L*"
INSTRUCTION IS GIVEN VIA THE INTERRUPT PROCESS.

le SET THE CHASSIS SVITCHES TO THE CODF FOR AN "INL" INSTRUC-
TION WHICH IS @ 6 0.

2. DEPRESS THE "INT" BUTTON AND THEN STEP THE COMPUTER UNTIL THE
“INT* LIGHT COMES ON.

3. DEPRESS THE “STEP™ SWITCH ONCE MORE. THE "“INT" LIGHT VILL
EXTINGUISH INDICATING THAT THE COMMAND HAS BFEN EXECUTED. (NOTE:
SINCF. THE "INL"™ INSTRUCTION IS A SIMPLF ONE WORD INSTRUCTION
NEITHER ONE OF THE "STATUS"™ LAMPS VILL LIGHT DURING THE PROCESS.)

NOV THE CODE © 8 @ (FOR THE SECOND WORD, l1.E., THE LOV ADDRESS
PORTION OF THE "JMP" INSTRUCTION) NEEDS TO BE LOADED INTO MEMORY. THE
*LMI 906" INSTRUCTION IS USED. THE PROCEDURE FOR AN "LMI®" INSTRUCTION
WAS DETAILED ABOVE AND THE ONLY CHANGE NECESSARY IN THE ABOVE PROCEDURE
FOR INSERTING THE "LMI" COMMAND 1S TO CHANGE STEP NUMBER FOUR OF THE
ILLUSTRATION. AT STEP NUMBER FOUR THE CHASSIS SVITCHES MUST NOV BE SET
TO THE OCTAL CODE & 0 6. NOTE NOV AT STEP NUMBER FIVE THAT THE ADDRESS

-9-

LAMPS WILL INDICATE PAGE 80 AT LOCATION #€1. ALSO AT STEP NUMBER SIX
THE MEMORY CONTENTS (MC) LAMPS WILL SHOV @ @ @ TO REFLECT THE NEV
INFORMATION LOADED INTO THE WORD IN MEMORY.

NOW TO LOAD THE NEXT WORD AND THUS COMPLETE THE “JMP" INSTRUCTION
(AS WORD NUMEER THREE CONTAINS THE PAGE ADDRESS FOR THE “JMP" INSTRUC-
TION) IT IS AGAIN NECESSARY TO ADVANCE THE "L"™ REGISTER TO POINT TO
LOCATION 002 ON THE CURRENT PAGE. THE SEQUENCE FOR INCRFEMENTING THE
"L REGISTER ("INL") IS PERFORMED EXACTLY AS PREVIOUSLY DETAILED.

FINALLY ANOTHER "LMI @86'" INSTRUCTION IS ISSUED AS DESCRIBED ABOVE
TO LOAD 8 @ @ INTO WORD NUMBER 002 ON PAGE 00.

AT THIS TIME THE COMPUTER'S MEMORY SHOULD CONTAIN THE THREE WORD
“JUMP TO LOCATION #0808 ON PAGE 00" INSTRUCTION STARTING AT LOCATION ©@e@
ON PAGE 0@. THE INSTRUCTION WAS LOADED UTILIZING THE INTERRUPT FACILITY
TO MANUALLY LOAD EACH WORD. THE VARIOUS LAMPS ON THE FRONT PANEL CARD
WVERE USED TO MONITOR THE LOADING PROCESS. THE PROCESS OF USING THE
INTERRUPT FACILITY TO ACTUALLY LOAD THE PROGRAM INTO THE COMPUTER'S MEM~-
ORY IS A DISTINCT AND SEPARATE PROCESS FROM THAT OF HAVING THE COMPUTER
EXECUTE A PROGRAM THAT RESIDES IN MEMORY. HOWEVER, IF THE READER HAS
PERFORMED THE LOADING OPERATIONS JUST DESCRIBED THEN THE READER CAN PRO-
CEED TO HAVE THE COMPUTER ACTUALLY OPERATE AND PERFORM THE INSTRUCTION
IN THE NORMAL “PROGRAMMED OPERATION'" MODE. WHEN THIS IS DONE THE COM=-
PUTER WILL START TO READ INSTRUCTIONS IN MEMORY AND AUTOMATICALLY PER-
FORM THE OPERATIONS DICTATED BY THE PROGRAM.

TO HAVE THE MACHINE START EXECUTING THE PROGRAM JUST LOADED IS AN
EASY MATTER. NOW THE INTERRUPT FACILITY IS SIMPLY USED TO INSERT A
“JUMP TO LOCATION 6086 ON PAGE ## TO THE CPU. (NOTE THAT NOV AN
ACTUAL *"JMP' INSTRUCTION 1S BEING DIRECTED TO THE CPU. IT IS NOT BEING:
LOADED INTO MEMORY.) THIS COMMAND WILL RESULT IN THE PROGRAM COUNTER
BEING SET TO LOCATION 88@ ON PAGE #0. REMEMBER THAT AT THE BEGINNING
OF THE LOADING PROCESS THE USER WAS DIRECTED TO USE A *JMP"™ INSTRUC~
TION TO SET THE PROGRAM COUNTER TO AN ADDRESS THAT DID NOT CONTAIN MEM-
ORY CELLS. NOV THE PROGRAM COUNTER VILL BE SET BACK TO AN AREA VHERE
MEMORY CELLS ARE PRESENT. WHEN THE COMPUTER 1S NOT IN THE INTERRUPT
MODE IT VWILL AUTOMATICALLY PROCESS INSTRUCTIONS FROM MEMORY AT THE LOC-
ATION SPECIFIED BY THE CONTENTS OF THE PROGRAM COUNTER. HENCE, AT THE
COMPLETION OF THE INTERRUPT CYCLE ABOUT TO BE ENTERED THE COMPUTER WILL
BE READY TO START EXECUTING THE PROGRAM AT LOCATION 06@ ON PAGE @0.

TO INSERT THE JUMP TO LOCATION 860 ON PAGE 86 INSTRUCTION VIA
THE INTERRUPT MODE THE USER SIMPLY REPEATS THE PROCEDURE ILLUSTRATED
SEVERAL PAGES EARLIER WHEN THE INTERRUPT FACILITY VWAS USED TO INSERT
THE DIRECTIVE TO JUMP TO LOCATION 077 ON PAGE 77 WITH THE FOLLOVING
APPROPRIATE CHANGES:

A. THE CHASSIS TOGGLE SWITCHES SHOULD BE SET TO THE ADDRESS
@ 6 FOR STEP NUMBER FIVE.

B. AT THE COMPLETION OF STEP NUMBER SEVEN THE MEMORY ADDRESS (MA) .
LAMPS VWILL DENOTE THE ADDRESS PAGE 88 LOCATION 0080.

NOV THE "STEP" BUTTON MAY BE USED TO EXECUTE THE STORED PROGRAM
ONE WORD AT TIME.

NOV, WHEN THE COMPUTER IS FXECUTING A PROGRAM IN MEMORY THE ADDRESS
LAMPS VWILL SHOW THE ADDRESS OF THE NEXT LOCATION IN MEMORY THAT WILL BE
ACCESSED BY THE COMPUTER (EXCEPT FOR SEVERAL SPECIAL CASES WHICH ARE
EXPLAINED LATER.) THE MEMORY CONTENTS LAMPS VWILL SHOV THE CONTENTS OF

- 10 «

THE MEMORY LOCATION JUST PREVIQUSLY ACCESSED (AGAIN EXCEPT FOR A FEVW
SPECIAL CASES WHICH ARE COVERED LATER.) THIS DISPLAY ARRANGEMENT ALLOWVS
THE USER TO CHECK THE OPERATION OF A PROGRAM ON A STEP-BY-STEP BASIS.

IN ADDITION TO THE INFORMATION PROVIDED BY THE MEMORY ADDRESS (MA)
AND MEMORY CONTENTS (MC) LAMPS, THE STATUS LAMPS WILL PROVIDE THE QPER-.
ATOR WITH ADDITIONAL INFORMATION AS TO WHAT TYPE OF OPERATION 1S BEING
PERFORMED DURING THE EXECUTION OF INSTRUCTIONS FROM MEMORY (AS THEY DO
WVHEN THE MACHINE IS IN THE INTERRUPT MODE.)

VITH THIS INFORMATION THE READER CAN PROCEED TO ADVANCE THE CDHPUTER
THROUGH THE TINY “JUMP TO ITSELF" PROGRAM PREVIOUSLY DESCRIBED 1F THE
USER HAS FOLLOVED THE DIRECTIONS AND PLACED THE PROGRAM IN MEMORY, AND

HAS ALSO SET THE PROGRAM COUNTER TO LOCATION 088 ON PAGE 88 WITH A *“JMP"
COMMAND.

1F THE 'STEP" BUTTON 1S DEPRESSED NOW, THE MEMORY ADDRESS LAMPS
WILL SHOW PAGE 00 LOCATION ©061. THE MEMORY CONTENTS LAMPS SHOULD DIS-
PLAY 104 - WHICH 1S THE CONTENTS OF MEMORY ADDRESS PAGE 88 LOCATION 00@.

PRESSING THE “STEP" BUTTON AGAIN VILL RESULT IN THE MA LAMPS
CHANGING TO THE ADDRESS PAGE 66 LOCATION #62. THE MC LAMPS WILL THEN
SHOW @06 (THE CONTENTS OF THE MEMORY ADDRESS THAT IS ONE LESS THAN THAT
SHOWN BY THE MA LAMPS.

AND PRESSING THE “STEP"™ BUTTON ONCE MORE VWILL RESULT IN THE MA LAMPS
“JUMPING" TO AN ADDRESS OF PAGE @0 LOCATION 086 TO REFLECT THE EXECUTION
OF THE *JMP*" INSTRUCTION. THE MC LAMPS WILL SHOW 008 WHICH IS THE CON-

TENTS OF THE LAST MEMORY LOCATION ACCESSED -~ WHICH WAS AT PAGE 66 LOC-
ATION @a2.

THE USER COULD CONTINUE THROUGH THE TINY PROGRAM IN THE STEP MODE
AS LONG AS DESIRED. THE COMPUTER WILL CONTINUE TO PERFORM THE 'JUMP
TO ITSELF" PROGRAM REPEATEDLY. HOWEVER, AT THIS TIME, PROVIDED THAT
THE PROGRAM OPERATED CORRECTLY IN THE STEP MODE, THE COMPUTER CAN BE
PLACED IN THE “RUN" MODE BY SIMPLY DEPRESSING THE "RUN™ PUSH BUTTON
SWITCH ON THE CHASSIS. WHEN THIS 1S DONE THE 'RUN"™ LAMP ON THE FRONT
PANEL CARD VILL TURN ON. THE COMPUTER WILL NOW PERFORM THE PROGRAM
AUTOMATICALLY AT A RATE OF MANY THOUSANDS OF TIMES PER SECOND. ALL THE
FRONT PANEL LAMPS WILL CONTINUE TO OPERATE BUT SINCE THEY ARF FLASHING
AT THOUSANDS OF TIMES PER SECOND THE OPFRATOR CAN NOT DISCERN INDIVI-
DUAL INSTRUCTIONS. HOWEVER, IT IS OFTEN STILL POSSIBLE TO OBSERVE WHAT
GENERAL AREA OF MEMORY THE COMPUTER IS OPERATING IN BY OBSERVING THE
MA LAMPS WHICH WILL TEND TO GLOW STRONGEST AT THE ADDRESSES WHERF THE
COMPUTER 1S PERFORMING THE MOST INSTRUCTIONS.

THE “JUMP TO ITSELF" PROGRAM JUST DESCRIBED HAS LITTLE VALUE BEYOND
SERVING AS A DEMONSTRATION PROGRAM FOR THE USER TO USE TO BECOME
ACQUAINTED WITH THE OPERATION OF A SCELBI-8H MINI-COMPUTER - OR TO SERVE
AS A SIMPLE TEST OF THE COMPUTERS FUNCTIONAL INTEGRITY. WHILE IT VILL
UNDOUBTABLY TAKE THE OPERATOR SEVERAL MINUTES TO CAREFULLY SET UP AND
EXECUTE THE PROGRAM THE FIRST TIME AROUND, IT SHOULD BE POINTED OUT THAT
WITH A LITTLE PRACTICE THE OPERATOR WILL FIND THAT ONE IS ABLE TO LOAD
AND EXECUTE A TINY PROGRAM OF THI1S SIZE IN JUST A FEW SECONDS. IN
OPERATING A COMPUTER, EXPERIENCE 1S THE BEST TEACHER. VWITH A SCELBI-8H
TE LEARNING PROCESS CAN BE A LOT OF FUN!

PROCEDURE FOR INSFRTING ANY TYPE OF INSTRUCTION V1A THE

INTFRRUPT FACILITY

THE READER HAS ALREADY BEFN SHOWN HOW TO OPFRATE THE SCELBI-8H.
MINI-COMPUTFR IN THE INTERRUPT MODE FOR SOME OF THE MOST OFTEN USED
TYPES OF INSTRUCTIONS. PARTICULARLY THOSE NECESSARY WHEN MAN-

UALLY LOADING A PROGRAM INTO MEMORY. HOWEVER, EACH AND EVERY TYPE

OF INSTRUCTION THAT THE SCELBI-8H CAN PERFORM (REFER TO CHAPTER 2)
MAY BE COMMANDED IN THE INTERRUPT MODE. THE FOLLOWING TABLE DE-
TAILS THE STEP-BY-STEP PROCEDURE FOR EACH CLASS OF INSTRUCTION AND
ALSO PRESENTS THE INFORMATION THAT WILL BE DISPLAYED BY THE LIGHTS

ON THE FRONT PANEL CARD AS EACH STEP IS PERFORMED. THE ORDER OF
PRESENTATION WILL BF SIMILAR TO THAT USED TO PRESENT THE INSTRUCTION
SET IN CHAPTER 2 SO THAT INFORMATION IN THE CHAPTER MAY BE REFERENCED

TO OBTAIN THE SPECIFIC MACHINE LANGUAGE CODES FOR THE VARIOUS TYPES
OF INSTRUCTIONS.

