
•
•

I l (0 •

SCELBAL - A HIGHER LEVEL LANGUAGE FOR 8008/8080 SYSTEMS

BY

Mark Arnold
and

Nat Wadsworth

© Copyright 1976
SCELBI COMPUTER CONSULTING, INC.

1322 Rear - Boston Post Road
Milford, CT. 06460

- ALL RIGHTS RESERVED -

• ,,;, .. .: ; - ' ".;!", . - , ,,'. ',- ,- ,_. '-
-, --

1 " ,-.... -' .. : ""-'--
'.-

IMPORTANT NOTICE

Other than using the information detailed herein on the purchaser's individual
computer system, no part of this pUblication may be reproduced, transmitted,
stored in a retrieval system, or otherwise duplicated in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without
the prior express written consent of the copyright owner.

The information in this publication has been carefully reviewed and is believed
to be entirely reliable. However, no responsibility is assumed for inaccuracies
or for the success or failure of various applications to which the information
herein might be applied.

The authors wish to thank the following members of the staff
at Scelbi Computer Consulting, Inc., for their dedicated assis-
tance in the preparation of this pUblication:

Robert Findley
Raymond Edwards

Ms. Gabrielle Tingley

SCELBAL - A HIGHER LEVEL LANGUAGE FOR 8008/8080 SYSTEMS

T ABLE OF CONTENTS

Chapter ONE

Chapter TWO

Chapter THREE

Chapter FOUR

Chapter FIVE

Chapter SIX

Chapter SEVEN

Chapter EIGHT

Chapter NINE

Chapter TEN

Chapter ELEVEN

Chapter TWELVE

Chapter THIRTEEN

Chapter FOURTEEN

Chapter FIFTEEN

Appendix I

Introduction

Interpreter Versus Compiler

The Fundamental Capabilities of SCELBAL

Fundamental Operation of SCELBAL

The Executive

The 1\1ain Syntax Routine

Statement Interpretation

Evaluating Mathematical Expressions

The Parser Routine

Function and Optional Array Handling Routines

Mathematical Routines

I/O Routines

SCELBAL Assembled for Operation
on an 8008 System

SCELBAL Assembled for Operation
on an 8080 System

Operating SCELBAL

Suggestions for Program Tinkerers

SCELBAL Labels Reference List

-

-

NOTES

In the assembled listings the contents of address locations 01 272 through 01 303 as presented on
page 4 in chapters 12 and 13 should be changed to contain the following data.

01272 004 (cc) for SAVE
01273 323 S
01274 301 A
01275 326 V
01276 305 E
01277 004 (cc) for LOAD
01300 314 L
01301 317 0
01302 301 A
01303 304 D

These locations were incorrectly identified in the listing as being part of the Arithmetic Stack and a
temporary storage location for the FP ACC. Failure to make the above corrections in the listings
will result m the program being unable to correctly respond to a SAVE or LOAD executive com-
mand directive.

PATCH NR. 1

The following patch is recommended to correct a
condition in the floating point addition subroutine.
If the patch is not installed, small mathematical errors
may be introduced into calculations (in the order of
10 to the minus seventh power) under certain condi-
tions. These errors are caused by residue left in the
FPOP (Floating Point OPerand) extension byte. The
patch clears the FPOP extension byte when it is used
by the portion of the FPADD subroutine labeled
SHACOP.

To correct the source listing make a note in
chapter ten on page 6 that two instructions:

LLI 133
LMIOOO

should be inserted between the second and third lines
of the subroutine labeled SHACOP.

To implement the correction for the assembled
listings of the program provided, it is recommended
that the first two instructions of the subroutine
labeled SHACOP be changed to read:

SHACOP, CALPATCH1
LAA

P ATCH1 may be inserted starting at location 000
on page 30 in the assembled versions. Making this
change to direct the program to the patch would
result in the 8008 listing shown on page 48 of chapter

12 in the vicinity of the label SHACOP to appear as:

20341 106000030
20344 300

SHACOP, CALPATCH1
LAA

Similarly, the 8080 version listing on page 48 of chap-
ter 13 wou ld appear as:

20341 315000030 SHACOP, CAL PATCH1
20344 177 LAA

The actual PATCHI subroutine would need to
contain the two instructions replaced by the calling
sequence as well as the two instructions being added.
The unused bytes starting at location 000 on page 30
(in the program listing) as shown for the 8008 version
on page 68 of chapter 12 would appear as:

30000 066 123
30 002 076 000
30 004 066 133
30006 076000
30010 007

PATCH1, LLI123
LMIOOO
LLI133
LMIOOO
RET

While the 8080 version (page 68 of chapter 13) would
appear as:

30 000 056 123
30 002 066 000
30 004 056 133
30 006 066 000
30010 311

PATCH1, LLI123
LMIOOO
LLI133
LMIOOO
RET

NOTES

PATCH NR. 2 - Revised

The implementation of PATCH NR. 1 will cause
a problem to occur in the square root function sub·
routine if th .. following PATCH NR. 2 is not also in-
stalled. This is because the square root routine init-
ially only tested for convergence by examining the
size of th" exponent involved. The increased accur-
acy that r('sults whpn PATCH NR. I is implemented
can cause certain vallIes to converge to zero as the
square root is calculated. PATCH NR. :2 inserts an
additional test for the zero condition in that sub-
routine. Failure to implem('nt this patch when the
first patch has been implemented can result in the
square root function subrou tine "hanging up" in
fln endless loop when an attempt is made to take the
square root of a number such as 1.0 or 4.0! The fol-
lowing patch corrects for this possibility.

To correct the source listing make a note in
chapter nine on page 11 that the following instruc-
tions:

DCL
LAM
NDA
JTZ SQRCNV

should be inserted between the 16th and 17 th lines
from the top of that page between the instructions:

JTS SQRCNV
and

LLI034

To implement the correction for the assembled
listings of the program provided, it is recommended
that a patch be made by changing the JTS SQRCNV
instruction which starts at address 32 163 to the in-
struction JMP P ATCH2 and adding a label SQRl to
the LLI 034 instruction which is at location 32166.
The actual patching instructions may be placed
starting at address 32 364 and would consist of the

sequence:

PATCH2, JTS SQRCNV
DCL
LAM
NDA
JTZ SQRCNV
JMP SQRl

Implementing the patch in this recommended
fashion would result in the 8008 version (chapter 12
page 75) being altered at the following addresses to
appear as:

32 163 104364032
32166 066034

at the patch to appear as:

J!vlP PATCH2
SQRl, LLI 03 ..

32364 160203032 PATCH2, .JTS SQRCN'l
32 367 061 DCL
32 370 307 LAM
32 371 240 NDA
32 372 150 203 032 JTZ SQRCNV
32375 104166032 JMP SQRl

Similarly, for the 8080 version (chapter 13 on
page 75) the patch would result in the following loca-
tions being changed to:

32 163 303364 032
32 166 056034

JMPPATCH2
SQRl, LLI034

and the patch locations to appear as:

32364 372203032 PATCH2, JTS SQRCNV
32 367 055 DCL
32 370 176 LA.'vl:
32 371 247 NDA
32 372 312203032 JTZ SQRCNV
32 375 303166032 JMP SQR1

• 4 I

In the source listing, on page 13 of chapter 10, change the first three instructions in the
routine labeled DVEXIT to appear as follows:

DVEXIT, LLI 143
LEI 123
LEI 004

Change the corresponding section of the assembled listing for the 8008 version on page 52 of
chapter 12 to read:

22070
22072
22074

066143
046123
016004

And the 8080 version on page 52 of chapter 13 to read:

22070
22072
22074

056143
036123
006004

DVEXIT, LLI 143
LEI 123
LBI004

DVEXIT, LLI 143
LEI 123
LBI004

This revision will correct a residue problem which can cause incorrect results to occur when a
number with a negative exponent is divided into the value zero.

PATCH #3

01L307 066 201
011_311 056 027
011_313 076 00:0
011_315 104 266 010

012_354 104 307 011

026_360 033

011_027 076 000

NOTES

patch3

PATCH3: LLI 201
LHI 027
LMI 000
JMP EXEC

JMP PATCH3

_DB 033

LMI 000

INTRODUCTION

In the early 1970's technology produced
the integrated circuit microprocessor. The
advent of this device offered the promise of
making low cost computing elements avail-
able to the general public at large and raised
the hopes of many citizens that the power of
the computer could finally be accessed by in-
dividuals of limited means. This promise was
most exciting for in the past the use of com-
puters had been fairly limited, for economic
reasons, to institutions that could afford the
use of their incredible power.

For the first several years after their intro-
duction, microprocessors remained primarily
in the domain of highly educated scientist
and engineers who were backed by organi-
zations equipped to exploit the device's
capabilities in a variety of fields. Gradually,
however, as knowledge spread, their capa-
bilities became known to the general public.
People, many of them electronic enthusiasts
and hobbyists, wanting to harness the power
of these devices for personal use began to
clamor for low cost computing systems. The
old laws of supply and demand came into
effect. Within a short time span, a number of
small corporations began to offer the hard-
ware for small personalized systems. Initial-
ly, only individuals with appropriate techni-
cal backgrounds were able to capitalize on the
availability of these low cost systems and put
them to effective use. Some people, enthral-
led by the exciting potential of such systems,
had some rude awakenings. For, while the
microprocessor is touted as being able to do
any and everything, it turns out that these
little devices are virtually worthless without
SOFTWARE or PROGRAMS that can direct
their activities. The development of useful
software using early machine language tech-
niques is no trivial task. It takes a consider-
able amount of individual effort to get to the
point where one can program a computer
using the most fundamental programming
method, which is machine or assembly lan-
guage programming. These programming
methods require an intimate knowledge of

I - 1

the detailed operation of a computer on a
step-by-step basis. The development of even
seemingly simple tasks using these program-
ming methods can take an inordinate amount
of time. This is particularly so if one is
not skilled in the art and practice.

The limitations of machine language
programming have been known for many
years since the beginnings of computer
technology some 30 years ago. Over the
years a number of HIGHER LEVEL
LANGUAGES have been developed so
that people other than computer experts
could work effectively with computers.
Higher level language programs are actually
programs written in machine or assembler
language by skilled personnel that will in
turn allow other people to communicate
with the computer using simple commands
and statements. The degree of programming
efficiency that may be achieved using a
higher level language is many orders of mag-
nitude over that required to perform the
same tasks using the fundamental machine
language programming methods. For in-
stance, a simple directive such as:

LET X = (Y + 145*Z) T (2*N - M)

might require several THOUSAND individual
machine language instructions to achieve a
general solution capability. A person who had
many such equations to solve would soon opt
to forget the use of a computer if such a task
had to be performed for each variation of
similar problems. It may be apparent, how-
ever, that such equations, while individually
different in detail, consist of similar opera-
tions (such as multiply, add, raise to a power
and so forth). A higher level language is de-
signed to take advantage of such similarities
in a generalized fashion.