THE USER 1S REMINDED THAT THE INTERRUPT MODE CAN BE USED TO
“INSERT* AN INSTRUCTION INTO A SEQUENCE OF INSTRUCTIONS THAT IS BEING
EXECUTED IM MEMORY WITHOUT ACTUALLY CAUSING THE INSTRUCTION TO BE
PLACED IN MEMORY. OR, AS ILLUSTRATED EARLIER, BY USING APPROPRIATE
COMBINATIONS OF INSTRUCTIONS, THE MODE MAY BE USED TO LOAD INSTRUC-
TIONS OR DATA INTO MEMORY. OR, THE MODE MAY BE USED TO PFRFORM A HOST
OF OPERATIONS COMPLETELY INDEPENDENT OF MEMORY. THE USER IS ALSO
REMINDED OF THE SUGGESTION TO SET THE PROGRAM COUNTER TO AN ADDRESS
OUTSIDE THE RANGE OF PHYSICAL MEMORY FOR THE USER'S SYSTEM WHENEVER

.IT IS DESIRED TO PERFORM EXTENSIVE OPERATIONS IN THE INTERFUPT MODE.
THIS WILL PREVENT THE COMPUTER FROM CONTINUALLY SWITCHING BACK TO
“PROGRAMMED OPERATION" DURING EXTENSIVE INTERRUPT OPFERATIONS.

IN THE FOLLOVING TABLE IT IS ASSUMED THAT THE OPERATOR WILL FIRST
SET THE CHASSIS SWITCHES TO THE SPECIFIC MACHINE LANGUAGE CODE FOR THE
PARTICULAR KIND OF INSTRUCTION DESIRED. NEXT THE OPERATOR WILL PRESS
AND RELEASE THE "INT" PUSH BUTTON, AND THEN USE THE “STEP"™ SWITCH
TO STEP THE COMPUTER UNTIL THE “INT' LAMP ON THE FRONT PANEL CARD TURNS
ON. THE TABLE THEN LISTS THE ACTION(S) NECESSARY TO COMPLETE THE
INSTRUCTION AND DEFINES THE MFANINGS OF THE INDICATORS ON THE FRONT
PANEL CARD FOR EACH STEP.

SEVERAL ABBREVIATIONS WILL BE USED IN THE TABLE. THESE INCLUDE:

NRI = NOT RELATED TO THE CURRENT INTERRUPT PROCESS.
HA = HIGH ADDRESS (PAGE)
LA = LOV ADDRESS (LOCATION ON A PAGE)

H & L = REFERS TO THE ADDRESS CONTAINED IN CPU REGISTERS "“H"™ & "L

IN ADDITION THE WORD "CODE" IN THE CHASSIS SWITCH POSITION COLUMN
MEANS THAT THE CHASSIS TOGGLE SWITCHES SHOULD BE SET TO THE OCTAL
MACHINE LANGUAGE CODE FOR THE TYPE OF INSTRUCTION BEING EXECUTED AND

THE WORD "DATA"™ INDICATES THAT THE CHASSIS TOGGLE SWITCHES SHOULD BE
SET TO THE DESIRED DATA.

TABLE |

STEP ¢ CHASSIS STATUS MEMORY ADDRESS MEMORY CONTENTS
SWITCHES LAMPS LAMPS LAMPS

LOAD DATA FROM ONE CPU REGISTER TO ANOTHER CPU REGISTER (LAA, LBA«..)

1 CODE 0 O NRI NRI

G000 00000 000G P SO0 SBDOOOODIP OB OPEOB OO OOOOSCESEBSSSOBOIENOEOESIBLOLINOSEOSEOSLBLOIEONINONGOSGEDOLNOGPDOSIOSEEOSEDOLEDS

LOAD DATA FROM A CPU REGISTER TO A LOCATION IN MEMORY
1 CODE x % H &L NRI

e XXX 0o o0 NRI CONTENTS OF THE
CPU REGISTER

0 S 0T 0000 OGP P OGSO ADPODOE OO ODCOEDNO RSO 00 0000060000000 000 0000CNOSIOGTEOICGSEOTOIOSOIOIOGIEONTOTEOEES
LOAD DATA FROM A LOCATION IN MEMORY TO A CPU REGISTER
| CODE * 0 H ¢ L NR1

e XXX 0 O NRI CONTENTS OF THE
MEMORY LOCATION

90 000 0000000000080 0000000000000 0000000 00CQCECERELIOIOCELINSDBOERNOEOIECGEONOIESEOTOEOTECOROETIOIOTEOEOTVYOTY

LOAD *IMMEDIATE"™ DATA INTO A CPU REGISTER
1 CODE * 0 NR1 NR1

2 DATA 0 O NRI NR1

GO O B0 000000 0000000 COINCOGCOCOOEDTESIOCCERDICINRRGRRCEOGOEOGEOISERGEOERDOPOCEDRDCEOROCEREOGEOEOOELPQROLOIBSOEOLIOLEOIOSNOSOLEODOIOS

LOAD IMMEDIATE DATA INTO A MEMORY LOCATION

| CODE * 0 NRI NRI

e DATA *x % Ha&L NRI

3 XXX 0 o NR1 DATA
LOADED

00080 0000000000000 0000000800000 000000006080000000000000606s0008B80000CO0CCRCONSIPSICOIDS

-‘3-

TABLE |

STEP # CHASS1S STATUS MEMORY ADDRESS MEMORY CONTENTS
SWITCHES LAMPS LAMPS _ LAMPS

INCREMENT OR DECREMENT THE VALUE OF A CPU REGISTER

1 CODE 0 o NRI NRI1
SO O B 000D OGO OO QOO 0000 000000000000 0P OO0 OO OO OOLOOSETN OSSN OSEONSOSIOEOIEBIOIBSIOSEOEOSIESTTOSETOOS

ARITHMETIC INSTRUCTIONS BETWEEN ACCUMULATOR AND A CPU REGISTER

1 CODE 0 o0 NRI NRI
G0 0 0 G 0T OO QO EOSODIODGOCIOO OO P OO0 OTOOOLOPOOO PO OPEOCEOOOORNSSPSOPOENOSEOEONSIOIEOSNEPQSEOOEDS

COMPARE INSTRUCTIONS BETWEEN ACCUMULATOR AND A CPU REGISTER

1 CODE 0o o NR1 NRI
O 0 00 O G CO 000000000 08O PPB OO OOOOOPOOOOOSEBNLIOEOEOGEOINGIONOEONOEOIPROIOOEECEESEOIOEEOETOTPOEOPIOEEOTEEOTOTEOEODLS

ARITHMETIC AND COMPARE INSTRUCTIONS THAT UTILIZE A WORD
IN MEMORY AS AN OPERAND

1 CODE * 0 He¢&L NRI

2 XXX 0 O NRI CONTENTS OF THE
WORD IN MEMORY

0 00 000 00000000 0000000000 EOEOTOROOIOOOLOPINNONSRNOOSOPROESBNBSOESNOOEOEESOEOSLOIPOOOSNTPOEOS

“IMMEDIATE" TYPE ARITHMETIC AND COMPARE INSTRUCTIONS
1 ' CODE ' * 0 NRI NR1

2 DATA 0 o NRI NRI
00 €0 00 0000000000000 0000 0000802000000 060000000000000000000600000000000000

BOOLFAN MATH OPFRATIONS BETWEEN THE ACCUMULATOR AND A CPU REGISTER

1 CODE 0o o NRI NRI
SO0 0G0 OGO OOV ODOIOOOOOCOOOROOCOOOCCOESEOLOEOENDROIOIOONOEIDBDNOCEOEOEOSOOIOEODOIOIOEOIAOELEOGSBOIOLOIONOLOOSEOLOLEOEDS

w |44 =

TABLE |

STEP # CHASSIS STATUS MEMORY ADDRESS MEMORY CONTENTS
SWITCHES LAMPS LAMPS LAMPS

LT T P L L X L X X L L L XXX ¥ L XXX XY X LY T L X A X XX X L 2 X XX T L L XL X 2 L X X 7

BOOLEAN MATH OPERATIONS BETWEEN THE ACCUMULATOR AND A WORD IN MEMORY
1 CODE * 0 H &L NR1

2 XXX 0 o0 NRI CONTENTS OF THE
WORD IN MEMORY

G0 S 00 0O OGO DO BOODOODE BSOSO OODIPBN OO IO OCOEOOS OSSOSO SOECESSOISIBSLIONINESEOEPNOIOSIOOBSLOSIEDSITESOEOSDOPEDIPLOS

BOOLEAN “IMMEDIATE™ INSTRUCTIONS
1 CODE * 0 NR1 NR1

2 DATA 0o o NRI1 NR1

G0 0000000 PGB0 OO0 00O OQCOOGOR OSSOSO D0 BO0OLEELOLSLPOBLS NSNS OOSIOSIOSNDPLIOGSOIEECEDSTOIODSTOOES

ACCUMULATOR ROTATE INSTRUCTIONS

1 CODE 0 0 NRI NRI

GO Q0000000 OO OOOC OO OOOS OO DESOB OIS NS OSSOSO NBPDLOES OGSO OOEESSOOENSSNNOSINSESEESOSEOSGNS

UNCONDITIONAL JUMP OR CALL INSTRUCTIONS

1 CODE * 0 NRI NRI
2 LA * 0 : NRI NRI
3 HA 0 O HA & LA NR1

GO 00 OO0 OSSO OPCOOEES OO BN OPPOOB OO 0000000000000 OGEROCEOSESLEIOSONDINIOIOLOITOGSOSIEOSOIOIDS

CONDITIONAL JUMF OR CALL. INSTRUCTIONS

i CODE * 0 NR1 NR1
2 LA * 0 NR1 NR1
3 ' HA 0 0 HA & LA ONLY 1IF NRI

CONDX SATISFIED
NRI OTHERVISE

G0 B 000000 COR0OC0P0COOC00 00D O00 OO CTRRLEDPLAIOGSEGEOECSEDOEPOSOESIOEOLEOIDBPIIOGPIOEOIDLOOPEROSOIOEOIBNOIOGOUODPOIEEOGPOTDS

- 18 -

TABLF 1

STEP # CHASSIS STATUS MEMORY ADDRESS MEMORY CONTENTS
SWITCHES LAMPS LAMPS LAMPS

UNCONDITIONAL RETURN INSTRUCTION

1 CODE o 0 NEW VALUE NRI
OF PROGRAM COUNTER

S 0 0 0 000000 C 0O ST OO PO B0 OO OC SO E 0020 TS0 00 OSSO0 OOLGOENPNOOLOEOSIOIOIOEONOSEOETSTEOIPOCSEPOSORETOCOION

CONDITIONAL RETURN INSTRUCTION
1 CODE o 0 NFW VALUE NR1
OF PROGRAM COUNTER

1F CONDX SATISFIFD
NRI OTHERVISF

® 0 O 00 50908 OO LGOS0 OLDLGEON O OO N OORB 0L OO ONNLOL LN N NN SNl GOeNS OSSN DSTCSDS

RESTART INSTRUCTION

1 CODE o O HA & LA NRI

® 0 0 0 060 5 000000000008 06O O GO OOOPE LN OO0 000000000 S NS OS OO0 O 0GOS ISISESEPOECS

OUTPUT INSTRUCTION

1 CODE 0 = PAGE LAMPS = PORT SFLECTED NRI
MA LAMPS = DATA OUTPUTTFED

2 XXX 0o O NR1 NRI

® 0 0 O 0 00O 000 O G B0 S 0O 00500000 000 0600000006000 0080 0690006000000 0006006000 000550090990

INPUT INSTRUCTION

1 CODE 0 = PAGE LAMPS = PORT SELECTED NRI1
MA LAMPS = NRI

2 XXX 0 O NRI NRI

G0 G 0 6 0G0 GO B OOV S OB O OOBIN S OO OO0 0000000800000 0000006060000 000000000800800000

HALT INSTRUCTION
1 ' CODE 0O o NRI NRI

*%x NOTE: *"STOP' LAMP WILL TURN ON xx

INFORMATION PRESENTED BY THE FRONT PANEL CARD LIGHTS DURING
STEPPED PROGRAM EXECUTION.

THE NEXT TABLE PRESENTS THE TYPE OF INFORMATION THAT CAN BE OBTAINED
FROM OBSERVING THE FRONT PANEL CARD LAMPS WHEN THE VARIOUS CLASSES OF
. INSTRUCTIONS ARE BEING EXECUTED VIA A PROGRAM IN MEMORY ONE STEP AT A
TIME USING THE CHASSIS “STEP" BUTTON.

AGAIN, THE TABLE 1S ORGANIZED TO PRESENT THE VARIOUS TYPES OF
INSTRUCTIONS IN THE ORDER GIVEN IN CHAPTER 2. APPLICABLE ABBREVIATIONS
ARE THE SAME AS USED FOR THE PREVIOUS TABLE VITH THE ADDITION OF THE
WORD “ADDR + 1" WHICH IS AN ABBREVIATION TO INDICATE THE "ADDRESS WHERE
THE NEXT INSTRUCTION WILL BE OBTAINED BY THE CPU."™

TABLE 2
TYPE OF INSTRUCTION STEP # STATUS MA MC
LAMPS LAMPS LAMPS
LOAD DATA FROM ONE CPU 1 0o 0 ADDR + 1| CODE
REGISTER TO ANOTHER CPU
REGISTER.
0 0 © 080 0000060000000 008000060080 06060 0 0600080000000 080000067 0008000808000 a6s6000000
LOAD DATA FROM A CPU 1 *® ok H &L CODE
REGISTER TO A LOCATION
IN MEMORY. 2 0 0 ADDR + 1 DATA
LOADED
INTO
MEMORY
B 8 0 00 GO0 P OGO OO OO NOOOEEORB OB OORNOPOOONOCOOOPOOOPCERLIORNOERNOOISPOSOEOIOIOIERBTEOEOINPOGEPOEETITITET
LOAD DATA FROM A 1 * 0 H e L CODE
LOCATION IN MEMORY
TO A CPU REGISTER. 2 0 O ADDR + | DATA
LOADED
FROM
MEMORY
G0 000 OO0 OP O 0C0 5000500000000 BOOCOOSSNOOEDIECEIOESIESIOERNTNSOEOSEEINOSEOINGOSOIOSEONBSLOEPOSNEOIOSOIEOSEDINDOIOSEDS
LOAD “IMMEDIATE'" DATA 1 * 0 ADDR + 1 CODE
-INTO A CPU REGISTER.
e 0o 0 ADDR + 1| DATA

TABLE 2

TYPE OF INSTRUCTION STEP # STATUS MA MC
LAMPS LAMPS LAMPS
LOAD "IMMEDIATE"™ DATA 1 * 0 ADDR + 1 CODE
INTO A LOCATION IN
MEMORY . 2 * % HeLl DATA
3 0o O ADDR + 1 DATA
LOADED
INTO
MEMORY
0 0 @0 0 000 GOS0 P C OO OO0 G0 OO0 P OL 0L NS D OO RO0LOENCOONOONONOESLEONOLOLIBTOSEISIPSEOSIDSS
INCREMENT OR DECREMENT 1 0o 0 ADDR + 1 CODE

A CPU REGISTER.