On the other hand, while a higher level
language yields such tremendous increases
in programming efficiency, this increase is
not achieved without sacrifice! It takes many

thousands of man hours to develop such a
generalized higher level language, and this
investment in labor must be made each time
such a language is created. It is not always
easy to get a group of people together and
make the type of investment necessary to
initially develop such a language. Addition-
ally, the individual user who desires to in-
stall such a language on a computer, must
pay for the increased programming effic-
iency by budgeting a significant amount of
the available memory in the computer for
the exclusive use of the operating portion
of the higher level language program. What
is left over may then be used to hold the
user's program (in the higher level language
form) along with any data that is to be
manipulated or processed. For the small
system user, the "significant" amount of
memory set aside for the operating portion
of the higher level language, for the program
described herein, will be some six to seven
thousand bytes of memory. This is indeed
a good chunk of memory for the system
owner who has but 8 K of that precious
commodity!

The individual user must also sacrifice
certain aspects of a computer's capability
when utilizing a higher level language. For
instance, it is virtually impossible to pro-
gram real-time routines whose precise exe-
cution times can be controlled when using
the higher level syntax. This is because the
higher level syntax does not give the pro-
grammer access to individual machine lan-
guage instructions. Additionally, many types
of instructions available in machine language
(for instance, rotating a register to the right
or to the left) have no direct counter-part in
the higher level language. (However, the
student of this pUblication will be in a posi-
tion to incorporate subroutines that can be
accessed by higher level language programs
and can thus enjoy the benefits of both types
of programming!)

Despite the relatively large memory re-
quirements of a high level language, and the
other types of limitations mentioned, it is
felt that the time has arrived when such a

I - 2

language would be welcomed by small sys-
tems owners when presented in the detailed
manner of this pUblication.

The higher level language to be presented in
this pUblication has been given the acronym
SCELBAL. This stands for SCientific ELe-
mentary BAsic Language. It has been patter-
ned after a commonly used higher level
language referred to as BASIC.

SCELBAL was specifically developed to be
able to run on systems using the ubiquitous
8008 CPU. This CPU is generally acknow-
ledged as being the first true 8-bit CPU to be
manufactured on an integrated circuit. It was
first developed by a California based firm,
Intel Corporation. SCELBAL is believed to be
the first such higher level language to be
specifically developed to run on the 8008
CPU and be made generally available to the
public. The program described herein can also
be run on systems using the more powerful
8080 CPU though it is not as memory effi-
cient as it could have been if the program had
forsaken 8008 capability.

While this publication was specifically
prepared to demonstrate the details of the
language as developed for 8008/8080
machines, the pUblication should be of
considerable interest to users of other types
of similar computing devices. Indeed, the
experienced programmer, armed with the
knowledge presented in this book, should be
in a pretty good position to implement a
similar language on just about any other
microprocessor by simply translating the
machine code instructions to those of the
machine of particular interest to the user.
(While such a project might seem monumental
to some, the information in this book would
make the task considerably less difficult than
approaching such a task without the practical,
detailed information which is presented
herein!)

The major objectives of this pUblication
are to:

1.) Present a higher level language that can

be implemented on 8008/8080 microproces-
sor systems with the user having the freedom
to adapt the package to various individual
I/O configurations.

2.) Present the intimate details of its opera-
tion so that it may be readily modified and
adapted to individual user's applications and
requirements.

3.) Serve as an educational and stimula-
tive tool for the future development of simi-
lar languages, possibly of a more advanced
nature.

Much thought in the preparation of the
overall program went into just what capa-
bilities to provide given the various techni-
cal trade-offs that one must consider. It

1-3

was known at the start that the program
could not be developed to satisfy every
potential user. Nobody has a system with that
much memory available! Care was taken to
provide a good fundamental selection of
syntax statements and functions in the
language. From that point, backed by the
descriptions of the program's organization,
general flow charts, and highly commented
listings provided in this pUblication, it is
felt that the user will be equipped to add
extended capabilites depending on mem-
ory available, or willingness to sacrifice
described functions. For many users, it is
felt that the program as presented, will be
entirely satisfactory. The extra measure of
providing the information so that the user
may go further if desired, is the fundamental
premise behind this publication.

INTERPRETER VERSUS COMPILER

SCELBAL was developed as an INTER-
PRETIVE language, not a compiler. Some
readers might be asking, "What's the diffe-
rence?"

There is a lot of difference. An interpre-
tive language is one that essentially proces-
ses each line or statement in the source
code of the higher level syntax and then
executes the directive before going on to
the next line or statement. It does this bv

"
calling on machine language routines that
perform the various functions as soon as
it has been determined which job is to be
accomplished. A compiler operates quite
differently> Each time it processes a state-
ment in the higher level language syntax
it PRODUCES some machine language
coding that can later be executed to per-
form the desired task.

From this brief introduction it may be
apparent that there are some major organi-
zational differences between the two types
of higher level language processors. The key
ingredient is that the INTERPRETER im-
mediate ly interprets and executes. The
compiler COMPILES, that is it produces
machine code, and the machine code it
produces is executed at a later stage.

What does this mean from an organi-
zational and systems view point? Perhaps
the best way to obtain the overall view is
to present the typical practical operation
of both types of systems.

COMPILER OPERATION

The general sequence of operations to
get a program written in a hIgher levei
language into actual operation using a
compiler oriented language is as follows.

First, a program written in the higher
level language syntax is prepared. This
might be done using an Editor program

1 - 1

on the computer. Note that if such is the
case, that first an Editor program must be
loaded into the computer's memory and
the computer system used for editing pur-
poses. When the high level language source
listing has been prepared, it must usually
be saved or stored on some external
medium such as punched paper tape
or magnetic tape.

Next the COMPILE portion of the
higher level compiler program would be
loaded into the system's memory and
the original source listing of the high
level language program processed. Gene-
rally this procedure requires several passes
or readings of the source listing. The final
result of this operation is the production
of machine language code, which once
again would usually have to be stored on
some sort of external medium.

Finally, the RUN or EXECUTE por-
tion of the compiler program would be
loaded into the system's memory along
with the machine language code that was
produced previously by the COMPILE
portion of the compiler. At this point,
the user's program, originally written
in the higher level syntax, would be ready
to operate, having been converted to
machine code.

The first two stages of a compiler
oriented language can be considered as
analogous to the sequence of operations
necessary to create a program using an
Editor and Assembler. The only difference ,

being that the source listing when using an
assembler would consist of the machine lan-
guage mnemonics, while when using a com-
piler it would consist of the higher level
language syntax.

The final stage of a compiler oriented
language is generally not quite the same
as would be the case if machine code was
produced by an assembler. This is because

the run or execute portion of the compiler
typically provides some control over the com-
piled program by the operator. Additionally,
this portion of the compiler program has a
number of routines that the program that has
been compiled is able to utilize, such as, a
floating point arithmetic package. At this
point, when the RUN portion of the com-
piler along with the machine code produced
by the COMPILE portion are both residing
in memory, the user is finally able to execute
the original program that was written using
the higher level syntax.

It may now be apparent that a compiler
oriented language is highly dependent on the
host system having fast and reliable I/O capa-
bility with an external bulk memory device.
This is because of the constant need to input
the various sections of the compiler program
and output the intermediate information
during the program development process.
This requirement for the constant use of an
external memory medium may be observed
more deady by reviewing the development
process for a higher level language, going from
the creation of the high level source listing to
final execution of the high level program, as
illustrated in the following diagrams.

INPUT
Editor program
first loaded into
memory and the
high level source
listing produced.

EDITOR
PROGRAM
1-- - -

TEXT
BUFFER

OUTPUT
High level source
listing then stored
on external bulk
memory medium.

COMPILER OPERATION - STEP 1

1 - 2

INPUT
Load COMPILE
section of the
compiler pro-
gram into mem-
ory.

..
INPUT

Pass high level
source listing
through compil-
er several times.

COMPILE
portion of

the
COMPILER
PROGRAM

- --
Symbol ,

Table

OUTPUT
Store machine
language object
code produced
by compiler on
external bulk
memory device.

COMPILER OPERATION - STEP 2

INPUT
Load RUN
TIME section
of the com-
piler program
into memory.

INPUT
Load machine
language ob-
ject code pro-
duced bv the •
compiler.

FLOATING
POINT

PACKAGE

I/O
ROUTINES

- --1
RUN TIME
ROUTINES

.... - -
USER'S

COMPILED
PROGRAM

OUTPUT
Display results
of user's origi-
nal high level
program.

COMPILER OPERATION - STEP 3

The fact that a compiler oriented version
of a high level language is so dependent on
I/O operations with an external bulk
device is the primary reason that SCELBAL
was not developed as a compiler. Most small
system owners must be satisfied with either
paper tape or audio cassette magnetic tape
bulk storage devices. Both of these types of

peripherals are relatively slow in operation
and not as reliable as commercially oriented
magnetic tape systems. For convenient
compiler operations a system really needs a
disc peripheral unit that will allow the rapid
loading of programs and storage of inter-
mediate data (such as the object code pro-
duced during the second step of compiler
operations discussed above). It could take as
much time as an hour or more to attempt to
compile a higher level language program
on a small system equipped with slow peri-
pherals. The task of operating a compiler
would quickly become quite frustrating if the
programmer was a novice and frequently
made programming errors in the source
syntax. Remember, for the system just
described, that if a program error was not
detected until compiler RUN TIME, the user
would have to go all the way back to the first
step of loading an Editor program back into
the computer and correcting the source listing
of the high level language program!

As a matter of interest, if a compiler is so
much trouble to use, what good is a higher
level language that utilizes the method? Well,
first of all, a compiler is not so difficult to use
if one has a computer system equipped with a
disc or other high speed memory peripherals.
With such equipment it takes just a few
seconds to load in a program or save the
results of intermediate operations. Remem·
ber, the choice was made to not use the
compiler method for SCELBAL based on the
consideration that most small system owners
could not afford the luxery of such speedy
peripherals. There are, of course, institutions
and organizations that do have such capabili-
ties. For them, a compiler oriented system
can have advantages.

A few advantages of using a compiler are as
follows.

As a general rule of thumb, a compiler
program can be created to operate in less
actual read and write memory in the com-
puter than an interpretive version. This is
almost self-evident from the presentation of
the information that a compiler is generally

1 - 3

split into several portions, the COMPILE part,
and the RUN or EXECUTE portion. Thus,
had SCELBAL been developed as a compiler
it might have been possible to provide the
same capabilities (from the final results
view point of having a program executed that
was originally written in a higher level syntax)
with a program that only required, say, 4 K of
RAM memory in the computer at anyone
time.

Second, the final operating version of the
higher level program will generally function at
a considerably faster speed than the same
program executed in an interpretive fashion.
This too is easy to see since one now knows •
that the interpreter must examine and inter-
pret each statement as it goes along, whereas
the compiled version had already accom-
plished that task when it produced the
machine code that will result in the desired
functions being performed at program exe-
cution time. This final speed of the program
may be important when massive amounts of
calculations are being performed, or in
real-time situations. It is not likely to be that
critical when a small system (that is probably
severely rest.ricted by I/O timing considera-
tions) is being utilized.

Third, in line with what has already been
mentioned about a compiler oriented program
requiring less actual memory in the computer,
the final machine code version of the program
that has been compiled will generally be much
more efficient memory usage-wise. This again
is pretty much self-evident when one con-
siders that the compiled program will only
have machine language routines that per-
form the specific functions asked for in the
actual program that was compiled. The
interpretive package, on the other hand, must
have all the possible functions for the lan-
guage available in memory, since it is not
known which functions may be utilized by a
particular program.

In summary, it might be stated that a
compiler becomes much more attractive when
viewed in the context of larger computing
systems with high speed peripherals available.

From the microprocessor view point, com-
piler oriented higher level languages, imple-
mented on larger machines, are quite valuable
if one is interested in developing a relatively
large number of programs that will operate in
microprocessor systems when they are part of
a product. For instance, a manufacturer that
desired to produce a line of test instruments,
each of which would utilize a microprocessor,
but with a special software package for
each type of instrument, would be well off to
use a compiler to create the programs. Com-
pilers operating on microprocessor systems
themselves, however, for the reasons indi-
cated, are simply not practical for most small
system users.

INTERPRETER OPERATION

An interpretive version of a higher level
language, while not as memory efficient as a
compiler, is much convenient for the small
systems user. In the context of being able to
prepare and execute many different kinds of
programs in a short time span, it is much
more efficient in terms of overall program
development to execution time. This is
particularly true for inexperienced program-
mers as they can almost instantaneously be
notified of syntax errors and immediately
make corrections to the program being
created on an on-line, real-time basis.

An interpreter differs from a compiler, as
mentioned previously, in the fact that each
line of the source syntax is interpreted and
then executed before going on to the next
line. The execution is performed by calling
on various routines provided as part of the
interpreter package. There is no production
of intermediate machine code as in the sense
of the compiler (though there may be the pro-
duction of intermediate data, symbols, etc.).

An interpreter such as SCELBAL has every-
thing required to create and execute a pro-
gram residing in memory at one time. Thus,
once the interpreter program itself has been
loaded into memory, there is no need to use
external bulk memory devices (unless one

1-4

wants to save a higher level program, or re-
store one previously saved on such an external
memory storage device). This eliminates all
the critical bulk memory operations necessary
for the successful development of such pro-
grams when using a compiler.

The following diagram illustrates a memory
map view of a typical interpreter program.

INPUT
Load INTER·
PRETER pro-
gram into the
computer.

INPUT
Enter program
using key-
board device.

FLOATING
POINT

PACKAGE
-

I/O
ROUTINES
-
EDITOR

and
EXECUTIVE

INTER-
PRETER

OPERATING
ROUTINES

PROGRAM
BUFFER

and
VARIABLES

STORAGE

OUTPUT
Display results
of the high
level program
immediately.

INTERPRETER OPERATION

The diagram above illustrates that the in-
terpretive oriented program really consists of
an Editor program (to enter and edit the high
level syntax into a program buffer), an Exe-
cutive (to direct the operation of the various
portions of the package as directed by the
user), and an Interpretive/Operating section
that is able to analyze the contents of the
program buffer and call on the desired
routines as indicated by the statements it
in terprets.

With this type of arrangement one can typi-

cally create and execute higher level language
programs in seconds or minutes versus an
hour or two.

Thus, SCELBAL was developed to operate

1 - 5

as an INTERPRETER. The details of its
operation will be presented in this manual. To
find out the fundamental capabilites of
SCELBAL just continue reading into the
next chapter.

MATHEMATICAL ROUTINES

Essentiallv all mathematical operations in
v

SCELBAL are performed by a group of sub-
routines utilizing triple-precision binary
floating point techniques. That is, the man-
tissa portion of a binary number is stored in
three consecutive memory registers in order
to provide 23 bits of magnitude plus a sign
bit in which to represent the magnitude of
the significant digits of a number. In order to
allow for the raising of numbers to a power,
a fourth byte is used to maintain the expo-

nent of a number. That is, the power to which
the mantissa is to be raised. The exponent
portion of a number may thus have a magni-
tude of 7 bits. The eighth bit available in a
register is used to maintain the sign of the
exponent. Thus, each number stored in float-
ing point format in SCELBAL requires four
consecutive bytes in memory for storage.
One byte for the exponent and three bytes
for the significant digits or mantissa. The
format is illustrated in the following diagram.

... EXPONENT lVIS\V M.6-tX.NTISSA , .. LS\V
• • •

SEEEEEEE S.M M M M M M M

MEM LOC N+3 MEM LOC N+2

Twenty-three binary bits can represent
decimal numbers from 0.0 to 8,388,847. This
is thus the largest value that the mantissa por-
tion may represent in SCELBAL. (While the
floating point routines can manipulate num-
bers up to this size, the input routine for
SCELBAL limits the maximum decimal num-
ber that may be inputted to about half this
value. As a general rule, the operator should
restrict decimal inputs to six significant digits
for the mantissa portion of a number.)

The seven bits available for the expo-
nent portion of a number in the floating
point routines allow a decimal number to
be raised to approximately the 38 'th
power of ten. (\Vhile the reader at first
glance might think that seven bits would
provide for an exponent range to 127
decimal, such is not the case. This is be-
cause raising a number by a power of ten
decimal requires raising a binary number
by between the third and fourth power
when using the base 2 (remember, two to
the third power is 8, which is less than 10).

•

MMMMMMMM MMMMMMMM

MEM LOC N+1 MEM LOC N

10 - 1

Thus, instead of 7 bits allowing for an ex-
ponent of up to 127 decimal, it can only
represent about one third that amount.

The reader should note that if numbers
being manipulated by SCELBAL should
exceed the absolute magnitudes indicated
above that the results of such calculations
will be in error. This is because the binary •

exponent register would change sign on an
overflow/underflow condition. This type
of error is most likely to occur if a user
should raise a large number to a relatively
higher power, or multiply two large num-
bers such as 100E+22 times 50E+24. The
range of powers (plus or minus 38 decimal)
that SCELBAL can handle is quite adequate
for most applications. Extending this range
would require increasing the number of
registers (precision) used to hold numbers
and would significantly decrease the overall
operating speed of the language. The triple-
precision plus exponent format was chosen
as a suitable compromise between other op-
tions.

CLRNEX, LMA
INL
DCB
JFZ CLRNEX

CLROPL, LEI 004
LLI130

CLRNX1, LMA
INL
DCB
JFZ CLRNX1
LLI 101
LMI001
LLI 126
LAM
NDA
JTS NEGFPA

OPSGNT, LLI136
LAM
NDA
RFS
LLI 101
LCM
DCC
LMC
LLI134
LEI 003
JMP COMPLM

NEGFPA, LLI101
LCM
DCC
LMC
LLI124
LBI003
CAL COMPLM
JMP OPSGNT

ADOPPP, LEI 141
LDH
LLI 131
LEI 006
JMP ADDER

Now clear out locations for the partial-product
Working registers
Until the loop counter
Is zero

Set a loop counter
Set up pointer
Clear out some extra registers so that the
FPOP may be extended in length
Perform clearing ops until loop counter
Is zero
Set pointer to MID SIGNS indicator storage location
Set initial value of SIGNS indicator to plus one
Change pointer to MSW of FP ACC
Fetch MSW of mantissa into accumulator
Test flags
If MSB in MSW of FP ACC is a one, number is negative

Set pointer to MSW of FPOP
Fetch MSW of mantissa into accumulator
Test flags
Return to caller if number in FPOP is positive
Else change pointer to MID SIGNS indicator
Fetch the value in the SIGNS indicator
Decrement the value by one
Restore the new value back to storage location
Set pointer to LSW of FPOP
Set precision counter
Two's complement value of FPOP & return to caller

Set pointer to MID SIGNS indicator
Fetch the value in the SIGNS indicator
Decrement the value by one
Restore the new value back to storage location
Set pointer to LSW of FP ACC
Set precision counter
Two's complement value of FPACC
Proceed to check sign of FPOP

The following subroutine adds the double length (six
register) multiplicand in FPOP to the partial-product
register when called on by the multiplication algorithm.

Pointer to LSW of partial-product
On same page as FPOP
LSW of FPOP which contains extended multiplicand
Set precision counter (double length working registers)
Add multiplicand to partial-product & return to caller

10 - 10

MROUND, LBI003
LAI100
ADM

CROUND, LMA
INL
LAIOOO
ACM
DCB
JFZ CROUND
LMA
RET

Set up precision counter
Prepare to add one to 24'th bit of partial-product
Add one to the 24'th bit of the partial-product
Restore the updated byte to memory
Advance the memory pointer to next most significant
Byte of partial-product, then clear ACC without
Disturbing carry bit. Now perform add with carry to
Propagate any rounding in the partial-product registers.
If counter is not zero continue propagating any carry
Restore final byte to memory
Exit to calling routine

FLOATING POINT DIVISION

The next part of the floating point group
of routines is that which performs floating
point division. A flow chart on the next page
illustrates the conventional algorithm that is
the main portion of this rou tine.

if the divisor is zero. If so, an error message
is displayed to the operator. If not, division
is accomplished by first subtracting the expo-
nent of the divisor from that of the dividend.
The mantissas are then multiplied using the
algorithm illustrated in the flow chart.

The division subroutine begins in the same
manner used for floating point multiplica-
tion. Working registers are initialized and
the signs of the two numbers (dividend and
divisor) are tested. Negative numbers are
negated before performing the division.
The final answer is negated if the signs of
the original numbers are different. Prior to
attempting division, a check is made to see

At the conclusion of the division process,
a check is made to see if rounding-off is re-
quired. If so, this function is performed. The
final answer is left in the FP ACC at the con-
clusion of the routine (after being negated if
the signs of the original numbers were diffe-
rent). The listing for the floating point divi-
sion subroutine is presented next.

FPDIV, CAL CKSIGN
LLI126
LAM
NDA
JTZ DVERR

SUBEXP, LLI137
LAM
LLI127

The first part of the FLOATING POINT DIVISION sub-
routine calls a subroutine to check the original signs of
the numbers and perform initialization procedures. Next
a test is made to see if the divisor is zero. An error mes-
sage is displayed in such a case. Next the exponent of
the divisor is subtracted from the dividend exponent.

Call routine to set up registers & ck signs of numbers
Set pointer to MSW of FP ACC (divisor)
Fetch MSW of FP ACC to accumulator
Exercise CPU flags
If MSW of FP ACC is zero go display 'DZ' error message

Set pointer to FPOP (dividend) Exponent
Get FPOP Exponent into accumulator
Change pointer to FP ACC (divisor) Exponent

10 -11

"\
START

SUBTRACT DIVISOR
FROM THE DIVIDEND

SUM
ADI001
LMA

SETDCT, LLI 102
LMI027

IS
RESULT

'0' OR '+'?