LK 2R 2K B BN A 2N 2N BN 2K IR BN BK BN K N 2R BN BN BN IR BN BN BN BN BN AR BN BN BU IR B AN BN K B BN BN BN NN BN B BK B R RE BE AN BN B R BB A BB BEY BN R R N Y Y)

ARITHMETIC INSTRUCTION 1 0 O ADDR + 1 CODE
BETWEEN THE ACCUMULATOR
AND A CPU REGISTER.

L B R N B K BN BN IR BN AR 20 B BK K BN B BN BN BN BN BN AL BN B BN IR BN BN BN BN BE B BB BN B NN BN BN R BN BE B B BN B BN BN BE N B BN BN B BB BY BN B BECRE R BN BN 3

COMPARE BETWEEN THE | 0 0 ADDR + | CODE
ACCUMULATOR AND A
CPU REGISTER.

® 0 0000000000000 0000000000 0P 0P SOOI POEOOLPON 0GOSO SOO00SICETOGCEOEOESOSIOSOIOIEBSOSEOSTPOES

ARITHMETIC OR COMPARE 1 *x 0 HeL CODE

INSTRUCTION BETWEEN

THE ACCUMULATOR AND A 2 0 O ADDR + 1 CONTENTS

WRD IN MEMORY. ' OF THE
REFERRED
WORD IN
MEMORY

0 P 0000000000000 0000000 G000 00000600 000000200000 060600000000006000000000DORGES

“IMMEDIATE" TYPE | * 0 ADDR + 1| CODE
ARITHMETIC AND COMPARE
INSTRUCTIONS. 2 0 o ADDR + 1 DATA

TABLE 2

TYPE OF INSTRUCTION STEP ¢ STATUS MA MC
LAMPS LAMPS LAMPS
BOOLEAN MATH OPERATIONS l 0 0 ADDR + 1 CODE

BETWEEN ACCUMULATOR AND
CPU REGISTERS.

PO O G SO0 0 GO OB OLEDP0 0000000 POOODOBOOCOEO OO ES 0SSPSO OIENINABCROIEBDBOEOIOSILOGOEOSEBNOIEOIOEOSIDOPOEDPNOSIOSETOITS

BOOLEAN MATH OPERATIONS 1 * 0 H &L CODE

BETWEEN ACCUMULATOR AND

A LOCATION IN MEMORY. 1) ADDR + | CONTENTS
OF THE
REFERRED
WORD IN
MEMORY

00 00 080 ¢ 000000800000 BBO OO PSLN0L50808000000800000000000CPO00OCEOIOSIOEISINOSNOIEOSIEPOSETISIDS

BOOLEAN " IMMEDIATE" 1 * 0 ADDR + 1 CODE
INSTRUCTIONS.

e 0 0 ADDR + 1 DATA

0 0 08 0 00O PO OSSO0 OO OO DOCO O BES OO OO0 GO0 NEO00EDBOSONOOONSSOONEONPNNNS OSSOSO

ACCUMULATOR ROTATE i 0 O ADDR + 1 CODE
INSTRUCTIONS.
PO 0 0 00 0B OGO HDOOOOON ORI OO0 SPO LSOOG OSOOOTO0OOOON OO0 COENCOOOLESS OSSP
UNCONDITIONAL JUMP OR 1 * @ ADDR + 1 CODE
CALL INSTRUCTIONS.
: 2 * O ADDR + 1 LA
3 0 O NEW ADDR HA

LA B B B B B IE B BN I BN B R BB IR BN AU BN 2N B BN BN N BN IR BN BN 3R BN I B AR U BK BN IE B AU I AU BN B AR BN B IR BB BN N BN BB AN BN IR B R BN AN AR BN

CONDITIONAL JUMP OR 1 * 0 ADDR + 1 CODE
CALL. INSTRUCTIONS.

2 = 0 ADDR + ! LA

3 0 0 NEV ADDR HA
I1F CONDX
SATISFIED
OTHERVISE
ADDR + |
- 10 =

TABLE 2

TYPE OF INSTRUCTION STEP ¢ STATUS MA MC
LAMPS LAMPS LAMPS
UNCONDITIONAL RETURN 1 0o 0 NEW ADDR CODE
INSTRUCTION.
CONDITIONAL RETURN 1 0 O NEW ADDR CODE
INSTRUCTION. IF CONDX
SATISFIED
OTHERVISE
ADDR + 1
RESTART INSTRUCTION. | 0 o NEW ADDR CODE
OUTPUT INSTRUCTION. 1 0 x SEE NOTE #l CODE
2 0 o ADDR + 1 IGNORE

NOTE #1: PAGE LAMPS SHOW OUPUT PORT SELECTED.
MEMORY ADDRESS LAMPS SHOW DATA OUTPUTTED.

G O 0 00000000 000 OO S0 OO O OO OO OO EOOOP N OO N DL ONOONNON IO O0LONSSEOOENNSESPESEOSNPOEGCSPRETDSNDS

INPUT INSTRUCTION. ! 0 = SEE NOTE #2 CODE

2 0o O ADDR + | IGNORE
NOTE #2: PAGE LAMPS SHOW INPUT PORT SELECTED.

MEMORY ADDRESS LAMPS SHOW ACCUMULATOR
CONTENTS PRIOR TO RECEIVING NEW INPUT.

9 000000000 000000000 HOOD OO OO OOP 0SB0 O0 D0 S 0TSO0 OO0 00000 HSNOINSIDNOENINEESDNNOEOSIETPEDS

HALT INSTRUCTION. 1 0 0 ADDR CODE

%% NOTEs ‘'"STOP" LAMP WILL TURN ON x*x

THE INFORMATION PRESENTED IN TABLES 1| AND 2 WILL ALLOW THE USER TO
INTERPRET THE LAMPS AND TO0 HAVE COMPLETE CONTROL OVER THF MANUAL OPER-
ATION OF A SCELBI-8H MINI-COMPUTER. THE DATA IN THE TABLES MIGHT APPEAR
COMPLICATED AT FIRST GLANCE, HOWEVER, WITH A LITTLE "HANDS-ON" EXPER-
IENCE A PERSON QUICKLY BECOMES FAMILIAR WITH THE LIGHTS AND SWITCHES AND

PROCEED TO LOAD, EXAMINE AND "DEBUG," AND THEN EXECUTE SOPHISTICATED
PROGRAMS IN A SHORT AMOUNT OF TIME. UNTIL ONE IS FULLY AT FASE WITH
THE SCELBI-8H CONTROLS AND INDICATORS, THE TABLES JUST PRESFFTED WILL
SERVE AS A VALUABLE AFD CGEPACT REFEREFCE&

SOME SAMPLE PROGRAMS AND DEMONSTRATIONS OF PROGRAMMING METHODS

AT THIS POINT IT MIGHT SERVE AS A VALUABLE EXERCISE FOR THE USER
TO APPLY WHAT HAS BEEN PRESENTED BY LOADING A TRULY PRACTICAL PROGRAM
INTO MEMORY AND THEN HAVING THE SCELBI-8H MINI-COMPUTER EXECUTE THE
PROGRAM. THE PROGRAM THAT 1S PRESENTED NEXT IS ONE THAT WILL PERFORM
A VERY BASIC TEST ON A SECTION OF THE COMPUTER'S MEMORY BANKS. THE
PROGRAM PERFORMS THE FOLLOWING OPERATIONS.

FIRST IT WILL WRITE ZEROS INTO EVERY BIT POSITION OF A WORD IN MEM-
ORY. THEN IT WILL READ THE CONTENTS OF THE SAME WORD AND CHECK TO SEE
THAT THE WORD DOES INDEED CONTAIN A ZERO IN EVERY BIT POSITION. 1IF
THE CHECK SHOULD FIND ANY ONES IN THE WORD THEN THE COMPUTER VWILL
HALT IN A MANNER THAT CAUSES ALL THE MEMORY CONTENTS LAMPS TO BE TURNED
ON AS AN INDICATOR TO THE OPERATOR THAN AN ERROR HAS BEEN NOTED.
HOWEVER, IF THE CHECK 1S CORRECT THEN THE PROGRAM WILL PROCEED TO WRITE
ALL ONES INTO EVERY BIT POSITION OF THE SAME WORD AND THEN AGAIN READ
THE CONTENTS OF THE WORD. NOW THE MEMORY ELEMENTS IN THE WORD SHOULD
ALL CONTAIN A LOGIC *"l." |IF THIS TEST 1S PASSED THE PROGRAM VWILL GO
TO THE ADDRESS OF THE NEXT WORD IN MEMORY AND REPFAT THE TEST PROCEDURE.
(IF THE TEST SHOULD FAIL THE PROGRAM WILL HALT WITH THE MEMORY CONTENTS
LAMPS TURNED ON.)> THIS PROCESS WILL CONTINUE UNTIL EVERY WORD ON A
YPAGE'" IN MEMORY HAS BEEN TESTED. SINCE THE COMPUTER OPERATES SO FAST
THAT THE TIME TO PERFORM THE TEST ON ALL 256 (DECIMAL) WORDS IN A PAGE
OF MEMORY REQUIRES ONLY A FRACTION OF A SECOND, WHICH 1S BARELY FNOUGH
TIME TO DETECT THAT THE PROGRAM 1S OPERATIONAL, A PROGRAM "LOOP" HAS
BEEN ADDED TO THE BASIC PROGRAM SO THAT THE COMPUTER WILL TEST EVERY
WORD ON THE PAGE A LARGE NUMBER OF TIMES BEFORE ENDING. TO DO THIS, A
CPU REGISTER 1S SET UP TO SERVE AS A 'LOOP COUNTER."™ EVFERY TIME THE
PROGRAM FINISHES TESTING ALL THE LOCATIONS ON A ''PAGE" IN MEMORY THE
PROGRAM WILL "DECREMENT* THE VALUE OF THE “LOOP COUNTER'" AND THEN AN
INSTRUCTION IS USED TO TEST THE VALUE OF THE *"LOOP COUNTER"™ TO SEE IF
IT HAS REACHED A VALUE OF ZERO. IF IT HAS NOT, THE PROGRAM WILL CYCLE
THROUGH THE ENTIRE TEST OF EVERY WORD ON THE "PAGE" AGAIN. WHEN THE
"LOOP COUNTER"™ DOES RFACH A VALUE OF ZERO, THE TEST IS CONCLUDED BY
THE COMPUTER COMING TO A HALT WITH ALL THE MEMORY CONTENTS LAMPS TURNED
OFF TO SIGNIFY TO THE OPERATOR THAT A SATISFACTORY TEST HAS BFEEN
COMPLETED.

THE PROGRAM THUS SERVES AS A “DIAGNOSTIC" PROGRAM. IT IS A PRO-
GRAM THAT ACTUALLY ENABLES THE COMPUTER TO TEST A PORTION OF ITS OWN
MEMORY. NATURALLY, THE PROGRAM ITSELF MUST BE PLACED IN A SECTION OF
MEMORY THAT 1S OPERATIONAL, AND THE CPU PART OF THE COMPUTER MUST BE
OPERATIONAL IN ORDER TO PERFORM THE TEST. HOWEVER, THE PROGRAM 1S A
VERY PRACTICAL ONE BECAUSE 1IF A PROBLEM SHOULD ARISE IN THE MEMORY POR-
TION OF THE COMPUTER IT 1S MOST LIKELY TO BE RESTRICTED TO JUST ONE MEM-
ORY ELEMENT - THE REST OF THE COMPUTER REMAINS FULLY FUNCTIONAL. IN
THE EXAMPLE ILLUSTRATED HERE THE PROGRAM HAS BEEN WRITTEN TO RESIDE ON
PAGE ¥48. THEN, THE "H' REGISTER IN THE CPU IS SET (PRIOR TO STARTING
THE PROGRAM) TO THE PAGE OF MEMORY THAT 1S TO BE TESTED. IT IS IMPOR~
TANT TO NOTE HERE THAT IF CPU REGISTER "H™ WAS SET TO PAGE #9 WHERE
THE ACTUAL TESTING PROGRAM RFESIDFS, THAT THE PROGRAM WOULD LITERALLY
“DESTROY'" A PORTION OF ITSELF WHEN IT WAS DIRECTED TO WRITE INTO A

- 21 =

WORD THAT ACTUALLY CONTAINED AN INSTRUCTION USED BY THE PROGRAM! THE
USER MUST THUS MAKE SURE THAT REGISTER “H'" DOES NOT "POINT" TO PAGE 80
WHEN THE PROGRAM IS EXECUTED. SINCE THE PROGRAM ITSELF 1S ON PAGE @4,
AND SINCE THE PROGRAM MUST PERFORM THE TEST ON SOME PAGE OTHER THAN
PAGE #6, THEN THE MINIMUM AMOUNT OF MEMORY NEEDED IN A SCELBI~-8H SYSTEM
IN ORDER TO UTILIZE THIS PROGRAM 1S TWO PAGES (512 DECIMAL WORDS) OF
MEMORY. - o

THE PROGRAM IS A GOOD ONE FOR THE PROGRAMMER TO STUDY CAREFULLY AT
THIS TIME AS IT CONTAINS QUITE A FEW DIFFERENT TYPES OF COMMONLY USED
INSTRUCTIONS INCLUDING "JMP" (JUMP) AND *CAL' (CALL) COMMANDS. BY
STUDYING THIS PROGRAM THE USER CAN START TO GET IDEAS ON UTILIZING
VARIOUS PROGRAMMING TECHNIQUES.

THE FIRST LISTING OF THIS PROGRAM WAS DONE USING THE "MNEMONICS"
(GIVEN IN CHAPTER 2) FOR THE VARIOUS INSTRUCTIONS. *MNEMONICS' ARE
A "SYMBOLIC LANGUAGE'" REPRESENTATION OF THE MACHINE LANGUAGE CODES
USED BY THE COMPUTER. IT IS GENERALLY MUCH EASIER TO FIRST WRITE A
PROGRAM USING THE INSTRUCTION °*“MNEMONICS.'" THEN, WHEN THE PROGRAM IS
IN SATISFACTORY ORDER, IT IS AN EASY MATTER TO ASSIGN THE MEMORY
ADDRESSES TO EACH INSTRUCTION AND CONVERT THE “MNEMONICS'" TO THE ACTUAL
MACHINE LANGUAGE CODES. THE CONVERSION OF "MNEMONICS'" TO ACTUAL MACHINE
CODES AND THE ASSIGNMENT OF MEMORY ADDRESSES CAN ALSO BE DONE BY AN
*ASSEMBLER PROGRAM" WHICH SAVES A LOT OF WORK FOR THE PROGRAMMER WHEN
A LARGE PROGRAM 1S BEING DEVELOPED. HOWEVER, IN THE EXAMPLES PROVIDED
HERE THE CONVERSION PROCESS WILL BE ILLUSTRATED FOR THE MANUAL METHOD.