PLACE '1' IN LSB
OF QUOTIENT

PLACE '0' IN LSB
OF QUOTIENT

PLACE REMAINDER AS
NEW DIVIDEND

ROTATE CURRENT
DIVIDEND LEFT

ROTATE QUOTIENT

<

TO THE LEFT

FINISHED? >
IANSWER IN
QUOTIENT

Subtract divisor exponent from dividend exponent
Add one for algorithm compensation
Place result in FP ACC Exponent

Set pointer to bit counter storage location
Initialize bit counter to 23 decimal

Main division algorithm for mantissas

DIVIDE, CAL SETSUB
JTS NO GO
LEI 134
LLI131
LBI003

Go subtract divisor from dividend
If result is negative then place a zero bit in quotient
If result zero or positive then move remainder after
Subtraction from working area to become new dividend
Set up moving pointers and initialize precision counter
Perform the transfer CAL MOVEIT

LAI001
RAR

Place a one into least significant bit of accumulator
And rotate it out into the carry bit •

10 - 12

JMP QUO ROT Proceed to rotate the carry bit into the current quotient

NOGO, XRA

QUO ROT , LLI144
LBI003
CAL ROTL
LLI134
LBI003
CAL ROTATL
LLI102
LCM
DCC
LMC
JFZ DIVIDE
CAL SETSUB
JTS DVEXIT
LLI 144
LAM
ADI001
LMA
LAIOOO
INL
ACM
LMA
LAIOOO
INL
ACM
LMA
JFS DVEXIT
LBI003
CAL ROTATR
LLI127
LBM
INB
LMB

D VEXIT , LLI 144
LEI 124
LBI003
JMP EXMLDV

SETSUB, LEI 131
LDH
LLI 124
LBI003
CAL MOVEIT

When result is negative, put a zero in the carry bit, then:

Set up pointer to LSW of quotient register
Set precision counter
Rotate carry bit into quotient by using special entry to
ROT ATL subroutine. Now set up pointer to dividend
LSW and set precision counter
Rotate the current dividend to the left
Set pointer to bit counter storage location
Fetch the value of the bit counter
Decrement the value by one
Restore the new counter value to storage
If bit counter is not zero, continue division process
After 23 (decimal) bits, do subtraction once more for
Possible rounding. Jump ahead if no rounding required.
If rounding required set pointer to LSW of quotient
Fetch LSW of quotient to accumulator
Add one to 23'rd bit of quotient
Restore updated LSW of quotient
Clear accumulator without disturbing carry bit
Advance pointer to next significant byte of quotient
Propagate any carry as part of rounding process
Restore the updated byte of quotient
Clear ACC again without disturbing carry bit
Advance pointer to MSW of quotient
Propagate any carry to finish rounding process
Restore the updated byte of quotient
If most significant bit of quotient is zero, go finish up
If not, set precision counter
And rotate quotient to the right to clear the sign bit
Set pointer to FP ACC Exponent
Fetch FP ACC exponent
Increment the value to compensate for the rotate right
Restore the updated exponent value

Set up pointers
To transfer the quotient into the FP ACC
Set precision counter
And exit through FPMULT routine at EXMLDV

Subroutine to subtract divisor from dividend. Used by
main DIVIDE subroutine.

Set pointer to LSW of working area
On same page as FP ACC
Set pointer to LSW of FP ACC (divisor)
Set precision counter
Perform transfer

10 - 13

LEI 131
LLI 134
LBI003
CAL SUBBER
LAM
NDA
RET

Reset pointer to LSW of working area (now divisor)
Reset pointer to LSW of FPOP (dividend)
Set precision counter
Subtract divisor from dividend
Get MSW of the result of the subtraction operations
Exercise CPU flags
Return to caller with status

FLOATING POINT UTILITY SUBROUTINES

The following section presents a group of
so-called "utility" subroutines. These sub-
routines perform a variety of minor functions
required by the floating point package. Many
of these subroutines are also used by other

portions of SCELBAL. The specific purpose
of each routine will be explained in the com-
ments portion of the source listing which is
presented below.

ADDER,
ADDMOR,

NDA
LAM
CAL SWITCH
ACM
LMA
DCB
RTZ
INL
CAL SWITCH
INL
JMP ADDMOR

COMPLM, LAM
XRI377
ADI001

MORCOM, LMA
RAR
LDA
DCB

N'th precision addition subroutine. Length of multi-
byte numbers specified by contents of CPU register
B upon entry. Number starting at location pointed to
by H & L (least significant byte) is added to number
starting at address specified by contents of D & E.

Initialize the carry bit to zero upon entry
Fetch byte from register group A
Switch memory pointer to register group B
Add byte from A to byte from B with carry
Leave result in register group B
Decrement number of bytes (precision) counter
Return to caller when all bytes in group processed
Else advance pointer for register group B
Switch memory pointer back to register group A
Advance the pointer for register group A
Continue the multi-byte addition operation

N'th precision two's complement (negate) subroutine.
Performs a two's complement on the multi-byte register
starting at the address pointed to by H & L (least signifi-
cant byte) upon entry.

Fetch the least significant byte of the number to ACC
Exclusive OR to complement the byte
Add one to form two's complement of byte
Restore the negated byte to memory
Save the carry bit
In CPU register D
Decrement number of bytes (precision) counter

10 - 14

ROTATL,
ROTL,

ROTATR,
ROTR,

SUBBER,
SUBTRA,

RTZ
INL
LAM
XRI377
LEA
LAD
RAL
LAIOOO
ACE
JMP MORCOM

NDA
LAM
RAL
LMA
DCB
RTZ
INL
JMP ROTL

NDA
LAM
RAR
LMA
DCB
RTZ
DCL
JMP ROTR

NDA
LAM
CAL SWITCH
SBM
LMA
DCB
RTZ

Return to caller when all bytes in number processed
Else advance the pointer
Fetch the next byte of the number to ACC
Exclusive OR to complement the byte
Save complemented value in register E temporarily
Restore previous carry status to ACe
And rotate it out to the carry bit
Clear ACC without disturbing carry status
Add in any carry to complemented value
Continue the two's complement procedure as req'd

N'th precision rotate left subroutine. Rotates a multi-
byte number left starting at the address initially speci-
fied by the contents of CPU registers H & L upon sub-
routine entry (LSW). First entry point will clear the
carry bit before beginning rotate operations. Second
entry point does not clear the carry bit.

Clear the carry bit at this entry point
Fetch a byte from memory
Rotate it left (bring carry into LSB, push MSB to carry)
Restore rotated word to memory •

Decrement precision counter
Exit to caller when finished
Else advance pointer to next byte
Continue rotate left operations

N'th precision rotate right subroutine. Opposite of
above subroutine.

Clear the carry bit at this entry point
Fetch a byte from memory
Rotate it right (carry into MSB, LSB to carry)
Restore rotated word to memory
Decrement precision counter
Exit to caller when finished
Else decrement pointer to next byte
Continue rotate right operations

N'th precision subtraction subroutine. Number starting
at location pointed to by D & E (least significant byte)
is subtracted from number starting at address specified
by contents of H & L.

Initialize the carry bit to zero upon entry
Feth byte from register group A
Switch memory pointer to register group B
Subtract byte from group B from that in group A
Leave result in register group B
Decrement number of bytes (precision) counter
Return to caller when all bytes in group processed

10 - 15

INL
CAL SWITCH
INL
JMP SUBTRA

FLOAD, LDI 001
LEI 124
LEI 004
JMP MOVEIT

FSTORE, LEL
LDH
LLI 124
LHI001
JMP SETIT

OPLOAD, LDI001
LEI 134

SETIT, LEI 004
JMP MOVEIT

FACXOP, CALSAVEHL
LLI124
LHI001
CAL OPLOAD
CAL RESTHL
JMP FLOAD

SAVEHL, LAH
LBL
LLI200
LHI001
LMA
INL

Else advance pointer for register group B
Switch memory pointer back to register group A
Advance the pointer for register group A
Continue the multi-byte subtraction operation

The next subroutine will transfer the four byte
register string (generally a number in floating point
format) from the starting address pointed to by CPU
registers H & L when the subroutine is entered to
the FPACC (floating point accumulator registers).

** Set page address of FPACC
Set address of least signficant byte of FP ACC
Set precision counter to four bytes (mantissa bytes
Plus Exponent) and exit via the transfer routine

The next several subroutines are used to perform
floating pojnt register loading and transfer operations.

Transfer contents of register L to E
Transfer contents of register H to D
Set L to least significant byte of FP ACC mantissa
* * Set page to FP ACC storage area
Go transfer FP ACC contents to area pointed to by D&E

** Set page to FPOP storage area
Set pointer to least significant byte of FPOP
Set precision counter. Transfer from H & L area to
Locations pointed to by D & E

The next subroutine performs a double transfer opera-
tion. It first transfers the contents of the FP ACC into
the FPOP. It then transfers new data (as pointed to by
H & L upon entry to the subroutine) into the FPACC.

Save contents of H & L upon entry to subroutine
Set pointer to FP ACC LSW
** Set pointer to page of FPACC
Transfer FP ACC to FPOP
Recover original subroutine entry values for H & L
Transfer registers pointed to by H & L into the FPACC

Subroutine to save the contents of CPU registers D, E, H
and L in a temporary storage area in memory.

Transfer value in H to ACC
And value in L to B
N ow set L to start of temporary storage locations
** And set H to storage area page
Save A (entry value of H) in memory
Advance pointer

10 - 16

LMB
INL
LMD
INL
LME
LHA
LLB
RET

RESTHL, LLI 200
LHI001
LAM
INL
LBM
INL
LDM
INL
LEM
LHA
LLB
LAM
RET

SWITCH, LCH
LHD
LDC
LCL
LLE
LEC
RET

Save B (entry value of L) in memory
Advance pointer
Save D in memory
Advance pointer
Save E in memory •

Restore entry value of H
Restore entry value of L
Exit to calling routine

Subroutine to restore the contents of CPU registers D,
E, Hand L from temporary storage in memory.

Set L to start of temporary storage locations
** Set H to storage area page
Fetch stored value for H in ACC
Advance pointer
Fetch stored value for L into B
Advance pointer
Fetch stored value for D
Advance pointer
Fetch stored value for E
Restore saved value for H
Restore saved value for L
Leave stored value for E in ACC
Exit to calling routine

Subroutine to exchange the contents of H & L with
D & E.

Transfer register H to C temporarily
Place value of D into H
Now put former H from C into D
Transfer register L to C temporarily
Place value of E into L
Now put former L from C into E
Exit to calling routine

CONVERSION OF FIXED AND FLOATING POINT DECIMAL TO FLOATING POINT BINARY

The next section of the floating point
package is used to convert strings of ASCII
characters representing fixed or floating
point numbers to floating point binary num-
bers.

The ASCII character strings which are to
be inputted to this portion of the floating

10 - 17

point package will be residing in a buffer,
such as the SYMBOL or TOKEN buffer,
after having been evaluated by other portions
of SCELBAL as representing numbers.

Such numbers may be in the form of fixed
point decimal numbers such as:

1234.56

or floating point decimal numbers such as: point representation of the mantissa by a
power of ten for each digit in the decimal ex-
ponent. (This is readily accomplished as will
be observed shortly by calling on the sub-
routine FPMULT presented earlier in this
chapter.) Or, by multiplying the floating
point representation of the mantissa by one
tenth (dividing by ten) for each digit in the
decimal exponent when it represents a minus
power.

654.321 E-15

The next portion of the floating point pro-
gram effectively inputs these character strings
representing decimal numbers and converts
them to a normalized floating point binary
number for further processing by SCELBAL.

This is accomplished in a two part process. The decimal to binary conversion routine
must also examine the signs of the decimal
numbers (mantissas and exponents) and take
appropriate steps to negate the binary repre-
sentations as necessary.

First the ASCII character string representing
the mantissa portion of a decimal number is
converted to a normalized binary floating
point number. Next, any decimal exponent
associated with the mantissa, as in the case
when a floating point decimal number is be-
ing inputted, is processed. This conversion is
accomplished by raising the binary floating

All of these tasks are handled by the next ,

section of the package as may be observed by
studying the following source listing.

GETINP, LHI 001
LLI 220
LCM
INC
DCC
JFZ NO TO
LLE
LHD
LCM
INC
CALINDEXC
LMIOOO

NOTO, LLI220
LHI 001
LCM
INC
LMC
LLE
LHD
CALINDEXC

The following subroutine is used to input decimal num-
ber strings (stored as ASCII characters in a buffer) to
the floating point input routine. Each time the sub-
routine is called it fetches one ASCII character from the
buffer location pointed to by the contents of D & E
(upon entry) as augmented by an indexing register.