IN THE FIRST LISTING OF THE PROGRAM PRESENTED BELOW THE PROGRAMMER
NUMBERED EACH INSTRUCTION AND ALSO KEPT A COUNT ON HOW MANY WORDS OF
MEMORY EACH TYPE OF INSTRUCTION REQUIRED. THIS IS A GOOD PRACTICE AS IT
ALLOWS THE PROGRAMMER TO BE ABLE TO QUICKLY DETERMINE HOW MANY WORDS
IN MEMORY WILL BE REQUIRED BY THE PROGRAM. ALSO, DURING DEVELOPMENT OF
THE PROGRAM THE PROGRAMMER ASSIGNED "LABELS"™ TO KEY INSTRUCTIONS THAT
MIGHT BE REFERRED TO BY OTHER INSTRUCTIONS. A “LABEL' CAN BE CONSIDERED
AS A SYMBOLIC REPRESENTATION OF AN "ADDRESS." WHEN THE PROGRAMMER
DECIDES WHERE IN MEMORY THE PROGRAM WILL RESIDE, THE "LABELS"™ CAN BE
CONVERTED TO THE ACTUAL ADDRESSES IN MEMORY OF THE INSTRUCTIONS THAT
HAVE BEEN "LABELED."

MEMORY TEST PROGRAM AS ORIGINALLY DEVELOPED IN MNEMONIC FORM

INSTRUC- NUMBER MNEMONIC FORM PROGRAMMERS COMMENTS
TION ¢ MEMORY
WORDS REQD
1 1 AGAIN, XRA /SET ACCUMULATOR‘TO ZEROS
2 1 - LMA /DEPOSIT ACCUMULATOR INTO MEMORY
3 1 LAM /NOW READ BACK FROM SAME LOCATION
4 1 NDA /BOOLEAN OP SETS UP FLAGS AFTER LOAD
S 3 JFZ STOP /ACCUMULATOR SHOULD BE ALL 6°'S
6 2 LMl 377 /NOV LOAD MEMORY WITH ALL 1°'S
7 i LaM /AND THEN READ IT BACK

- 20 -

. INSTRUC~ NUMBER MNEMONIC FORM PROGRAMMERS COMMENTS
TION ¢ MEMORY

VORDS REQD
8 e AD1 001 JIF ADD | TO 377 HAVE 0081
9 1 RTZ /END SUBROUTINE IF 0.K.
10 1 STOP, 377 /OTHERVISE HALT WITH MC LAMPS ON
11 1 NEWTES, XRA /PROGRAM STARTS MERE - CLEAR ACC
12 2 LDI 208 /SET UP LOOP CNTR IN CPU REG "D
13 3 GO, CAL AGAIN /CAL SUBRTN TO WRITE 8°'S AND 1°S
14 1 INL /SET POINTER TO NEXT MEMORY LOC
1s 3 JFZ GO /REPEAT TEST IF NOT THROUGH PAGE
16 1 DCD /DECR LOOP CNTR IF THROUGH PAGE
17 3 JFZ GO /CONTINUE TEST IF CNTR IS NOT ZERO
18 1 ALDONE, @60 /TEST DONE 0.K. - MC LAMPS OFF
19 3 JMP NEWTES /ALLOV EASY RESTART

NOW THAT THE PROGRAM HAS BEEN WRITTEN IN MNEMONIC FORM THE PROGRAM=-
MER CAN COUNT UP THE NUMBER OF MEMORY WORDS REQUIRED TO STORE THE PRO~
GRAM AND THEN DECIDE WHERE TO PLACE THE PROGRAM IN MEMORY. IN THIS CASE
THE PROGRAMMER DECIDED TO PLACE THE PROGRAM ON PAGE 86 STARTING AT LOC-
ATION @66. THE NEXT LISTING SHOWS THE RESULTS OF CONVERTING THE MNE-
MONIC SYMBOLS OVER TO THE ACTUAL MACHINE LANGUAGE CODES AND THE PROCESS
OF ASSIGNING THE CODES TO SPECIFIC LOCATIONS IN MEMORY.

MEMORY TEST PROGRAM IN MACHINE CODE FORM

MEMORY MACHINE ORIGINAL

ADDRESS CODES MNEMONICS COMMENTS

PAGE LOC

00 800 250 AGAIN, XRA /SET ACCUMULATOR TO ZEROS

o0 801 376 LMA /DEPOSIT ACCUMULATOR INTO MEMORY
60 pee 387 LAM /NOV READ BACK FROM SAME LOCATION
68 003 240 NDA /BOOLEAN OP SETS UP FLAGS

68 004 110 JFZ STOP /ACCUMULATOR SHOULD BE ALL 0°'S

1 205 215

00 @06 000

- 23 =

MEMORY MACHINE ORIGINAL

ADDRESS CODES MNEMONICS COMMENTS
PAGE LOC
1) @87 876 LMI 377 /NOW LOAD MEMORY WITH ALL 1°'S
80 010 377
09 211 307 LAM /AND THEN READ IT BACK
.1 a12 204 ADI 001 /IF ADD 1 TO 377 HAVE @001
0o 813 ao1
" 1% 214 853 RTZ /END SUBROUTINE IF 0.K.
1] 815 377 STOP, 377 /0THERVISE HALT WITH MC LAMPS ON
20 216 250 NEWTES, XRA /PROGRAM STARTS HERE - CLEAR ACC
0o 217 836 LDI 200 /SET UP LOOP CNTR IN CPU REG “D*
29 a20 200
1] 021 186 GO, CAL AGAIN /CAL SUBRTN TO WRITE @°'S AND 1°S
217 @22 200
00 923 200
a0 024 060 INL /SET POINTER TO NEXT MEMORY LOC
" 1"] 825 110 JFZ GO /REPEAT TEST IF NOT THROUGH PAGE
00 026 821
80 827 000
20 230 231 DCD /DECR LOOP CNTR 1F THROUGH PAGE
]" @31 110 JFZ GO /CONTINUE TEST IF CNTR IS NOT ZERO
00 932 az21
a0 833 aea
1) 034 000 ALDONE, 6606 /TEST DONE O.K. - MC LAMPS OFF
00 935 104 JMP NEVTES /ALLOW EASY RESTART
20 636 816
00 237 200

THE READER SHOULD STUDY THE PROGRAM, REFERRING TO CHAPTER TWO WHEN
NECESSARY, UNTIL THE PROGRAM'S OPERATION, AND THE TECHNIQUE USED TO DE-
VELOP THE PROGRAM AND CONVERT IT TO MACHINE LANGUAGE IS UNDERSTOOD.
SEVERAL SALIENT FEATURES OF THE PROGRAM AND COMMENTS ON THE PROGRAM'S
DEVELOPMENT ARE DISCUSSED BELOW.

FOR INSTANCE, THE VERY FIRST INSTRUCTION USED (XRA = EXCLUSIVE
“OR'" THE CONTENTS OF THE ACCUMULATOR WITH ITSELF) IS A LITTLE PROGRAM-
MING TRICK USED AS AN EASY WAY T0 "“CLEAR"™ THE ACCUMULATOR TO A VALUE
OF ZERO. ANOTHER WAY TO HAVE PERFORMED THE SAME FUNCTION WOULD HAVE
BEEN TO USE A "LAl 006" (LOAD THE ACCUMULATOR IMMEDIATE WITH 000)
INSTRUCTION. NOTE HOWEVER THAT THE LATTER METHOD REQUIRES TW0 WORDS OF
MEMORY WHERE-AS THE "XRA' COMMAND ONLY REQUIRES ONE. A GOOD PROGRAMMER
SOON GETS IN THE HABIT OF TRYING TO USE THE SMALLEST NUMBER OF LOCATIONS
IN MEMORY POSSIBLE TO PERFORM A FUNCTION IN ORDER TO CONSERVE MEMORY

- 24 =

SPACE. THE MORE MEMORY IN A MACHINE, THE MORE EXPENSIVE THE MACHINE.
IT IS THUS WISE TO TRY AND GET MAXIMUM USE OUT OF AVAILABLE MEMORY BY
USING GOOD PROGRAMMING TECHNIQUES.

AN INTERESTING SEQUENCE OF INSTRUCTIONS STARTS WITH THE “LAM"
(LOAD MEMORY TO ACCUMULATOR) AT PAGE @@ LOCATION O011. AT THAT POINT
THE ACCUMULATOR SHOULD CONTAIN ALL ONES PROVIDED THAT THE MEMORY WORD
BEING TESTED HAS PROPERLY RETAINED THE ONES WHICH WERE PREVIOUSLY
WRITTEN INTO THE WORD. IN ORDER TO TEST THAT THE ACCUMULATOR DOES
ACTUALLY CONTAIN ALL ONES THE MATHEMATICL VALUE *1" 1S ADDED TO THE
CONTENTS IN THE ACCUMULATOR USING THE "ADD IMMEDIATE 601* (ADI 4d1)
INSTRUCTION. WHEN @01 (OCTAL) IS ADDED TO AN EIGHT BIT CLOSED REGISTER
THAT HAS ALL ITS BITS ALREADY SET TO "1," (377 OCTAL) THE REGISTER
WILL *“OVER-FLOW" AND RESULT IN THE REGISTER HAVING A VALUE OF @80 OCTAL.
HOWEVER, IF THE REGISTER HAD A "@" IN ANY ONE OF ITS BIT POSITIONS,
THEN ADDING THE VALUE *1* WOULD NOT CAUSE THE REGISTER TO "“OVER~FLOW"
AND THE REGISTER WOULD HAVE SOME NON-ZERO VALUE. THF PROCESS IS DE-
TAILED IN FIGURE 8.

11 1 11 111 IF THE ACCUMULATOR IS FILLED WITH 1°'S
a e 0600 2 a1 THEN ADDING THE MATHEMATICAL VALUE 0? 1
0o Q00 600 CAUSES REGISTER TO OVER-FLOW TO ALL @°'S
11 211 111 BUT IF ACCUMULATOR CONTAINS ANY @°'S
0 a @ o9 g a1 THEN ADDING THE MATHEMATICAL VALUE OF 1
11 1 0682 0060 WILL RESULT IN A NON-ZERO VALUE

FIGURE 8

THUS AFTER THE VALUE @861 (OCTAL) IS ADDED TO THE ACCUMULATOR A '"RETURN
IF THE ZERO FLAG IS TRUE" (RTZ) TYPE INSTRUCTION IS USED TO TEST WHETH-
ER THE ACCUMULATOR IS ZERO AND IF SO THE PROGRAM "RETURNS" TO THE ORIG-
INAL CALLING ROUTINE. BUT, IF THE ZERO FLAG IS NOT TRUE (MEANING THAT
THE ACCUMULATOR HAS SOME NON-ZERO VALUE) THEN THE NEXT INSTRUCTION IN
THE CURRENT SEQUENCE WILL BE EXECUTED. THAT INSTRUCTION WILL CAUSE THE
COMPUTER TO HALT. AGAIN, THERE 1S MORE THAN ONE WAY TO PERFORM THE
ABOVE FUNCTION. FOR INSTANCE, PRIOR TO DOING THE "ADI @@&1" INSTRUCTION
AN "NDA'" (BOOLEAN °'"AND' THE CONTENTS OF THE ACCUMULATOR WITH ITSELF)
COULD HAVE BEEN PERFORMED. THE 'NDA®" INSTRUCTION WOULD NOT ALTER THE
CONTENTS OF THE ACCUMULATOR BUT IT IS AN INSTRUCTION THAT WILL ''CLEAR"
THE CARRY FLAG, THUS PUTTING IT IN A "KNOWN STATE." THEN, IF THE

"ADI @61* INSTRUCTION CAUSES THE ACCUMULATOR TO "OVER-FLOW" THE CARRY
FLAG WOULD BE SET. THUS, A "JTC" (JUMP ON TRUE CARRY FLAG) TYPE OF
INSTRUCTION COULD BE USED TO TEST THE RESULTS OF THE ADDITION. THIS
METHOD WOULD HAVE REQUIRED AN ADDITIONAL MEMORY WORD OVER THE METHOD
USED (FOR THE *“NDA' INSTRUCTION TO GUARANTEE THAT THE CARRY FLAG WOULD
BE IN A CLEARED CONDITION PRIOR TO EXECUTION OF THE *“ADI @4!* COMMAND.)

THE USER SHOULD NOTE HOW CPU REGISTER "D* 1S USED IN THE PROGRAM
AS A "LOOP COUNTER." AT LOCATION 817 AND @20 A LOAD °'D' IMMEDIATE"
(LDI 20@) INSTRUCTION IS USED TO PUT THE OCTAL VALUE 280G INTO THE REGe
ISTER. THEN, AT LOCATION 830 REGISTER "D" IS DECREMENTED EACH TIME THE
PROGRAM FINISHES TESTING ALL THE WORDS ON THE PAGE IN MEMORY WHICH IS

-25-

BEING TESTED. SINCE THE DECREMENT INSTRUCTION IS IN A CLASS OF INSTRUC-
TIONS WHICH AUTOMATICALLY CAUSE THE ZFRO, SIGN, AND PARITY FLAGS (SEE
CHAPTER TV0) TO BE SET AS A FUNCTION OF THE CONTENTS OF THE REGISTER
THAT WAS DECREMENTED - IMMEDIATELY AFTER THE DECREMENT OPERATION

OCCURS - THEN THE *“DCD" INSTRUCTION CAN BFE IMMEDIATELY FOLLOWED BY A
“CONDITIONAL*" BRANCHING INSTRUCTION SUCH AS THE "“JFZ" (JUMP IF THE ZERO
FLAG IS NOT SET) COMMAND. THAT IS WHAT IS DONE AT LOCATION 631 IN THE
PROGRAM. IF THE REGISTER HAS NOT REACHED ZERO AFTER IT IS DECREMENTED
THEN THE "JFZ*" INSTRUCTION WILL DIRECT THE PROGRAM BACK UP TO LOCATION
@21 VHERE THE PROGRAM GOES THROUGH THE TESTING CYCLE AGAIN. WHEN THE
*D" REGISTER DOES REACH ZERO, THEN A “JUMP"™ 1S NOT PERFORMED BY THE
“JFZ GO™ INSTRUCTION AND INSTEAD THE “HLT" (HALT) INSTRUCTION IMMED-
.IATELY FOLLOVING THE “JFZ GO"™ COMMAND (AT LOCATION ©834) IS ENCOUNT-
ERED.