** Set H to page of GETINP character counter
Set L to address of GETINP character counter
Load counter value into CPU register C
Exercise the counter in order
To set CPU flags. If counter is non-zero, then indexing
Register (GETINP counter) is all set so jump ahead.
But, if counter zero, then starting to process a new
Character string. Transfer char string buffer pointer into
H & L and fetch the string's character count value (cc)
Increment the (cc) by one to take account of (cc) byte
Add contents of regis C to H & L to point to end of the
Character string in buffer and place a zero byte marker

Set L back to address of GETINP counter which is used
** As an indexing value. Set H to correct page.
Fetch the value of GETINP counter into register C
Increment the value in C
Restore the updated value for future use
Bring the base address of the character string buffer into
CPU registers H & L
Add contents of register C to form indexed address of

10 - 18

LAM
NDA
LHI001
RFZ
LLI220
LMIOOO
RET

INDEXC, LAL
ADC
LLA
RFC
INH
RET

DINPUT, LEL
LDH
LHI 001
LLI150
XRA
LBI010

CLRNX2, LMA
INL
DCB
JFZ CLRNX2
LLI 103
LEI 004

CLRNX3, LMA
INL
DCB
JFZ CLRNX3
CAL GETINP
CPI253
JTZ NINPUT
CPI255
JFZ NOTPLM
LLI 103
LMA

NINPUT, CAL GETINP

Next character to be fetched as input. Fetch the next
Character. Exercise the CPU flags.
** Restore page pointer to floating point working area
If character is non-zero, not end of string, exit to caller
If zero character, must reset GETINP counter for next
String. Reset pointer and clear GETINP counter to zero
Then exit to calling routine

Following subroutine causes register C to be used as an
indexing register. Value in C is added to address in H
and L to form new address.

Place value from register L into accumulator
Add quantity in register C
Restore updated value back to L
Exit to caller if no carry from addition
But, if have carry then must increment register H
Before returning to calling routine

Main Decimal INPUT subroutine to convert strings of
ASCII characters representing decimal fixed or floating
point numbers to binary floating point numbers.

Save entry value of register L in E. (Pointer to buffer
Containing ASCII character string.) Do same for H to D.
** Set H to page of floating point working registers
Set L to start of decimal-to-binary working area
Clear the accumulator
Set up a loop counter

Deposit zero in working area to initialize
Advance the memory pointer
Decrement the loop counter
Clear working area until loop counter is zero
Set pointer to floating point temporary registers and
Indicators working area. Set up a loop counter.

Deposit zero in working area to initialize
Advance the memory pointer
Decrement the loop counter
Clear working area until loop counter is zero
Fetch a character from the ASCII char string buffer
(Typically the SYMBOL/TOKEN buffer). See if it is
Code for + sign. Jump ahead if code for + sign.
See if code for minus (-) sign.
Jump ahead if not code for minus sign. If code for
Minus sign, set pointer to MINUS flag storage location.
Set the MINUS flag to indicate a minus number

Fetch another character from the ASCII char string

10 - 19

Various portions of the floating point
package to be described in this chapter are
called upon by many of the routines des-
cribed previously. Most of the mathematical
operations are performed between two
floating point multiple-byte registers named
the FLOATING POINT ACCUMULATOR
(abbreviated FPACC) and FLOATING POINT
OPERAND (abbreviated FPOP).

The first section of the floating point sec-
tion of SCELBAL consists of a group of sub-
routines that may be called upon separately
to perform the following operations.

FLOATING POINT FIX (FPFIX). This
subroutine will convert a number stored in
floating point format back to binary fixed
point format provided that the floating point
number is in a range that can be converted to
fixed point. (That is, will not require more
than 23 decimal bits for storage.) Thus a num-
ber such as 5 decimal, which would appear in
binary floating point format as:

0.101 E+11

would be converted to the fixed binary for-
mat:

101

The reader may note that converting floating
point to fixed point is merely a matter of
rotating the floating point value to the left
until the binary exponent has a value of zero.
Thus the above floating point number:

0.101 E+11

would be rotated to the left three places.

A floating point number such as:

0.101 E+10000

could not be properly positioned as a fixed
point binary number in a triple-precision regi-
ster (8 bits per register) format because it
would have to be rotated to the left 32 deci-
mal positions.

10 - 2

FLOATING POINT ZERO (FPZERO).
subroutine simply sets the FP ACC to a value
of zero. It is used to initialize or clear out the
floating point accumulator.

FLOATING POINT NORMALIZE
(FPNORM). This is the reverse procedure of
for the case when a binary fixed point value
is being changed to floating point notation.
The fixed point value is simply rotated to
the right while the binary exponent value is
incremented until all significant digits are to
the right of an implied decimal point. Thus,
the fixed point value:

101

would be converted to:

0.101 E+11

Normalization is also used after other
floating point operations to standardize the
mantissa to be in the range greater than or
equal to ONE HALF (1/2) but less than ONE.
Thus, if a number such as 0.1 decimal which
would appear as:

0.00011001100 ... E+O

in binary was normalized it would be shifted
to the left while the binary exponent was
decremented until it appeared as:

0.11001100 ... E+11

This normalization or standardization process
is valuable primarily because the process aids
in maintaining the maximum number of signi-
ficant digits throughout a series of complex
operations.

FLOATING POINT ADDITION (FPADD).
This subroutine simply adds the floating point
binary number in the FP ACC to the floating
point binary number in the FPOP and leaves
the result of the addition in the FP ACC.

FLOATING POINT SUBTRACTION
(FPSUB). This subroutine subtracts the value
in the FPACC from the value in the FPOP and

1

NOTPLM, CPI 256
JTZ PERIOD
CPI305
JTZ FNDEXP
CPI240
JTZ NINPUT
NDA
JTZ ENDINP
CPI260
JTSNUMERR
CPI272
JFS NUMERR
LLI156
LCA
LAI370
NDM
JFZ NINPUT
LLI105
LBM
INB
LMB
CAL DECBIN
JMP NINPUT

PERIOD, LBA
LLI106
LAM
NDA
JFZ NUMERR
LLI 105
LMA
INL
LMB
JMP NINPUT

FNDEXP, CAL GETINP
cpr 253
JTZ EXPINP
CPI255
JFZ NOEXPS
LLI 104
LMA

EXPINP, CAL G ETINP

NOEXPS, NDA
JTZ ENDINP
CPI260
JTS NUMERR
CPI272
JFS NUMERR

See if character represents a period (decimal point) in
Input string. Jump ahead if yes.
If not period, see if code for E as in Exponent
Jump ahead if yes.
Else see if code for space.
Ignore space character, go fetch another character.
If none of the above see if zero byte
Indicating end of input char string. If yes, jumn ahead.
If not end of string, check to see
If character represents
A valid decimal number (0 to 9)
Display error message if not a valid digit at this point!
For valid digit, set pointer to MSW of temporary
Decimal to binary holding registers. Save character in C.
Form mask for sizing in accumulator. Now see if
Holding register has enough room for the conversion of
Another digit. Ignore the input if no more room.
If have room in register then set pointer to input digit
Counter location. Fetch the present value.
Increment it to account for incoming digit.
Restore updated count to storage location.
Call the DECimal to BINary conversion routine to add
In the new digit in holding registers. Continue inputting.

Save character code in register B
Set pointer to PERIOD indicator storage location
Fetch value in PERIOD indicator
Exercise CPU flags
If already have a period then display error message
If not, change pointer to digit counter storage location
Clear the digit counter back to zero
Advance pointer to PERIOD indicator
Set the PERIOD indicator
Continue processing the input character string

Get next character in Exponent
See if it is code for + sign
Jump ahead if yes.
If not + sign, see if minus sign
If not minus sign then jump ahead
For minus sign, set pointer to EXP SIGN indicator
Set the EXP SIGN indicator for a minus exponent

Fetch the next character in the decimal exponent

Exercise the CPU flags
If character inputted was zero, then end of input string
If not end of string, check to see
If character represents
A valid decimal number (0 to 9)
Display error message if not a valid digit at this point!

10 - 20

NDI017
LBA
LLI157
LAI003
CPM
JTS NUMERR
LCM
LAM
NDA
RAL
RAL
ADC
RAL
ADB
LMA
JMP EXPINP

ENDINP, LLI 103
LAM
NDA
JTZ FININP
LLI154
LBI003
CAL COMPLM

FININP, LLI153
XRA
LMA
LDH
LEI 123
LBI004
CAL MOVEIT
CAL FPFLT
LLI 104
LAM
NDA
LLI 157
JTZ POSEXP
LAM
XRI377
ADI001
LMA

POSEXP, LLI 106
LAM
NDA
JTZ EXPOK
LLI 105
XRA
SUM

Else trim the ASCII code to BCD
And save in register B
Set pointer to input exponent storage location
Set accumulator equal to three
See if any previous digit in exponent greater than three
Display error message if yes
Else save any previous value in register C
And also place any previous value in accumulator
Clear the carry bit with this instruction
Single precision multiply by ten algorithm
Two rotate lefts equals times four
Adding in the digit makes total times five
Rotating left again equals times ten
Now add in digit just inputted
Restore the value to exponent storage location
Go get any additional exponent input

Set pointer to mantissa SIGN indicator
Fetch the SIGN indicator to the accumulator
Exercise the CPU flags
If SIGN indicator is zero, go finish up as nr is positive
But, if indicator is non-zero, number is negative
Set pntr to LSW of storage registers, set precision cntr
Negate the triple-precision number in holding registers

Set pointer to input storage LSW minus one
Clear the accumulator
Clear the LSW minus one location
Set register D to floating point working page
Set E to address of FP ACC LSW minus one
Set precision counter
Move number from input register to FP ACC
N ow convert the binary fixed point to floating point
Set pointer to Exponent SIGN indicator location
Fetch the value of the EXP SIGN indicator
Exercise the CPU flags
Reset pointer to input exponent storage location
If EXP SIGN indicator zero, exponent is positive
Else, exponent is negative so must negate
The value in the input exponent storage location
By performing this two's complement
Restore the negated value to exponent storage location

Set pointer to PERIOD indicator storage location
Fetch the contents of the PERIOD indicator
Exercise the CPU flags
If PERIOD indicator clear, no decimal point involved
If have a decimal point, set pointer to digit counter
Storage location. Clear the accumulator.
And get a negated value of the digit counter in ACC

10 - 21

EXPOK, LLI157
ADM
LMA
JTS MINEXP
RTZ

FPX10, LLI210
LHI 001
CAL FACXOP
CAL FPMULT
LLI157
LCM
DCC
LMC
JFZ FPX10
RET

MINEXP, FPD10, LLI214
LHI 001
CAL FACXOP
CAL FPMULT
LLI157
LBM
INB
LMB
JFZ FPD10
RET

DECBIN, CAL SAVEHL
LLI 153
LAC
NDI 017
LMA
LEI 150
LLI154
LDH
LBI003
CAL MOVEIT

Change pointer to input exponent storage location
Add this value to negated digit counter value
Restore new value to storage location
If new value is minus, skip over next subroutine
If new value is zero, no further processing required

Following subroutine will multiply the floating point
binary number stored in FPACC by ten times the
value stored in the decimal exponent storage location.

Set pointer to registers containing floating point
* * Binary representation of 1 0 (decimal).
Transfer FP ACC to FPOP and 10 (dec) to FP ACC
Multiply FPOP (formerly FPACC) by 10 (decimal)
Set pointer to decimal exponent storage location
Fetch the exponent value
Decrement
Restore to storage
If exponent value is not zero, continue multiplication
When exponent is zero can exit. Conversion completed.

Following subroutine will multiply the floating point
binary number stored in FPACC by 0.1 times the value
(negative) stored in the decimal exponent storage
location.

Set pointer to registers containing floating point
** Binary representation of 0.1 (decimal).
Transfer FP ACC to FPOP and 0.1 (dec) to FP ACC
Multioly FPOP (formerly FPACC) by 0.1 (decimal)
Set pointer to decimal exponent storage location
Fetch the exponent value
Increment
Restore to storage
If exponent value is not zero, continue multiplication
When exponent is zero can exit. Conversion completed.

Following subroutine is used to convert decimal charac-
ters to binary fixed point format in a triple-precision
formaL

Save entry value of D, E, Hand L in memory
Set pointer to temporary storage location
Restore character inputted to accumulator
Trim ASCII code to BCD
Store temporarily
Set pointer to working area LSW of multi-byte register
Set another pointer to LSW of conversion register
Make sure D set to page of working area
Set precision counter
Move original value of conversion register to working

10 - 22

LLI154
LBI 003
CAL ROTATL
LLI154
LBI003
CAL ROTATL
LEI 154
LLI 150
LBI003
CAL ADDER
LLI 154
LBI 003
CAL ROTATL
LLI152
XRA
LMA
DCL
LMA
LLI 153
LAM
LLI 150
LMA
LEI 154
LBI 003
CAL ADDER
JMP RESTHL

Register. Reset pointer to LSW of conversion register.
Set precision counter
Rotate register left. (Multiplies value by two.)
Reset pointer to LSW.
Set precision counter
MUltiply by two again (total now times four).
Set pointer to LSW of conversion register.
Set pointer to LSW of working register (original value).
Set precision counter.
Add original value to rotated value (now times five).
Reset pointer to LSW
Set precision counter
Multiply by two once more (total now times ten).
Set pointer to clear working register locations
Clear the accumulator
Clear MSW of working register
Decrement pointer
Clear next byte
Set pointer to current digit storage location
Fetch the current digit
Change pointer to LSW of working register
Deposit the current digit in LSW of working register
Set pointer to conversion register LSW
Set precision counter
Add current digit to conversion register to complete
Conversion. Exit to caller by restoring CPU registers.

- -

CONVERSION OF FLOATING POINT BINARY TO FIXED AND FLOATING POINT DECIMAL

The final section of the SCELBAL floating
point package performs essentially the reverse
of the portion just presented. It will convert
a number from floating point binary format
into fixed or floating point decimal format
for display on the user's output device.

Selecting between fixed point and floating
point decimal output is automatically deter-
mined by the conversion routine. If the num-
ber stored in binary floating point format can
be represented in 23 binary bits or less, and
is greater than one, the number will be dis-
played in fixed point format with the deci-
mal point positioned as required. If the num-
ber is not within this range, it will be out-
putted in decimal floating point format as a
mantissa raised to the appropriate decimal
power of ten.

10 - 23

The routine operates in essentially the
reverse manner of the input routine. First
the floating point binary number is con-
verted to a fixed point binary number (re-
presenting the mantissa digits of its deci-
mal equivalent) and an associated binary
exponent portion representing the powers
of ten to which the decimal mantissa is to
be raised (for numbers requiring an expo-
nent). These binary representations are
then converted and displayed as decimal
digits with the output being the ASCII
code for each digit in the number. The output
routine also takes care of inserting a decimal
point and minus signs if appropriate.

The source listing for this final section
of the floating point package is presented
next.

FPOUT, LHI001
LLI 157
LMIOOO
LLI126
LAM
NDA
JTS OUTNEG
LAI240
JMP AHEAD1

OUTNEG, LLI124
LBI003
CAL COMPLM
LAI255

AHEAD1, CAL ECHO
LLI110
LAM
NDA
JTZ OUTFLT
LLI 127
LAI027
LBM
INB
DCB
JTS OUTFLT
SUB
JTS OUTFLT
,JMP OUT FIX

OUTFLT, LLI 110
LMIOOO
LAI260
CAL ECHO
LAI256
CAL ECHO

OUTFIX, LLI127
LAI377
ADM
LMA

The first portion of the FPOUT subroutine performs
initializing operations and then determines whether
the output is to be in fixed or floating point format.

** Set H to working area for floating point routines
Set pointer to decimal exponent storage location
Initialize storage location to zero
Change pointer to FP ACC (number to be outputted)
And fetch MSW of FPACC
Test the contents of MSW of FPACC
If most significant bit of MSW is a one, have a minus nr.
Else number is positive, set ASCII code for space for a
Positive number and go display a space

If number in FP ACC is negative must negate in order
To display. Set pntr to LSW of FPACC & set prec. cntr.
Negate the number in the FPACC to make it positive
But load ACC with ASCII code for minus sign

Call user display driver to output space or minus sign
Set pointer to FIXED/FLOAT indicator
Fetch value of FIXED/FLOAT indicator
Test contents of indicator. If contents are zero, calling
Routine has directed floating point output format.
If indicator non-zero, fixed point format requested if
Possible. Point to FP ACC Exponent. Put 23 decimal in
Accumulator. Fetch FPACC Exponent into register B
And exercise the register to test its
Original contents. If FP ACC Exponent is negative in
Value then go to floating point output format. If value
Is positive, subtract value from 23 (decimal). If result
Negative, number is too big to use fixed format.
Else, can use fixed format so skip next routine

Set pointer to FIXED/FLOAT indicator.
Clear indicator to indicate floating point output format
Load ASCII code for '0' into accumulator
Call user display driver to output '0' as first character in
Number string. Now load ASCII code for decimal point.
Call user display driver to output'.' as second character.

Set pointer to FP ACC Exponent
Load accumulator with minus one
Add value in FP ACC Exponent
Restore compensated exponent value

Next portion of routine establishes the value for the
decimal exponent that will be outputted by processing
the binary exponent value in the FP ACC.

10 - 24

DECEXT, JFSDECEXD
LAI004
ADM
JFS DECOUT
LLl 210
LHI 001
CAL FACXOP
CAL FPMULT
LL1157
LCM
DCC
LMC

DECREP, LL1127
LAM
NDA
JMP DECEXT

DECEXD LL1 214 ,
LHI001
CAL FACXOP
CAL FPMULT
LL1157
LBM
INB
LMB
JMP DECREP

DECOUT. LEI 164 ,

LDH
LLI124
LEI 003
CAL MOVEIT
LLI167
LM1000
LL1164
LEI 003
CAL ROTATL
CAL OUTX10

COMPEN, LLI127
LBM
INB
LMB
JTZ OUTDIG

If compensated exponent value is zero or positive
Then go multiply FPACC by 0.1 (decimal). Else,
Add four to the exponent value.
If exponent now zero or positive, ready to output
If exponent negative, mUltiply FPACC by 10 (decimal)
** Set pointer to registers holding 10 (dec) in binary
Floating point format. Set up for multiplication.
Perform the multiplication. Answer in FP ACe.
Set pointer to decimal exponent storage location.
Each time the FP ACC is multiplied by ten, need to
Decrement the value in the decimal exponent storage
Location. (This establishes decimal exponent value!)

Reset pointer to FPACe Exponent
Fetch value in exponent
Test value
Repeat process as required

If exponent is positive, m ultipl.'-; FPACC by 0.1
** Set pointer to registers holding 0.1 (dec) in binary
Floating point format. Set up for multiplication.
Perform the multiplication. Answer in FP ACe.
Set pointer to decimal exponent storage location.
Each time the FP ACC is multiplied by one tenth, need
To increment the value in the decimal exponent storage
Location. (This establishes decimal exponent value!)
Repeat process as required

The next section outputs the mantissa (or fixed point
number) by converting the value remaining in the
FP ACC (after the decimal exponent equivalent has been
extracted from the original value if required by the pre-
vious routines) to a string of decimal digits.

Set pointer to LSW of output working register
Set D to same page value as H
Set pointer to LSW of FP ACC
Set precision counter
Move value in FPACC to output working register
Set pointer to MSW plus one of output working register
Clear that location to zero
Set pointer to LSW of output working register
Set precision counter
Rotate register left once to compensate for sign bit
Multiply output register by 10, overflow into lVISW+1

Set pointer back to FP ACC Exponent
Compensate for any remainder in the binary exponent
By performing a rotate right on the output working
Register until the binary exponent becomes zero
Go output decimal digits when this loop is finished

10 - 25

L11 167
LBI004
CAL ROTATR
JMP COMPEN

OUTDIG, L11 107
LMI007
LLI167
LAM
NDA
JTZ ZERODG

OUTDGS, L11 167
LAM
NDA
JFZ OUTDGX
LLIII0
LAM
NDA
JTZ OUTZER
LLI157
LCM
DCC
INC
JFS OUTZER
L11 166
LAM
NDI340
JFZ OUTZER
RET

OUTZER, XRA

OUTDGX, ADI 260
CAL ECHO

DECRDG, L11 110
LAM
NDA
JFZ CKDECP
LLII07
LCM
DCC
LMC
JTZ EXPOUT

PUSHIT, CAL OUTXI0
JMP OUTDGS

CKDECP, L11 157
LCM

Binary exponent compensating loop. Set pointer to
Working register MSW+ 1. Set precision counter.
Rotate working register to the right.
Repeat loop as required.

Set pointer to output digit counter storage location
Initialize to value of seven
Change pointer to output working register MSW+l
Fetch MSW+l byte containing BCD of digit to be
Displayed. Test the contents of this byte.
If zero jump to ZERODG routine.

Reset pointer to working register MSW+l
Fetch BCD of digit to be outputted
Exercise CPU flags
If not zero, go display the digit
If zero, change pointer to FIXED/FLOAT indicator
Fetch the indicator into the accumulator
Test value of indicator
If in floating point mode, go display the digit
Else change pointer to decimal exponent storage
Location, which, for fixed point, will have a positive
Value for all digits before the decimal point. Decrement
And increment to exercise flags. See if count is positive.
If positive, must display any zero digit.
If not, change pointer to MSW of working register
And test to see if any significant digits coming up
By forming a mask and testing for presence of bits
If more significant digits coming up soon, display the
Zero digit. Else, exit to calling routine. Finished.