NOTE THAT USE IS MADE OF THE FACT THAT THERE ARE SEVERAL DIFFERENT
MACHINE CODES FOR THE “HLT" INSTRUCTION. THE FACT THAT THESE CODES
VILL BE DISPLAYED IN THE MEMORY CONTENTS LAMPS WHEN THE INSTRUCTION IS
EXECUTED PROVIDES AN EASY VAY TO SIGNIFY TO THE OPERATOR JUST WHAT
TYPE OF EVENT CAUSED THE COMPUTER TO STOP. AT LOCATION 615 THE HALT
CODE 377 1S USED. IF THE PROGRAM REACHES THIS HALT INSTRUCTION THE 377
CODE WILL CAUSE ALL THE MEMORY CONTENTS LAMPS TO BE LIT. THE OPERATOR
CAN THEN TELL THAT A TEST FAILURE OCCURRED. ON THE OTHER HAND, AT LOC-
ATION @34 THE CODE @86 1S USED FOR THE HALT INSTRUCTION. THIS HALT IS
REACHED WHEN THE PROGRAM HAS SUCCESSFULLY “LOOPED" THROUGH THE ENTIRE
TEST CYCLE 260 OCTAL (128 DECIMAL) TIMES. THE CODE 0@@8@ CAUSES ALL THE
MC LAMPS TO BE TURNED OFF. THUS, WHENEVER THE COMPUTER STOPS WHILE
THE PROGRAM 1S BEING USED, THE OPERATOR CAN TELL AT A GLANCE WHETH-
ER THE TEST VWAS SUCCESSFULLY COMPLETED OR 1F THE MACHINE STOPPED BECAUSE
A PROBLEM WAS DETECTED.

IMMEDIATELY FOLLOWING THE HALT INSTRUCTION AT LOCATION 634 IS A
*“JMP NEWTES™ INSTRUCTION. PLACING THIS INSTRUCTION AT THAT POINT ALLOVS
THE OPERATOR TO SIMPLY USE A "LAA* INSTRUCTION VIA THE INTERRUPT FACIL-
.ITY TO GET THE COMPUTER OUT OF THE STOPPED STATE AND START ANOTHER TEST,
RATHER THAN HAVING TO INSERT A THREE STEP “"JUMP TO LOCATION 616 ON PAGE
20" WHICH WOULD REQUIRE THREE CHANGES OF THE CHASSIS TOGGLE SVWITCHES.

A SIMILAR CONCEPT IS USED IN THE ORGANIZATION OF THE PROGRAM TO
ALLOV EASY RESTARTING OF THE PROGRAM IN THE EVENT THE HALT AT LOCATION
@1% IS ENCOUNTERED. SIMPLY. INSERTING AN “INTERRUPT" NO-OPFRATION COM-
MAND (SUCH AS “LAA") VWILL CAUSE THE PROGRAM TO START OVER BEGINNING
WITH THE INSTRUCTION AT LOCATION @16.

THE READER SHOULD UNDERSTAND HOW THE “CAL AGAINY INSTRUCTION THAT
.IS IN LOCATIONS 821, 822 AND #23 SERVES TO ALLOW THE BASIC TEST ROUTINE
To BE USED OVER AND OVER. IT SHOULD ALSO BE NOTED THAT CPU REGISTER "L"
.IS INCREMENTED AFTER EACH “CALL" OF THE TEST ROUTINE IN ORDER TO CHANGE
THE ADDRESS OF THE MEMORY WORD THAT 1S T0 BE TESTED. (REMEMBER THAT THE
H AND *“L* CPU REGISTERS “POINT" TO THE LOCATION IN MEMORY THAT IS
OPERATED ON BY THE “LAM," “LMA," AND OTHER TYPES OF INSTRUCTIONS THAT
REFER TO WORDS IN MEMORY.

FINALLY, THE USER IS AGAIN CAUTIONED TO MAKE SURE THAT CPU REGISTER
“H* IS SET TO THE PAGE IN MEMORY THAT IS TO BE TESTED (VIA AN INTER-
RUPT COMMAND) PRIOR TO STARTING THE PROGRAM AND THAT IT IS NOT SET TO
PAGE 80 WHERE THE PROGRAM ITSELF 1S STORED!

THE READER CAN MANUALLY LOAD THE PROGRAM INTO MEMORY BY USING THE
TECHNIQUE PREVIQUSLY DESCRIBED WHEN THE TINY “JUMP TO ITSELF" PROGRAM
WAS ILLUSTRATED EARLIER IN THIS CHAPTER. FIRST THE PROGRAM COUNTER

- 06 =

SHOULD BE SET TO PAGE 77 LOCATION 0677. THEN REGISTER 'H"™ SET TO @0
AND REGISTER "L' SET TO 6860. NEXT '"LMI*" AND "INL" INSTRUCTIONS ARE
ALTERNATED USING THE INTERRUPT FACILITY TO LOAD THE PROGRAM INTO MEM-
ORY. THE MACHINE CODES FOR THE SAMPLE PROGRAM MAY BE TAKEN RIGHT FROM
THE LISTING OF THE PROGRAM. WHEN THE PROGRAM HAS BEEN LOADED BE SURE
TO SET REGISTER "H" TO A PAGE OTHER THAN #6. (REGISTER "H" SHOULD BE
SET T0O THE PAGE WHERE MEMORY ELEMENTS ARE TO BE TESTED.) THE PROGRAM
MAY THEN BE STARTED BY USING A “JUMP TO LOCATION 616 ON PAGE @0" COM-
MAND VIA THE INTERRUPT MODE. THE OPERATOR MAY WISH TO FIRST STEP THE
PROGRAM THROUGH THE FIRST "CAL" SUBROUTINE AS A CHECK TO SEE THAT THE
PROGRAM HAS BEEN CORRECTLY LOADED. PRESSING THE "RUN" BUTTON WVWILL
CAUSE THE PROGRAM TO BE EXECUTED AUTOMATICALLY. IF THE PROGRAM HAS
BEEN CORRECTLY LOADED INTO MEMORY THE OPERATOR WILL SEE THE " RUN' LAMP
ON THE FRONT PANEL CARD LIGHT. THE PROGRAM WILL THEN RUN FOR A SHORT
WHILE (THROUGH 200 OCTAL "LOOPS") AND THEN STOP WITH THE MEMORY CONTENTS
LAMPS OFF.

IF THE PROGRAM DOES NOT APPEAR TO RUN CORRECTLY THEN THE USER MAY
USE VARIOUS TYPES OF "INTERRUPT MODE' COMMANDS TO DISPLAY MEMORY LOC-
ATIONS AND MAKE NECESSARY CORRECTIONS (OR CAN STEP THROUGH THE PROGRAM
LOOKING FOR INCORRECT INSTRUCTIONS.) IT SHOULD BE POINTED OUT THAT THE
PROGRAM HAS BEEN OPERATED MANY HUNDREDS OF TIMES AND IS KNOWN TO BE A
"GOOD" PROGRAM. THE MOST COMMON PROBLEMS ENCOUNTERED BY BEGINNERS ARE
USUALLY THOSE ASSOCIATED WITH HAVING LOADED THE PROGRAM INCORRECTLY.
REMEMBER -~ EACH AND EVERY INSTRUCTION MUST BE LOADED WITH THE CORRECT
MACHINE CODE IN THE RIGHT MEMORY LOCATION. IF THEY ARE NOT ~ THE
MACHINE WILL PERFORM WHATEVER INSTRUCTION IT ENCOUNTERS AND THE RESULTS
OF ITS PERFORMING AN UNINTENDED INSTRUCTION CAN BE HARMLESS AND AMUSING.,
OR, NOT SO FUNNY AND EVEN DESTRUCTIVE TO THE PROGRAM (OR OTHER PROGRAMS
THAT MIGHT BE ELSEWHERE IN MEMORY) DEPENDING ON THE INDIVIDUAL CIRCUM-
STANCES. AS A GENERAL RULE IT IS MUCH BETTER TO TAKE CARE TO LOAD A
PROGRAM CORRECTLY AND TO MAKES CHECKS THAT IT WAS LOADED PROPERLY BEFORE
STARTING THE EXECUTION OF THE PROGRAM, RATHER THAN HASTILY EXECUTING A
PROGRAM THAT CONTAINS INCORRECT INSTRUCTIONS. IT IS OFTEN MUCH MORE
DIFFICULT (SOMETIMES IMPOSSIBLE!) TO TRY AND FIGURE OUT WHAT HAPPENED
AFTER AN INCORRECTLY LOADED PROGRAM HAS BEEN STARTED AND GONE "“BESERK,*
THAN IT IS TO SIMPLY STEP THROUGH THE PROGRAM AT THE BEGINNING TO MAKE
SURE THAT IT HAS THE INSTRUCTIONS INTENDED. REMEMBER, WHEN THE COM=-
PUTER IS IN THE "“RUN' MODE IT VWILL EXECUTE INSTRUCTIONS AT A RATE OF
MANY THOUSANDS PER SECOND. IN A FRACTION OF A SECOND IT CAN DO JUST
AS MANY "WRONG ACTIONS" IF THE PROGRAM IS INCORRECT, AS IT CAN DO “RIGHT
ACTIONS" WHEN THE PROGRAM IS PERFORMING AS DESIRED.

AN ILLUSTRATIVE “LIGHT FLASHER" PROGRAM

ANOTHER PROGRAM THAT THE USER CAN USE TO FURTHER PRACTICE LOADING
A PROGRAM AND OPERATING THE SCELBI-8H 1S SHOWN BELOW. THIS PROGRAM IS
A SIMPLE LITTLE DISPLAY PROGRAM THAT WILL CAUSE THE MEMORY ADDRESS PAGE
LAMPS TO FLASH IN SEQUENCE. THE PROGRAM IS INTERESTING IN THAT IT HAS
A PROGRAMMED "TIMING LOOP" THAT USES THE COMPUTER ITSELF TO CONTROL
HOW FAST THE LIGHTS TURN ON AND OFF. THE LISTING ON THE NEXT PAGE IS
PROVIDED WITH COMMENTS TO AID THE READER IN UNDERSTANDING THE PROGRAM'S
OPERATION. ESSENTIALLY THE PROGRAM USES A "LAM" INSTRUCTION REPEATEDLY
TO CAUSE THE MEMORY PAGE ADDRESS LAMPS TO LIGHT OFTEN ENOUGH TO BE VIS-
IBLE WHEN THE COMPUTER 1S IN THE "RUN'" MODE. THE PAGE POINTER (CPU
REGISTER "H") 1S ADVANCED AT INTERVALS DETERMINED BY A "TIMER LOOP."
CHANGING THE VALUE IN LOCATION @#21 OF THE PROGRAM WILL CHANGE THE
AMOUNT OF TIME IT TAKES TO ADVANCE THE PAGE POINTER. THE PROGRAM
STARTS AT LOCATION 825 ON PAGE 00.

-27-

MEMORY MACHINE
ADDRESS CODES MNEMONICS COMMENTS
PAGE LOC
00 @ee 850 NEWPNT, INH /ADVANCE PAGE POINTER
00 @0l 385 LAH /PUT “H" IN ACCUMULATOR
80 082 804 ADI 300 /SET UP FOR TEST
68 @63 300
98 004 110 JFZ LOOP! /1F VALUE IS 186 DO NEXT INSTR
00 985 811 :
20 986 900
ée 907 256 LH1 @ee /RESET "H" TO PAGE 00
80 @10 000
o8 OB11 307 LOOPl, LAM /PAGE LIGHTS LOOP
98 @12 040 INE /DUTY CYCLE COUNTER
86 @13 110 JFZ LOOPI /LOOP UNTIL REG “E* = @980
29 @la 211
28 015 0006
ée @16 830 IND /ADVANCE TIMER FOR TIMER LOOP
e 017 303 LAD /PUT VALUE OF D" INTO ACC
28 020 8ea ADI 350 /THIS SETS SEQUENCE TIME
20 @2l 359
98 @22 110 JFZ LOOP! /KEEP DUTY CYCLE GOING
ée @23 811
80 @24 600
80 @25 0936 START, LDl 668 /SET UP NEV TIMER
68 0826 1.1}
08 @27 184 JMP NEVWPNT /CHANGE PAGE POINTER
88 @830 eee
26 831 LT

AT THIS POINT THE READER SHOULD HAVE A GOOD FUNDAMENTAL UNDER-
STANDING OF HOW TO OPERATE A SCELBI-8H MINI-COMPUTER. THE USER HAS
BEEN PRESENTED WITH THE BASIC OPERATING PROCEDURES OF THE MACHINE,
HAS BEEN PROVIDED VITH DETAILED TABLES DESCRIBING EVERY TYPE OF OPER-

ATION.,

AND HAS SEEN SOME SAMPLE PROGRAMS.

THE READER HAS HOPFFULLY

SPENT SOME TIME LOADING PROGRAMS VIA THE MANUAL METHOD AND THEN HAD
THE PLEASURE OF SEEING THEM EXECUTED BY THE COMPUTER.

_THE USER SHOULD NOV BE IN A POSITION TO START PUTTING THE SCELBI-8H
TO USE PERFORMING TASKS SPECIFICALLY DESIRED BY THE INDIVIDUAL USER.
BY UTILIZING THE TABLES AND EXAMPLES IN THIS CHAPTER, AND REFERRING TO

THE INFORMATION IN CHAPTER TWO,

THE USERS ARE IN A POSITION TO CREATE

THEIR OWN PROGRAMS, MANUALLY. LOAD THEM INTO THE COMPUTER, AND THEN HAVE
THE COMPUTER EXECUTE THE PROGRAMS.

-28-

COMMENTS ON OTHER PROGRAM LOADING METHODS

-

THE PROCESS OF MANUALLY LOADING PROGRAMS INTO MEMORY VIA THE CON-
SOLE SWITCHES 1S SUITABLE FOR RELATIVELY SMALL PROGRAMS AND MANY APPLI-
CATIONS ONLY REQUIRE SUCH PROGRAMS. HOVWEVER, FOR LARGE SOPHISTICATED
PROGRAMS IT IS GENERALLY DESIRABLE TO USE OTHER DEVICES IN CONJUNCTION
WITH THE COMPUTER TO SIMPLIFY THE LOADING PROCESS FOR THE OPERATOR WHILE
SIGNIFICANTLY INCREASING THE SPEED WITH WHICH PROGRAMS CAN BE LOADED
INTO MEMORY.