Clear the accumulator to restore zero digit value

Add 260 (octal) to BCD code in ACC to form ASCII
Code and call the user's display driver subroutine

Set pointer to FIXED/FLOAT indicator storage
Fetch the indicator to the accumulator
Exercise the CPU flags
If indicator non-zero, doing fixed point output
Else, get output digit counter

Decrement the digit counter & restore to storage

When digit counter is zero, go take care of exponent

Else push next BCD digit out of working register
And continue the outputting process

For fixed point output, decimal exponent serves as
Counter for number of digits before decimal point

10 - 26

DCC
LMC
JFZ NODECP
LAI256
CAL ECHO

NODECP, LLI107
LCM
DCC
LMC
RTZ
JMP PUSHIT

ZERODG, LLI157
LCM
DCC
LMC
LLI 166
LAM
NDA
JFZ DECRDG
DCL
LAM
NDA
JFZ DECRDG
DCL
LAM
NDA
JFZ DECRDG
LLI157
LMA
JMPDECRDG

OUTX10, LLI167
LMIOOO
LLI 164
LDH
LEI 160
LBI004
CAL MOVEIT
LLI164
LEI 004
CAL ROTATL
LLI164
LBI004
CAL ROTATL
LLI 160

Fetch the counter and decrement it to account for
Current digit being processed. Restore to storage.
If count does not go to zero, jump ahead.
When count reaches zero, load ASCII code for period
And call user's display driver to display decimal point

Set pointer to output digit counter storage location
Fetch the digit counter
Decrement the value
Restore to storage
If counter reaches zero, exit to caller. Finished.
Else continue to output the number.

If first digit of floating point number is a zero, set
Pointer to decimal exponent storage location.
Decrement the value to compensate for skipping
Display of first digit. Restore to storage.
Change pointer to MSW of output working register
Fetch MSW of output working register
Test the contents
If non-zero, continue outputting
Else decrement pointer to next byte in working register
Fetch its contents
Test
If non-zero, continue outputting
Else decrement pointer to LSW of working register
Fetch its contents
Test
If non-zero, continue outputting
If decimal mantissa is zero, set pointer to decimal
Exponent storage and clear it
Finish outputting

Following routine multiplies the binary number in the
output working register by ten to push the most signifi-
cant digit out to the MSW+ 1 byte.

Set pointer to working register MSW+1
Clear it in preparation for receiving next digit pushed
Into it. Change pointer to working register LSW.
Set up register D to same page as H.
Set second pointer to LSW of second working register
Set precision counter
Move first working register into second
Reset pointer to LSW of first working register
Set precision counter
Rotate contents of first working register left (X 2)
Reset pointer to LSW
Reset precision counter
Rotate contents left again (X 4)
Set pointer to LSW of original value in 2'nd register

10 - 27

LE1164
LBI004
CAL ADDER
LLI 164
LBI004
CAL ROTATL
RET

EXPOUT, LL1157
LAM
NDA
RTZ
LAI305
CAL ECHO
LAlVl
NDA
JTS EXOUTN
LAI253
JMP AHEAD2

EXOUTN, XRI377
AD! 001
LMA
LAI255

AHEAD2, CAL ECHO
LBIOOO
LAM

SUB12, SUI 012
JTS TOMUCH
LMA
INB
JMP SUB12

TOMUCH, LAI 260
ADB
CAL ECHO
LAM
ADI260
CAL ECHO
RET

Set pointer to LSW of rotated value
Set precision counter
Add rotated value to original value (X 5)
Reset pointer to LSW of first working register
Set precision counter
Rotate contents left again (X 10)
Exit to calling routine

The final group of routines in the floating point output
section take care of outputting the decimal exponent
portion of floating point numbers.

Set pointer to decimal exponent storage location
Fetch value to the accumulator
Test the value
If zero, then no exponent portion. Exit to caller.
Else, load ACC with ASCII code for letter E.
Display E for Exponent via user's display driver rtn
Get decimal exponent value back into ACC
Test again
If value is negative, skip ahead
If positive, load ASCII code for + sign
Jump to display the + sign

When decimal exponent is negative, must negate
Value for display purposes. Perform two's complement
And restore the negated value to storage location
Load ASCII code for minus sign

Display the ASCII character in ACC
Clear register B
Fetch the decimal exponent value back into ACC

Subtract 10 (decimal) from value in ACC
Break out of loop when accumulator goes negative
Else restore value to storage location
Increment register B as a counter
Repeat loop to form tens value of decimal exponent

Load base ASCII value for digit into the accumulator
Add to the count in B to form tens digit of decimal
Exponent. T)isplay via user's driver subroutine
Fetch remainder of decimal exponent value
Add in ASCII base value to form final digit
Display second digit of decimal exponent
Finished outputting. Return to caller.

10 - 28

leaves the result in the FP ACC.

The source listings for the five floating

point operations just described (FPFIX,
FPZERO, FPNORM, FPADD and FPSUB)
are presented next.

FPFIX, LLI 126
LHI 001
LAM
LLI100
LMA
NDA
CTS FPCOMP
LLI 127
LAI027
LBM
INB
DCB
JTS FPZERO
SUB
JTS FIXERR
LCA

FPFIXL, LLI126
LBI 003
CAL ROTATR
DCC
JFZ FPFIXL
JMP RESIGN

FPZERO, LLI126
XRA
LMA
DCL
LMA
DCL
LMA
DCL
LMA
RET

Following subroutine converts number stored as float-
ing point in FP ACC to fixed point.

Set L to point to MSW of FP ACC
** Set H to point to page of FPACC
Fetch MSW of FP ACC
Change pointer to SIGN indicator on same page
Place MSW of FPACC into SIGN indicator
Now test sign bit of MSW of FPACC
Two's complement value in FPACC if negative
Change pointer to FPACC Exponent register
Set accumulator to 23 (decimal) for number of bits
Load FP ACC Exponent into CPU register B
Exercise the value in register B
To set CPU flags
If FP ACC Exponent is negative set FP ACC to zero
Subtract value of FPACC Exponent from 23 decimal
If Exp larger than 23 decimal cannot convert
Else place result in register C as counter for number
Of rotate ops. Set pointer to lV1SW of FP ACC
Set precision counter (number of bytes in mantissa)
Rotate FPACC right the number of places indicated
By count in register C to effectively rotate all the
Significant bits to the left of the floating point decimal
Point. Go check original sign & negate answer if req'd.

Following subroutine clears the FPACC to the zero
condition.

Set L to point to MSW of FP ACC
Clear the accumulator
Set the MSW of FP ACC to zero
Decrement the pointer
Set the next significant word of FP ACC to zero
Decrement the pointer
Set the LSW of FP ACC to zero
Decrement the pointer
Set the auxiliary FP ACC byte to zero
Exit to calling routine

The next instruction is a special entry point to the
FPNORM subroutine that is used when a number is
converted from fixed to floating point. The FPNORM
label is the entry point when a number already in float-
ing point format is to be normalized.

10 - 3

FPFLT, LBI 027

FPNORM, LAB
LHI001
LLI 127
NDA
JTZ NOEXCO
LMB

NOEXCO, DCL
LAM
LLI 100
LMA
NDA
JFS ACZERT
LBI004
LLI 123
CAL COMPLM

ACZERT, LLI126
LBI004

LOOKO, LAM
NDA
JFZ ACNONZ
DCL
DCB
JFZ LOOKO
LLI127
XRA
LMA
RET

ACNONZ, LLI123
LEI 004
CAL ROTATL
LAl\1
NDA
JTS ACCSET
INL
LBM
DCB
LMB
JMP ACNONZ

ACCSET, LLI126
LBI003
CAL ROTATR

RESIGN, LLI100
LAM
NDA
RFS

For fixed to float set CPU register B to 23 decimal

Get CPU register B into ACC to check for special case
** Set H to page of FPACC
Set L to FP ACC Exponent byte
Set CPU flags to test what was in CPU register B
If B was zero then do standard normalization
Else set Exponent of FPACC to 23 decimal

Change pointer to MSW of FP ACC
Fetch MSW of FPACC into accumulator
Change pointer to SIGN indicator storage location
Place the MSW of FPACC there for future reference
Set CPU flags to test MSW of FP ACC
If sign bit not set then jump ahead to do next test
If sign bit set, number in FP ACC is negative. Set up
For two's complement operation
And negate the value in the FP ACC to make it positive

Reset pointer to MSW of FP ACC
Set precision counter to number of bytes in FP ACC
Plus one. Fetch a byte of the FP ACC.
Set CPU flags
If find anything then FPACC is not zero
Else decrement pointer to NSW of FPACC
Decrement precision counter
Continue checking to see if FP ACC contains anything
Until precision counter is zero. If reach here then
Reset pointer to FPACC Exponent. Clear the ACC and
Clear out the FP ACC Exponent. Value of FPACC is zip!
Exit to calling routine

If FP ACC has any value set pointer to LSW minus one
Set precision counter to number of bytes in FPACC
Plus one for special cases. Rotate the contents of the
FPACC to the LEFT. Pointer will be set to MSW after
Rotate ops. Fetch MSW and see if have anything in
Most significant bit position. If so, have rotated enough
If not, advance pointer to FPACC Exponent. Fetch
The value of the Exponent and decrement it by one
To compensate for the rotate left of the mantissa
Restore the new value of the Exponent
Continue rotating ops to normalize the FPACC
Set pntr to FP ACC MSW. Now must provide room for
Sign bit in normalized FPACC. Set precision counter.
Rotate the FP ACC once to the right now.

Set the pointer to SIGN indicator storage location
Fetch the original sign of the FP ACC
Set CPU flags
If original sign of FPACC was positive, can exit now.

10 - 4

FPCOMP, LLI124
LBI 003
JMP COMPLM

FPADD, LLI126
LHI001
LAM
NDA
JFZ NONZAC

MOVOP, LLI124
LDH
LEL
LLI134
LBI004
JMP MOVEIT

NONZAC, LLI 136
LAM
NDA
RTZ

CKEQEX, LLI 127
LAM
LLI137
CPM
JTZ SHACOP
LBA
LAM
SBB
JFS SKPNEG
LBA
XRA
SBB

SKPNEG, CPI 030
JTS LINEUP
LAM
LLI127

However, if original sign was negative, must now restore
The FPACC to negative by performing two's comple-
Ment on FP ACC. Return to calling rtn via COMPLM.

Floating point ADDITION. Adds contents of FPACC to
FPOP and leaves result in FP ACC. Routine first checks
to see if either register contains zero. If so addition
result is already present!

Set L to point to MSW of FP ACC
** Do same for register H
Fetch MSW of FP ACC to accumulator
Set CPU flags after loading op
If accumulator non-zero then FP ACC has some value

But, if accumulator was zero then normalized FP ACC
Must also be zero. Thus answer to addition is simply the
Value in FPOP. Set up pointers to transfer contents of
FPOP to FP ACC by pointing to the LSW of both
Registers and perform the transfer. Then exit to calling
Routine with answer in FPACC via MOVEIT.

If FPACC was non-zero then check to see if FPOP has
Some value by obtaining MSW of FPOP
Set CPU flags after loading op. If MSW zero then
Normalized FPOP must be zero. Answer is in FPACC!

If neither FPACC or FPOP was zero then must perform
addition operation. Must first check to see if two num-
bers are within significant range. If not, largest number
is answer. If numbers within range, then must align ex-
ponents before performing the addition of the man-
tissa.

Set pointer to FP ACC Exponent storage location.
Fetch the Exponent value to the accumulator.
Change the pointer to the FPOP Exponent
Compare the values of the exponents. If they are the
Same then can immediately proceed to add operations.
If not the same, store FPACC Exponent size in regis B
Fetch the FPOP Exponent size into the ACC
Subtract the FP ACC Exponent from the FPOP Exp.
If result is positive jump over the next few instructions
If result was negative, store the result in B
Clear the accumulator
Subtract register B to negate the original value

See if difference is less than 24 decimal.
If so, can align exponents. Go do it.
If not, find out which number is largest. Fetch FPOP
Exponent into ACC. Change pointer to FPACC Exp.