WHILE THE NEXT CHAPTER WILL GO INTO SPECIFIC DETAILS ON CONNECTING
INPUT/0UTPUT (1/0) DEVICES TO THE SCELBI-8H IT IS PERHAPS WORTH MENTION-
ING HERE A FEW OF THE TYPICAL DEVICES THAT CAN BE CONNECTED TO THE COM-
PUTER TO SPEED UP THE PROCESS OF LOADING PROGRAMS. AND, IN ADDITION, TO
COMMENT ON HOW RELATIVELY SIMPLE "LOADER" PROGRAMS CAN BE USED TO ENABLE
THE LOADING OF LARGER PROGRAMS.

ONE OF THE MOST COMMON DEVICES AVAILABLE TO CONNECT TO A COMPUTER
IS AN ELECTRONIC KEYBOARD SIMILAR TO A TYPEWRITER. WHEN LETTERS OR NUM-
BERS ARE TYPED ON THE UNIT A GROUP OF ELECTRONIC SIGNALS IN A CODED FORM
(SUCH AS THE ASCl1 CODE) ARE SENT TO THE COMPUTER. WITH A SUITABLE,
RELATIVELY SMALL PROGRAM IN MEMORY, THE COMPUTER IS ABLE TO INTERPRET
THE SIGNALS RECEIVED AND PERFORM OPERATIONS BASED ON THE INFORMATION
RECEIVED FROM THE KEYBOARD UNIT. FOR INSTANCE, A "KEYBOARD LOADER'" PRO-
GRAM WILL ENABLE A PERSON TO TYPE IN ADDRESSES AND THEN THE DATA TO GO
INTO THE MEMORY LOCATION AT THOSE ADDRESSES. THIS METHOD OF LOADING
PROGRAMS 1S CONSIDERABLY FASTER THAN LOADING PROGRAMS VIA THE CONSOLE
SWITCHES.

ANOTHER DEVICE OFTEN CONNECTED TO A COMPUTER IS A TELETYPE MACHINE.
A PERSON CAN ENTER PROGRAMS ON A TELETYPE KEYBOARD SIMILAR TO THE METHOD
USED WITH AN ELECTRONIC KEYBOARD. IN ADDITION, THE TELETYPE HAS A
PRINTER MECHANISM THAT CAN BE USED TO RECEIVE INFORMATION FROM THE COM-
PUTER. MANY TELETYPE MACHINES ARE ALSO EQUIPPED VITH PAPER TAPE READERS
AND PUNCHES AND THE ADDITON OF THOSE UNITS ALLOW ONE TO LOAD PROGRAMS.,
OR PUNCH COPIES OF DEVELOPED PROGRAMS, WITH CONSIDERABLE EASE.

AN EVEN FASTER WAY TO LOAD PROGRAMS IS TO UTILIZE A MAGNETIC TAPE
SYSTEM. IN THIS TYPE OF ARRANGEMENT A MAGNETIC TAPE RECORDER IS CON-
NECTED TO THE COMPUTER THROUGH A SPECIAL ELECTRONIC NETWORK GENERALLY
TERMED AN "INTERFACE." WITH AN APPROPRIATE SMALL PROGRAM IN THE COM-
PUTER THE "MAG-TAPE" SYSTEM CAN BE USED TO RAPIDLY LOAD LARGE PROGRAMS
INTO MEMORY. OR, VICE-VERSA, THE COMPUTER CAN SAVE “COPIES" OF PRO-
GRAMS FROM ITS MEMORY ONTO CASSETTES OF MAGNETIC TAPE.

QUITE OFTEN THE FIRST PROGRAM USED TO ENABLE AN EXTERNAL DEVICE
SUCH AS A TELETYPE OR A "MAG-TAPE"™ UNIT TO BE ABLE TO LOAD PROGRAMS 1S
CALLED A “BOOTSTRAP LOADER." THIS TERMINOLOGY ORIGINATES FROM THE OLD
EXPRESSION OF "LIFTING ONESELF UP BY ONE'S OWN BOOT STRAPS." FOR
A "BOOTSTRAP LOADER" 1S QUITE LITERALLY A SMALL PROGRAM THAT WILL ALLOV
A LARGER MORE POWERFUL PROGRAM TO BE LOADED INTO THE COMPUTER FROM SOME
SORT OF EXTERNAL DEVICE.

THE SCELBIl-8H MINI-COMPUTER IS CAPABLE OF OPERATING WITH ALL OF THE
ABOVE TYPES OF EXTERNAL DEVICES AND "INTERFACES™ AS WELL AS PROGRAMS
SUCH AS “BOOTSTRAP LOADERS" FOR THOSE TYPES OF DEVICES ARE AVAIL-

ABLE. THE SPECIFIC DETAILS OF THE DEVICE “INTERFACES" AND PROGRAMS

ARE COVERED IN THE DOCUMENTATION FOR THE UNITSe SUFFICE IT TO CONCLUDE
THAT THERE ARE MANY METHODS AVAILABLE FOR SPEEDING UP THE PROGRAM LOAD-
ING PROCESS OVER THAT OF THE MANUAL METHOD DESCRIBED IN THIS CHAPTER.

-29-

HOWEVER, THE MANUAL METHOD 1S THE MOST FUNDAMENTAL ONE, AND THE ONE
THAT MUST BE USED WHEN FIRST STARTING UP A SYSTEM. THE USER SHOULD
THEREFORE BECOME THOROUGHLY FAMILIAR WITH THE CONTENTS OF THIS CHAPTER.

IN CONCLUSION OF THE CHAPTER IT WILL BE POINTED OUT THAT THE
PROVISIONS FOR COMPLETE MANUAL CONTROL OF THE SCELBI-BH WHICH WERE
DESIGNED INTO THE MACHINE, ALLOW THE SCELBI-8H USER T0 ENJOY COMPLETE
CONTROL OVER THE MACHINE WITHOUT HAVING TO HAVE ANY EXTERNAL DEVICES.
WHILE EXTERNAL LOADING AND OPERATING DEVICES ARE OFTEN NICE TO HAVE, A
USER CAN PUT A SCELBl-8H MINI-COMPUTER TO PLENTY OF GOOD USE WITHOUT
HAVING ADDITIONAL EXTERNAL PROGRAM LOADING DEVICES!

- 38 -

CONNECTING EXTERNAL EQUIPMENT TO THE SCELBI-8H MINI-COMPUTER

INTERFACING INPUT AND OUTPUT DEVICES TO THE SCELBI=-8H IS QUITE
SIMPLE. THF SCELBI-8H HAS BEEN DESIGNFD SO THAT ALL OF THE 1/0 CONN-
ECTIONS ARE "TTL" (TRANSISTOR~-TRANSISTOR-LOGIC) COMPATIBLE. STANDARD
T40@ SERIFS TTL AND LOW POVFR TTL DEVICES MAY BF CONNFECTED DIRECTLY
TO THE INPUT AND OUTPUT PORTS.

INPUT PORTS

THERE ARE SIX INPUT PORTS ON THE SCELBI-8H DESIGINATED AS INPUT
PORTS @ THROUGH 5. EACH INPUT PORT HAS FIGHT INPUT LINES ASSOCIATED
WVITH IT. UNDER PROGRAM CONTROL, WHFN AN INPUT PORT HAS BEEN SFLECTED
TO RECEIVE INFORMATION THF COMPUTFR WILL SIMPLY *SAMPLF" THE CONDITION
OF ALL EIGHT INPUT LINES SIMULTANEOUSLY (l1.F. IN PARALLEL) AND PLACF
THE LOGIC EQUIVALENT OF FACH LINES STATUS (HIGH = '1,'" LOW = “@") IN
THE ACCUMULATOR. THUS, THE SIMPLEFST TYPE OF INPUT DEVICF THAT ONE MIGHT
CONNECT TO AN INPUT PORT COULD JUST BE MECHANICAL SVWITCHES AS SHOWN IN
FIGURE 1.

B7 <=emccccccancax cecmccca—ea Xewwomcmak
t
t
B6 <==m=== e g B LT Tepp—— *
1
1
BE CmeccccmccccccncscncccenrsaXemmaan -
t
B4 €=wweocceccccmccmnscccnnacXooncaanak
R 4
1
B3 <e=mceccccesccecsacscaccaXancaaaank
t
*
B2 Ce-meececcccccccccsaccmcccXaonnaneak
L 4
t
Bl CrememccecccacccaccccececcXoonaeaank
A
t
BO <-=-mm-—=e—e= SRR | S ———
t
4
- - -
FIGURF 1

NOT SHOWN IN FIGURE 1 1S THE FACT THAT FACH INPUT LINE HAS A 10 K-
OHM "PULL-UP" RESISTOR CONNECTED TO IT (ON THE SCELBI 11982~ INPUT CARD)
AND HENCF IN THE ABOVE DIAGRAM IF A SWITCH 1S “OPEN" THF COMPUTER WILL
RECEIVE A LOGIC *1" INPUT WHEN THE PORT 1S SAMPLED. IF THE SWITCH WAS
CLOSED SO THAT THE LINE WAS CONNFCTFD TO SIGNAL GROUND, THEN TRE INPUT

-1 -

LINE WOULD EE AT A LOGIC “@."

NATUFRALLY THE INPUT LINES CAN BE CONNFCTED TO THE OUTPUTS OF TTL DE-
VICES INSTEAD OF MECHANICAL SWITCHES. THE 10 K-0OHM "PULL-UP" RESISTORS
PROVIDED ON FACH LINE ALLOW EITHER STANDARD TTL DEVICES OF "“OPEN COLL~-
ECTOR" TTL DEVICES (OR EQUIVALENT CIRCUITS) TO BE CONNECTED DIRECTLY
TO AN INPUT LINFE. SINCE EACH LINF RFPEESENTS JUST SLIGHTLY OVER ONE
TTL LOAD (THE 16 K~-OHM “PULL-UP'" RESISTOR CONTRIBUTES A SLIGHT LOADING
FACTOR) ON THE RECEIVING END IT IS EVEN POSSIBLF TO USE A LOW POVER
TTL DEVICE TC DRIVE AN INPUT LINF.

THE AVAILABILITY OF EIGHT PARALLEL LINFS ON FACH INPUT PORT MFANS
DEVICES SUCH AS ENCODED KEYBOARDS CAN BE DIRECTLY CONNECTED TO INPUT
PORTS. HOWEVER, IT 1S OFTEN NECESSARY TO ADD ADDITIONAL CIRCUITRY BF-
TWEEN A DEVICE SUCH AS AN ELFCTRONIC KEYBOARD AND THE COMPUTER TO PRO=-
VIDE LATCHING OF THE DATA BETVEEN THE TIME A KEY 1S DEPRESSED (AND
RELEASED) AND THE TIME THE COMPUTER SAMPLES THE INPUT PORT. THE FXACT
CIRCUITRY FOF INDIVIDUAL UNITS WILL DEPEND ON THE FXACT REQUIREMENTS
OF THE DEVICE BEING USED BUT A GENERAL TYPFE OF CIRCUIT FOR A KEYBOARD
INTERFACE MIGHT APPEAR AS SHOWN IN FIGURE 2.

THE CIRCUIT SHOWN IN FIGURE 2 INCLUDES CIRCUITRY WHERE-BY THE
COMPUTER CAN DETERMINE WHEN A NEW CHARACTER IS WAITING TO BF INPUTTED
FROM THE KEYBOARD. AS THE DIAGRAM SHOWS, WHENEVER A KEY IS STRUCK ON
THE KEYBOARD UNIT A “CHARACTER SELECTED" SIGNAL IS USED TO STROBE THE
ENCODED INFORMATION FROM THF KEYBOARD INTO A LATCHING NFTWORK WHERE
THE INFORMATION CAN BE RETAINED AFTER THE KEY HAS BEEN RELFASED. THE
*"CHARACTER SELECT'" SIGNAL VILL ALSO SET A "CHARACTER READY"™ FLIP-FLOP
TO THE LOGIC "1™ STATE. THE EIGHT DATA LINES FROM THE LATCHES ARF FED
TO ONE INPUT POPT ON THE SCELBI-8H. THE OUTPUT OF THE "CHARACTER
READY* FLIP~-FLOP IS CONNECTED ON ONE LINE OF A SECOND INPUT PORT. VWITH
TH1S ARRANGEMENT, THE COMPUTER CAN FROM TIME TO TIME SAMPLE THF "CHAR=-
ACTER READY" INPUT PORT AND PERFORM A TEST ON THE BIT ASSOCIATED WITH
THF. INPUT LINE USED TO DETERMINF 1F A NEW CHARACTER IS VWAITING IN THE
TTL LATCHES. IF NO NEW CHARACTER IS WAITING THEN THE PROGRAM COULD
CONTINUF WITH SOME OTHFR COMPUTATIONS, OR IT COULD GO INTO A “WAITING
LOOP.'" WHENEUVER THE PROGRAM DETFRMINFS THAT A NEW CHARACTER IS WAIT-
ING IT SIMPLY DIRECTS THE COMPUTER (VIA A BRANCHING INSTRUCTION) TO
INPUT THE INFORMATION FROM THE INPUT PORT THAT IS CONNECTED TO THE DATA
LINES. WHEN THIS HAS BEEN DONE THE PROGRAM CAN THEN PROCEFD TO GENE=-
RATE A SIGNAL ON AN OUTPUT PORT (TO BE DISCUSSED LATER IN THIS CHAPTER)
THAT WOULD *“CLEAR" THE “CHARACTER READY" FLIP-FLOP.

IT SHOULD BE NOTED THAT IN THIS ARRANGEMENT ONLY ONE LINF IS USED
BY THE "CHARACTER READY" SIGNAL (AND SIMILARLY ONLY ONF OUTPUT LINE IS
USED TO CLEAR THE *“CHARACTER READY® FLIP-~FLOP.) SINCE AN INPUT (AND
OUTPUT) PORT HAS EIGHT LINES AVAILABLE, THE REMAINING SEVEN LINES OF
THE PORT COULD BE USED FOR SIMILAR “CONTROL" SIGNALS FROM (AND TO) A
WVHOLE GROUP OF DEVICES. A PROGRAM SUBROUTINE CAN THEN BE USED TO DETER=-
MINE WHICH PARTICULAR DEVICE(S) IN A GROUP ARE READY AND SELECT THE
PARTICULAR DATA PORTS FOR THE DEVICE(S) AS REQUIRED.

MENTION SHOULD BF MADE OF THE FACT THAT THOUGH THE DIAGRAM SHOWS
A TTL LATCH BEING USED TO INTERFACE TO THF INPUT PORT, OTHER TYPES OF
CIRCUITS COULD ALSO BE USED. FOR INSTANCE, ONE COULD INSTEAD HAVE A
“SFRIAL TO PARALLEL"™ CONVERTER THAT WOULD ACCEPT SERIAL INFORMATION
FROM A DEVICE (SUCH AS A TELETYPE MACHINE) AND WHEN THE ' SERIAL TO
PARALLEL" CONVERTER WAS FILLED WITH DATA A STROBE SIGNAL COULD BE USED
TO SET A “READY' FLIP-FLOP. THE COMPUTER COULD THEN BRING THE DATA INTO
THE ACCUMULATOR FROM THE “SERIAL TO PARALLEL" CONVERTER AND ISSUE A
“"CLEAR" SIGNAL TO THE “READY" FLIP-FLOP.

‘-2-

o e 3¢ e ke e o e 3 ok e e

Pecmemmnaak Aemccccccnencanan- -==> B7
* *
Pemmmm—————k Aemmcemcncnmemeecneae=> B
- ENCODED * *
Pevawnwme=k Rowmcomennnncescnenae=> B
oOUTPUT * * DATA
Prmmwenmmmk TTL L R L T > B4
* * INTO
Srecccnna= * LATCH L e L e e L Y ke > B3
FROM * * PORT A
Pmwmmmmn-- *® L L L ettt kb > B2
KEYBOARD * *
L Lt Koo e om cemcccceeecee=> Bl
* *
Pemmmrnan- * Aemconcanee - - > B@
290 35 35 2 3 2 e ke o ok o ok oK
L4 +5V
STROBE ¢ 0
t *
t *
* -
1 I
] CR]
t [
4 - o o
*]
1 * 25K K e e o 3 2K K
1]] * * CHAR
* t D * * READY
t Koo oo -k 1 e ————
*] * * INPUT
CHAR x % t * * PORT B
SELECT >====x AQeeccccnkeanccn e m e - O*=mzzmemzck
SIGNAL L N CLK * *
* * *
* "] *
* *
* *
e 3k e ok oK ok ok 3k
0
t CLR CHAR
t ACCEPT
T T <
OUTPUT
PORT

A REPRESENTATIVE CIRCUIT FOR AN ELECTRONIC KEYBOARD INTERFACE

FIGURE 2

* HOWEVER, IT 1S NOT ALWAYS NECESSARY TO USE A “SERIAL TO PARALLEL"™
-CONVERTER TO BRING INFORMATION FROM A SERIAL DEVICE INTO THE COMPUTER -
ESPECIALLY IF THE DEVICE IS ASYNCHRONOUS IN OPERATION SUCH AS A TELETYPE
MACHINE. IN FACT A "“START AND STOP" DEVICE SUCH AS A TELETYPE MACHINE
1S EVEN EASIER TO INTERFACE THAN THE ELECTRONIC KEYBOARD DISCUSSED
ABOVE. IN THE SIMPLE INTERFACE FOR A TELETYPE MACHINE SHOWN IN FIGURE
3 THE INFORMATION IS BROUGHT INTO THE COMPUTER ONE BIT AT A TIME USING
JUST ONE DATA LINE OF AN INPUT PORT. A PROGRAM IN THE COMPUTER 1S TKEN

-3-

USED TO ACCEPT THE INFORMATION RECEIVED SERIALLY BIT-BY-BIT AND FORMAT
IT INTO A "“CHARACTER."™

IN THE CIRCUIT ILLUSTRATED THE SAMF POWER SUPPLY AS THAT USED RY
THE COMPUTER SUPPLIES A “LOOP CURRENT" FOR THE TELETYPE TRANSMITTER.
THE TELETYPE TRANSMITTER 1S ESSENTIALLY JUST A MECHANICAL SWITCH THAT
OPENS AND CLOSES TO TRANSMIT A SERIES OF BITS OF INFORMATION. WHEN
THE SWITCH 1S CLOSED (THE TELETYPE “MARKING" CONDITION) THE TRANSISTOR
.IN THE CIRCUIT WILL BE TURNED ON. A TTL INVERTER IS USED FOLLOWING
THE TRANSISTOR TO PROVIDE D.C. LEVEL SHIFTING AND BUFFERING PRIOR TO
CONNECTING TO A DATA LINE ON AN INPUT PORT TO THE COMPUTER. THF IN=-
VERTER ALSO SERVES TO PROVIDE A LOGIC CONVENTION THAT DEFINES A "“MARK-
ING" CONDITION FROM THE TELETYPE TO BE RECEIVED AT THE COMPUTER AS A
LOGIC *1*" LEVEL. A TELETYPE "SPACING' CONDITION IS THEN RECEIVED AS A
LOGIC "@" LEVEL. IN THE EXAMPLE THE SIGNAL FROM THE TELETYPFE 1S FED
TO BIT B7 OF AN INPUT PORT SO THAT INCOMING DATA CAN BE READILY TESTED
FOR A "MARKING" OR 'SPACING" CONDITION BY USING A CONDITIONAL INSTRUC-
TION THAT DIRECTLY TESTS B7 (THAT 1S AN INSTRUCTION SUCH AS A “CTS" OR
A “JTS*" THAT TESTS THE 'SIGN" FLAG.) HOVEVER, ANY BIT POSITION COULD
HAVE BEEN USED TO BRING THE DATA INTO THE ACCUMULATOR AND OTHER TYPES
OF INSTRUCTIONS USED TO POSITION THE INCOMING DATA WITHIN THE ACCUMU-
LATOR AND PFRFORM TESTS TO DETERMINE THE LOGIC LEVFL OF THE INCOMING
DATA.

+5V
0
R
emmecce- *
wemwd> Dumemew=] R Jeew-=x
- - - - -
L] '
. £l
FROM fR}
€1
TTY -
4 *
XMTR 4 cemcecces *x %k INPUT
. Kewonmn=] R Jeowaaax LR TR > B7
o t - - * % PORT
. 4 *
. o’ 3 Ak KK K
. * 0 *x
m~me> DemecRmcmmemoKeo--k *
1]] *x NPN x*x
t t K 2 X 3K 3K oK K
- - t
t 3 s C L 4
(R] Y1 L3
(O | t 4
- - - 4 1 4
4 i 4 L 4
4 4
T -
4
t
0
-9V

FIGURE 3

-4-

SINCE A TELETYPE MACHINE 1S AN ASYNCHRONQOUS DEVICE IT IS A SIMPLE
MATTER TO HAVE THE COMPUTER RECEIVE INFORMATION VIA THE SIMPLE INTER-
FACE. ALL THAT IS NECESSARY IS TO HAVE A PROGRAM THAT PERIODICALLY
SAMPLES THE LINE ON THE INPUT PORT TO WHICH THE TELETYPE TRANSMITTER
1S CONNECTED AND PERFORM A TEST TO SFE IF THE TELETYPE IS "MARKING" OR
“SPACING." IF THE TELETYPE IS IN THE STEADY MARKING CONDITION THE COM-
PUTER CAN PERFORM SOME OTHER TASK BEFORE COMING BACK TO SAMPLE THE INPUT
PORT. 1IF ON THE OTHER HAND A '“SPACE" 1S DETECTED THEN THE PROGRAM
WILL KNOW THAT THE "START BIT" IS BEING SENT BY THE TELETYPE MACHINE.
AT THIS TIME THE PROGRAM CAN BRANCH TO A "“TIMING LOOP"™ THAT WILL SAMPLE
THE INCOMING SERIAL DATA AT SPECIFIC TIMES (DEPENDENT ON THE OPFRATING
SPEED OF THE PARTICULAR MOLEL OF TELETYPE MACHINE BEING USED.) THE
SAMPLE POINT 1S SELECTED TO FALL AT OR NEAR THE PROJECTED MID-POINT OF
EACH BIT OF SERIAL DATA. AS THE DATA IS SAMPLED A LOGIC "1' (MARK) OR
LOGIC *8" (SPACE) CAN BE STORED IN SEQUENTIAL ORDER IN A CPU REGISTER
(OR WORD IN MEMORY) UNTIL ALL THE BITS FROM A "“CHARACTER' HAVE BEEN RE-
CEIVED. USING THIS METHOD THE COMPUTER EASILY CONVERTS THE SERIAL
DATA TO A PARALLEL CODE (SUCH AS ASCII OR BAUDOT) AND ELIMINATES THE
NEED FOR AN EXTERNAL "SERIAL TO PARALLEL"™ CONVERTER. WHEN ALL THE BITS
OF A CHARACTER HAVE BEEN TRANSMITTED THE TELETYPF SENDS A *STOP" BIT
(MARKING CONDITION.) THE COMPUTER PROGRAM CAN DETERMINE WHEN THE " STOP"
BIT IS DUE BY COUNTING THE NUMBER OF BITS RECFEIVED. THE COMPUTER CAN
THEN USE THE TIME THAT IT TAKES FOR THE "“STOP'" BIT TO BE SENT BY THE
TELETYPE TO PERFORM SOME OTHER TYPES OF OPERATIONS AND THEN GO BACK
TO PERIODICALLY SAMPLING THE INPUT LINE TO CHECK FOR THE BEGINNING OF
ANOTHER “CHARACTER."

OUTPUT PORTS

OUTPUTTING INFORMATION FROM THE SCFLBI-8H MINI-COMPUTER TO AN EX-
TERNAL DEVICE IS JUST ABOUT AS,K EASY AS INPUTTING INFORMATION. FACH
OUTPUT PORT IS EQUIPPED WITH EIGHT “DATA' LINES AND ONE *STROBE"
LINE. THE EIGHT DATA LINES ARE ACTUALLY A BUSS ARRANGEMENT WITH THE
BUSS GOING TO ALL OUTPUT PORTS. THE STROBE LINE IS USED TO SELECT
THE PARTICULAR OUTPUT PORT THAT IS TO TAKE DATA FROM THE OUTPUT BUSS.
THE STROBE LINE FOR THE SELECTED OUTPUT PORT 1S SIMPLY PULSED BY THE
COMPUTER DURING THE EXECUTION OF AN OUTPUT INSTRUCTION FOR THAT SPEC-
IFIC PORT. THE DATA FROM AN OUTPUT PORT CAN BE STROBED INTO A TTL
LATCH, OR SHIFT REGISTER, OR OTHER TYPE OF CIRCUIT THAT VWILL FURTHER
PROCESS THE DATA RECEIVED TO OPERATE AN EXTERNAL DEVICE. A TYPICAL
CIRCUIT FOR AN OUPUT PORT 1S SHOWN IN FIGURE 4.

IT SHOULD BE MENTIONED THAT THE STANDARD SCELBI-8H CHASSIS IS
EQUIPPED WITH EIGHT OUTPUT PORT SOCKETS. THESE EIGHT OUTPUT PORTS ARE
REFERRED TO AS OUTPUT PORTS 18 THROUGH 17. HOWEVER THE SCELBI 1161~
"DBB AND OUTPUT CARD*" IS EQUIPPED WITH CIRCUITRY TO OPERATE SIXTEEN
OUTPUT PORTS (THE ADDITIONAL PORTS ARE REFERRED TO AS PORTS 26 THROUGH
27.) THIS FACT 1S MENTIONED AS SOME USERS MAY DESIRE TO HAVE A SPECIAL
SYSTEM CONFIGURED OR DESIGN THEIR OWN SYSTEM (BY INSTALLING A SCELBI-8H
CARD SET IN THEIR OWN CHASSIS OR OTHER SYSTEM PACKAGING ARRANGEMENT
EQUIPPED WITH ADDITIONAL OUTPUT CONNECTORS) IN ORDER TO HAVE A SYSTEM
WITH EXPANDED OUTPUT CAPABILITY. THE MAJORITY OF USERS, HOWEVER, WVWILL
FIND THAT EIGHT OQUTPUT PORTS PROVIDES PLENTY OF OUTPUT CAPABILITY FOR
A SCELBI-& MINI-COMPUTER SYSTEM.

SINCE THE OUTPUT DATA LINES ARE ON A BUSS STRUCTURE CARE MUST BE
USED WHEN A LARGE NUMBER OF EXTERNAL DEVICES ARE CONNEGTED TO THE
OUTPUT PORTS. THE BUSSES ARE DESIGNED TO BE ABLE TO DRIVE UP TO FOUR
STANDARD TTL LOADS. IF THE USER DESIRES TO HAVE MORE THAN FOUR OUT-

-5 =

\

PUT PORTS IN USE (CONNECTED TO THE COMPUTER) SIMULTANEQOUSLY THEN LOW
POWER TTL DEVICES SHOULD BE USED TO CONNECT T0 THE OUTPUT DATA BUSS.
THE OUTPUT BUSS CAN READILY HANDLF UP TO 16 OUTPUT PORTS WHEN ALL

PORTS ARE EQUIPPED WITH LOW POWER TTL INTERFACING CIRCUITS.

THE STROBE LINFE FOR EACH OUTPUT PORT IS ABLE TO DRIVE UP TO TEN

STANDARD TTL LOADS.

HOWEVER,

1T IS RECOMMENDED THAT A

"“PULL-UP"

RESIS=-

TOR BE USED IF MORE THAN A FEV LOADS ARE DRIVEN BY A SINGLE STROBE LINE
OR IF THE DISTANCE TO THE DEVICE BEING DRIVEN REQUIRES MORE THAN 36
. INCHES OF CONNECTING VIRE.

FROM

OUTPUT

PORT

OUTPUT
PORT
STROBE

B7

Bé

BS

B4

B3

B2

Bi

BO

¢ 2k 20 2k ok ke ¢ 2K e ok 3k 3K kK

Do - - - - - W mmwmmemmmnmnwened
* *

Do w e Ao o o - oo - -
* %

Do wm - LR X2 L LR LT X - mmm D>
* *
>emmmcmmn———————X TTL T S
* *x
>eeememmcceccecaek LATCH *eeccmeccccea- ———>
* *

Deemmm—- - - - - -k E L E T R L LR T]
* *

P PR —— - Keommmmnca—- 'S
* *

PR LELE R LR LY LT] E T T - - - - -
35 2k 3 ok 3k 3k %k 3k Ak 3 3 X K
L
4
t
PR LR L LR L T

FIGURF

TO

FXTERNAL

DEVICE

QUITE OFTEN IT IS DESIRABLFE TO USE TWO OR MORE QUTPUT PORTS TO CON-

TROL AN EXTERNAL DEVICE.
TRANSMITTING ' DATA"
*"CONTROL"

SIGNALS TO THE MECHANISM.

FOR INSTANCE ONF PORT MIGHT BE USED PURELY FOR
TO A DEVICE AND A SFEGOND PORT UTILIZED FOR PASSING
THE USFR IS PRACTICALLY UNLIMIT-

ED IN THF NUMBER OF WAYS EXTFRNAL DEVICES CAN BE CONTROLLED BY THFE

SCFLBI -8H MINI-COMPUTER.

FOR INSTANCE, THE INFORMATION TRANSMITTFD FROM

THE OUTPUT PORTS CAN BE TRANSLATED INTO SIGNALS THAT OPFRATE RFLAYS,
OR FLECTRONICALLY ACTIVATED PNEUMATIC VALVES OR CYLINDERS,

STEPPING

MO TORS.,

OR ELECTRONIC
OR A WHOLE HOST OF OTHER SIMILAR DEVICES AS WELL AS

CONVENTIONAL FLECTRONIC CIRCUITS THAT CAN BE USED TO CONTROL THE OPERA-
TION OF PURELY ELECTRONIC EQUIPMENT.

THEN TO0O.,

PORT.

FOR EXAMPLE,

IT IS OFTEN DESIRABLE TO USE JUST ONE OUTPUT PORT TO CONT=-
ROL A WHOLE GROUP OF DEVICES,

OR TO JUST USE ONE DATA LINE OF AN OUTPUT
ONE CAN MAKE A VERY SIMPLE INTERFACE THAT VILL

ENABLE THE COMPUTER TO DRIVE A SERIAL DEVICE SUCH AS A TELETYPE RECEIV-

ER.

IN THIS ARRANGEMENT THE COMPUTER IS USED TO CONVERT INFORMATION
WITHIN THE COMPUTER FROM A PARALLEL TO A SERIAL FORMAT.
OF SUCH AN INTERFACE 1S SHOWN IN FIGURE 5.

AN ILLUSTRATION
THIS INTERFACE CAN BE USED

. IN CONJUNCTION WITH THE PREVIOUSLY DESCRIBED CIRCUIT THAT ACCEPTED

INFORMATION FROM A TELETYPE,
TO A TELFTYPF PRINTER,

TO PROVIDE A SYSTEM THAT WILL TRANSMIT DATA
AND RECEIVE DATA FROM THE TELETYPE KEYBOARD

S0 THAT THE USER HAS COMPLETE INPUT/OUTPUT CAPABILITY VWITH THE MACHINE.

- 6

+5V

0
]
T e L L L L T T Y
t t
——— *
L1]
(R} 1
[t
- t
34 2k 2 oK ok 3K ok o ok] 3% 3k ok sk ok o K
FROM * * * - *x Q *
OUTPUT B7 >=-=% LATCH #0~=c=eckececvcawe] R Jececcwx *
PORT * x*x 000 eeee- - * PNP x%
K 2K 3k 3 3 3K oK oK X ook o O 3K e K
L} t
NUTPUT t *
PORT Prmmmmm—- ek -
STROBE L3
(R}
[

t
h]
Kewamawaed <+
TO
TELETYPE
----- - RECE1VER
“9Y Qem=ewe] R J-scccecmmmce> -

FIGURE 5

THE CIRCUIT IN FIGURE S OPERATES AS FOLLOVWS. . INFORMATION FROM THE
-COMPUTER IS TRANSMITTED TO THE LATCH USING BIT B7 OF AN OUTPUT PORT.
SINCE THE DATA IS TO BE TRANSMITTED IN SERIAL FASKION A PROGRAM IN THE
COMPUTER IS USED TO CONVERT A CHARACTER IN PARALLFL FORMAT TO A SERIAL
FORMAT BY USING ROTATE INSTRUCTIONS TO HAVE EACH BIT OF THE CHAR-

ACTFR POSITIONED TO BIT B7 IN THE ACCUMULATOR PRIOR TO EXECUTING THE
OUTPUT INSTRUCTION FOR THE SELECTED PORT. A PROGRAMMED TIMING LOOP IS
USFD TO DETERMINE WHEN TO SEND THE NEXT BIT OF INFORMATION. PRIOR TO
STARTING TRANSMISSION OF THE CHARACTER THE PROGRAM SENDS A “SPACE" BIT
TO START THE TELETYPE AND AT THE END OF THE CHARACTER THE PROGRAM SENDS
A "MARK" BIT TO PLACE THE TELETYPE IN THE “STOP'" CONDITION. INFOR~
MATION RECEIVED BY THE LATCH IN THE ABOVE CIRCUIT 1S INVERTED BY USING
THE INVERTING OUTPUT OF THE LATCH AND FED TO A TRANSISTOR THAT OPERATES
A5 A SWITCH FOR THE RECEIVING LOOP OF THE TELETYPE. THIS CONVENTION
ESTABLISHES A LOGIC 1" FROM THE COMPUTER AS A “MARK" FOR THE TELETYPE
AND A LOGIC 8" AS A 'SPACING'" CONDITION.

1/0 CONNECTORS

THE STANDARD SCELBl-8H CHASSIS IS EQUIPPED WITH 14 1/0 SOCKETS.
S1X SOCKETS ARE FOR INPUT PORTS AND EIGHT SOCKETS ARE FOR OUTPUT PORTS.
THE SOCKETS USED ARE 1! PIN AMPHENOL SFRIES 78 CONNECTORS WHICH WILL
MATE WITH SERIES 86 MALE PLUGS. 1/0 CABLES ARE AVAILABLE WHICH CONSIST
OF 11 WIRE CABLES WITH A FEMALFE CONNECTOR ON ONE END AND A MALE CONN-
ECTOR ON THE OTHER END. STANDARD SCELBl SUPPLIED PERIPHERAL INTER=-

-7'

FACES ARE EQUIPPED WITH THE MALF AMPHFENOL SFRIES 86 CONNECTORS. THF
USE OF THESE TYPES OF CONNECTORS PROVIDFS FOR A SIMPLE, LOW COST, AND
RELIABLE METHOD FOR CONNECTING THF COMPUTER TO EXTERNAL DEVICES. THE
STANDARD PIN ASSIGNMENTS ON THE 1/0 CONNECTORS ARF SHOWN BFLOW FOR
BOTH THE INPUT AND OUTPUT PORT CONNECTORS.

STANDARD INPUT PORT CONNECTOR PIN ASSIGNMENTS

PIN #1 BO
PIN #2 Bl
PIN #3 B2
PIN #4 B3
PIN #5 B4
PIN #6 BS
PIN #7 Bé
PIN #8 B7
PIN #9 SPARFE
PIN #1@ SPARF
PIN #11 SIGNAL GROUND

STANDARD OUTPUT PORT CONNECTOR PIN ASSIGNMENTS

PIN #1 B@

PIN #2 Bl

PIN #3 B2

PIN #4 B3

PIN #5 B4

PIN #6 BS

PIN #7 Bé&

PIN #8 B7

PIN #9 STROBE
PIN #10@ SPARE
PIN #11 SIGNAL GROUND

IT SHOULD BE NOTED THAT THERE ARE SPARE PIN(S) ON THF INPUT AND
OUTPUT PORT CONNECTORS. THESF PINS MAY BE USED TO ROUTE SPECIAL SIGNALS

(SUCH AS THE COMPUTER'S ''SYNC'" SIGNAL WHICH CAN SERVE AS A ''CLOCK®) FROM
THE COMPUTER TO AN EXTERNAL DEVICE.

NOTES ON UTILIZING HARDWARE INTERRUPTS FROM EXTERNAL DEVICES ‘

THE INTERFACES DISCUSSED PREVIOUSLY IN THIS CHAPTER HAVE RFLIED
ON USING *"SOFTWARE" (A PROGRAM IN THE COMPUTER) TO TEST AN EXTERNAL
FLIP-FLOP OR SIMILAR TYPE OF FLAG TO DETERMINE WHEN INFORMATION IS
READY TO BE SENT TO THE COMPUTFR. 1IN SOME .APPLICATIONS IT MAY BE DF-
SIRABLE NOT TO USE SOFTWARE TO DETERMINE WHEN A DEVICE HAS NEVW INFOR-
MATION TO SEND TO THE COMPUTER, BUT INSTEAD, TO “INTERRUPT" THE CPU
ViA A HARDWARE SIGNAL. THIS CAN BE ACCOMPLISHED IN A STANDARD SCELBI=-8&H
BY PARALLELING WIRES TO THF *INT'" AND "RUN' PUSH BUTTON CHASSIS SWITCH=-
ES, AND THEN LEAVING THE CHASS!S TOGGLE SWITCHES SET TO, FOR EXAMPLE,
A “RST" (RESTART) INSTRUCTION WHICH IS EFFECTIVELY A ONE WORD “CALL"
TYPFE COMMAND. WHEN THIS 1S DONE THE EXTERNAL DEVICE CAN THEN TRIGGER
THE " INTERRUPT" FACILITY WHENEVER IT HAS A REQUIREMENT FOR THE COM-
PUTER'S ATTENTION. AFTFR GENFRATING THE "INTERRUPT" SIGNAL THE EXTER-
NAL DEVICE SHOULD ISSUE A PULSE ON THE “RUN®" LINE. THIS SEQUENCE WILL
CAUSE THE COMPUTER TO0 EXECUTE THE " INTERRUPT' INSTRUCTION THAT IS SFT
UP ON THE CHASSIS TOGGLE SWITCHES. 1F THE SWITCHES ARE SET TO A “RST"
TYPE INSTRUCTION THEN A SUBROUTINE IN ONE OF THE RESTART LOCATIONS CAN
BE USED TO SERVICE THE DEVICE INITIATING THE INTERRUPT. 1IT IS POSS-
IBLE TO HAVE THE "INTERRUPT" SERVICE ROUTINE DETERMINE WHICH OF A SER=-
IES OF DEVICES NEEDS TO BE SERVICED (BY LONOKING FOR CONTROL SIGNALS ON
AN INPUT PORT.) THE METHOD OF USING HARDWARE GENERATED INTERRUPTS IS
OFTEN MORE EFFICIENT IN TFERMS OF PROGRAMMING REQUIREMENTS AND CAN PRO-
VIDE FASTER RESPONSE TO SERVICING EXTERNAL DEVICES IN MANY APPLICATIONS.

IF AN EVEN MORE SOPHISTICATED HARDWARE INTERRUPT SYSTEM 1S REQUIRED.,
IT 1S POSSIBLE TO PARALLEL THE CHASSIS TOGGLE SWITCHES AND HAVE AN
EXTERNAL DEVICE SET UP THE DESIRED CODE FOR AN "INTERRUPT" INSTRUCTION.
HOWEVER, IN THIS KIND OF APPLICATION ONE MUST TAKE EXTREME CARE TO SET
ALL THE CHASSIS TOGGLE SWITCHES TO THE OPEN CONDITION WHEN THE EXTERNAL
DEVICE 1S CONNECTED IN PARALLEL WITH THF TOGGLE SWITCHES. SINCF SUCH AN
APPLICATION IS LIKELY TO BE FOR A DEDICATED OR SPECIAL SERVICE THAT DOES
NOT REQUIRE SIGNIFICANT OPERATOR ATTENTION 1T WOULD BE ADVISABLE TO HAVE
A SPECIAL SCELBI-8H SYSTEM ASSEMBLED THAT WOULD SPECIFICALLY MAXIMIZE
THE BASIC CAPABILITY OF THE COMPUTER TO INTERFACE TO AN EXTENSIVE HARD=-
WARE INTERRUPT SYSTEM.

SUMMARY

THE INFORMATION PRESENTED IN THIS CHAPTER SHOWS HOW EASY IT IS TO
CONNECT EXTERNAL DEVICES TO A SCELBI=-8H MINI-COMPUTER. MANY USERS VWILL
WANT TO BUILD THEIR OWN SYSTEM INTERFACES TO CONTROL DEVICES THAT HAVE
SPECIFIC AND INDIVIDUAL REQUIREMENTS. SUCH USER'S MAY WANT TO REFER
TO THE DETAILED SCHEMATICS AND OTHER DETAILED ENGINEERING DRAWINGS WHICH
_ ARE PROVIDED WITH FACH SCFLBI~-&H UNIT IN ORDER TO OBTAIN ADDITIONAL
- INFORMATION ON SUCH POSSIBILITIES AS USING SIGNALS AVAILABLE IN THE
COMPUTER TO PROVIDE CLOCK SIGNALS TO EXTERNAL CIRCUITS.

THE. READER 1S REMINDED THAT INTERFACES FOR MANY COMMONLY USED 1/0
DEVICES, AND SUPPORTING PROGRAMS, ARE AVAILABLE FROM THE MANUFAC TURER
OF THE SCELBI-&H MINI-COMPUTER. THESE INCLUDE: AN ASCII KEYBOARD wWITH
AN INTERFACE, INTERFACES FOR STANDARD MODELS OF TELETYPE MACHINES, BOTH
ASCI11 AND BAUDOT UNITS, AN INTERFACE THAT WILL CONVERT AN OSCILLOSCOPE
INTO AN ALPHA-NUMERIC DISPLAY DEVICE (VWITHOUT REQUIRING ANY MODIFICATION
TO THE OSCILLOSCOPE UNIT), AND AN INTERFACE THAT ENABLES A LOW COST
AUDIO CASSETTE TAPE RECORDER TO BE USED TO STORE DATA AND PROGRAMS FROM

—9—

THE COMPUTER®S MEMORY AND TO RELOAD DATA OR PROGRAMS BACK INTO MEMORY
FROM THE TAPE UNIT (AGAIN THE INTERFACE DOES NOT REQUIRE ANY MODIFI-
TIONS TO THE TAPE RECORDER UNIT).

IN ADDITION TO STANDARD INTERFACES THE MANUFACTURER 1S OFTEN ABLE
TO SUPPLY SPECIALLY DESIGNED INTERFACES AND PROGRAMS TO USERS WHO DO NOT
DESIRE TO DESIGN AND/OR CONSTRUCT THEIR OWN.

MANY USERS, HOVWEVEK, WILL BE ABLE TO BUILD UP THEIR QWN CUSTOM
TAILORED 1/0 SYSTEMS WITHOUT DIFFICULTY BECAUSE OF THE SIMPLICITY VWITH

WHICH THE SCELBI=-8H MINI-COMPUTER CAN BE INTERFACFD TO FXTERNAL EQUIP=~
MENT.