10 - 5

SUM
RTS
LLI 124
JMP MOVOP

LINEUP LAM ,
LLI 127
SUM
JTS SHIFTO
LCA

MORACC, LLI 127
CALSHLOOP
DCC
JFZ MORACC
JMPSHACOP

SHIFTO, LCA

MOROP, LLI 137
CALSHLOOP
INC
JFZ MOROP

SHACOP, LLI123
LMIOOO
LLI 127
CALSHLOOP
LLI137
CAL SHLOOP
LDH
LEI 123
LEI 004
CAL ADDER
LBIOOO
JMP FPNORM

SHLOOP, LBM
INB
LMB
DCL
LBI004

FSHIFT, LAM
NDA
JFS ROTATR

BRINGL RAL
JMP ROTR

Subtract FP ACC from FPOP. If result is negative then
FP ACC was larger. Return with answer in FP ACC.
If result was positive, larger value in FPOP. Set pointers
To transfer FPOP into FP ACC and then exit to caller.

Fetch FPOP Exponent into accumulator.
Change pointer to FPACC Exponent.
Subtract FP ACC Exponent from FPOP Exponent. If
Result is negative FP ACC is larger. Go shift FPOP.
If result positive FPOP larger, must shift FPACC. Store
Difference count in C. Reset pointer to FP ACC Exp
Call the SHift LOOP to rotate FP ACC mantissa RIGHT
And INCREMENT Exponent. Decr difference counter
Continue rotate operations until diff counter is zero
Go do final alignment and perform addition process

Routine to shift FPOP. Set difference count into reg. C

Set pointer to FPOP Exponent.
Call the SHift LOOP to rotate FPOP mantissa RIGHT
And INCREMENT Exponent. Then incr difference cntr
Continue rotate operations until diff counter is zero

Set pointer to FP ACC LSW minus one to provide extra
Byte for addition ops. Clear that location to zero.
Change pointer to FP ACC Exponent
Rotate FP ACC mantissa RIGHT & Increment Exponent
Change pointer to FPOP Exponent
Rotate FPOP mantissa RIGHT & Increment Exponent
Rotate ops provide room for overflow. Now set up
Pointers to LSW minus one for both FP ACC & FPOP
(FPOP already set after SHLOOP). Set precision counter
Call quad precision ADDITION subroutine.
Set CPU register B to indicate standard normalization
Go normalize the result and exit to caller.

Shifting loop. First fetch Exponent currently being
Pointed to and Increment the value by one.
Return the updated Exponent value to memory.
Decrement the pointer to mantissa portion MSW
Set precision counter

Fetch MSW of mantissa
Set CPU flags after load OpS
If MSB not a one can do normal rotate ops

If MSB is a one need to set up carry bit for the negative
Number case. Then make special entry to ROT ATR sub

10 - 6

MOVE IT, LAM
INL
CAL SWITCH
LMA
INL
CAL SWITCH
DCB
RTZ
JMP MOVEIT

FSUB, LLI124
LHI001
LEI 003
CAL COMPLM
JMP FPADD

The following subroutine moves the contents of a string
of memory locations from the address pointed to by
CPU registers H & L to the address specified by the con-
tents of registers D & E when the routine is entered. The
process continues until the counter in register B is zero.

Fetch a word from memory string A
Advance A string pointer
Switch pointer to string B
Put word from string A into string B
Advance B string pointer
Switch pointer back to string A
Decrement loop counter
Return to calling routine when counter reaches zero
Else continue transfer operations

The following subroutine SUBTRACTS the contents of
the FLOATING POINT ACCUMULATOR from the
contents of the PLOATING POINT OPERAND and
leaves the result in the FP ACC. The routine merely
negates the value in the FP ACC and then goes to the
FPADD subroutine just presented.

Set L to address of LSW of FP ACC
** Set H to page of FPACC
Set precision counter
Two's complement the value in the FPACC
Now go add the negated value to perform subtraction!

FLOATING POINT MULTIPLICATION

The next section of the floating point
package is a routine that performs floating
point multiplication. A conventional floating
point multiplication algorithm is utilized to
perform this function. The essence of the
algorithm is illustrated in the flow chart
shown on the next page. Prior to imple-
menting this algorithm the routine performs
several initializing procedures. It checks the
signs of the multiplier and multiplicand and
negates the values if they are negative. If the
signs of the two numbers to be multiplied are

10 - 7

different, the final answer will be negated.
The exponents of the two numbers are then
added. Finally the two mantissas are multi-
plied using a double width (six byte) partial-
product register. The final answer in this
register is then rounded off to the 23 most
significant binary bits as the final answer. This
answer is left in the FP ACC at the conclusion
of the routine (after being negated if the signs
of the original numbers were different). The
listing for the floating point multiplication
subroutine is presented next.

FPMULT,
ADDEXP,

SETMCT,

START

SHIFT MULTIPLIER
RIG HT (INTO CARRY)

NO YES

ADD MULTIPLICAND
TO PARTIAL-PRODUCT

SHIFT P ARTIAL-
PRODUCT RIGHT

NO CHECKED
ALL BITS IN

MULTIPLIER?

YES

CAL CKSIGN
LLI 137
LAM
LLI 127
ADM
ADIOOI
LMA

LLII02
LMI027

ANSWER IS STORED IN
THE PARTIAL-PRODUCT

REGISTER

The first part of the FLOATING POINT MULTIPLI-
CATION subroutine calls a subroutine to check the
original signs of the numbers that are to be multi-
plied and perform working register clearing functions_
Next the exponents of the numbers to be multiplied
are added together-

Call routine to set up registers & ck signs of numbers
Set pointer to FPOP Exponent
Fetch FPOP Exponent into the accumulator
Change pointer to FPACC Exponent
Add FP ACC Exponent to FPOP Exponent
Add one more to total for algorithm compensation
Store result in FP ACC Exponent location

Change pointer to bit counter storage location
Initialize bit counter to 23 decimal

Next portion of the FPMULT routine is the implemen-
tation of the algorithm illustrated in the flow chart
above_ This portion multiplies the values of the two
mantissas. The final value is rounded off to leave the
23 most significant bits as the answer that is stored
back in the FPACC.

10 - 8

MULTIP, LLI126
LEI 003
CAL ROTATR
CTC ADOPPP
LLI 146
LEI 006
CAL ROTATR
LLI 102
LCM
DCC
LMC
JFZ MULTIP
LLI146
LEI 006
CAL ROTATR
LLI143
LAM
RAL
NDA
CTS MROUND
LLI123
LEL
LDH
LLI 143
LBI004

EXMLDV, CAL MOVEIT
LBIOOO
CAL FPNORM
LLI 101
LAM
NDA
RFZ
JMP FPCOMP

CKSIGN, LLI140
LHI001
LBI010
XRA

Set pointer to MSW of FP ACC mantissa
Set precision counter
Rotate FPACC (multiplier) RIGHT into carry bit
If carry is a one, add multiplicand to partial-product
Set pointer to partial-product most significant byte
Set precision counter (p-p register is double length)
Shift partial-product RIGHT
Set pointer to bit counter storage location
Fetch current value of bit counter
Decrement the value of the bit counter
Restore the updated bit counter to its storage location
If have not multiplied for 23 (decimal) bits, keep going
If have done 23 (decimal) bits, set pntr to p-p MSW
Set precision counter (for double length)
Shift partial-product once more to the RIGHT
Set pointer to access 24'th bit in partial-product
Fetch the byte containing the 24'th bit
Position the 24'th bit to be MSB in the accumulator
Set the CPU flags after to rotate operation and test to
See if 24'th bit of p-p is a ONE. If so, must round-off
Now set up pointers
To perform transfer
Of the multiplication results
From the partial-product location
To the FPACC

Perform the transfer from p-p to FP ACC
Set up CPU register B to indicate regular normalization
Normalize the result of multiplication
Now set the pointer to the original SIGNS indicator
Fetch the indicator
Exercise the CPU flags
If indicator is non-zero, answer is positive, can exit here.
If not, answer must be negated, exit via 2's complement.

The following portions of the FPMULT routine set up
working locations in memory by clearing locations for
an expanded FPOP area and the partial-product storage
area. Next, the signs of the two numbers to be multi-
plied are examined. Negative numbers are negated in
preparation for the multiplication algorithm. A SIG NS
Indicator register is set up during this process to indi-
cate whether the final result of the multiplication
should be positive or negative. (Negative if original signs
of the two numbers to be multiplied are different.)

Set pointer to start of partial-product working area
** Set H to proper page
Set up a loop counter in CPU register B
Clear the accumulator

10 - 9

I/O ROUTINES

Because of the wide variety of I/O devices
that individual system owners may have con-
nected to their computers, SCELBAL was de-
signed so that individual users could provide
their own actual I/O routines. In order to al-
low this, the reader may have noted in the
previous chapters that all references to I/O
routines are vectored to one of four loca-
tions in the program. Each one of these loca-
tions contains a jump or call instruction that
the user must complete by supplying the
actual address to the user supplied I/O
routine. The four locations referred to are
discussed here.

The location in the program labeled
CINPUT (located at the address 03 221 in
the assembled version of the program pre-
sented in this publication) is the vector in-
struction for the user provided OPERATOR
INPUT DEVICE. This device would typi-
cally be an electronic keyboard or similar
device on which the operator would type
in commands to the SCELBAL executive
and enter statements or programs into the
user program buffer. SCELBAL expects all
inputs to the program itself to be in the form
of ASCII encoded characters with the eighth
bit always marking. A list of the octal codes
for ASCII encoded characters utilized by
the program is shown on the next page. This
routine should also provide a duplicate of the
character received on the system's output de-
vice so that the user may verify the characters
inputted to the program.

The vector point for sending data from the
program to the system's display device is loca-
ted in the subroutine labeled ECHO (at ad-
dress 03 213 in the assembled version of the
program). The output device would typi-
cally be an electro-mechanical printing de-
vice or other suitable display mechanism on
which data from the program may be dis-
played. SCELBAL has the ASCII code for the
character to be displayed in the accumu-
lator when this vector point is encountered.
It expects the user provided output driver

11 - 1

routine to display the character corres-
ponding to the ASCII code on the system's
display device. Of course, if the user's dis-
play mechanism uses some other type of
code, it is possible for the user to insert an
appropriate conversion routine in the out-
put routine. (This also applies for inputs.)

There are several extremely important
considerations for the reader to bear in mind
when preparing to implement the actual I/O
driving routines to be used with SCELBAL.
(The following two considerations refer to
I/O operations involving the system device
through which the operator communicates
with the program. They do not apply to the
I/O routines associated with the system's bulk
storage device which will be discussed further
on in this chapter.)

1. Only CPU register B and the accumu-
lator may be used by the I/O routines. All
the other CPU registers must contain their
original values when I/O operations have been
completed.

2. For the 8008 version of SCELBAL,
the I/O routines themselves may only utilize
a maximum of two levels of nesting! This is
because, when called, the 8008 internal stack
may at times be loaded to the point where
pushing the stack down more than two times
would result in the loss of stack information.

Consideration number one above causes
no real concern for readers who implement
SCELBAL on an 8080 system. The 8080,
which has the CPU's stack implemented in
RAM memory, can easily save CPU registers
C through L on the stack if required while
performing an I/O operation. The registers
may then be restored from the stack when the
I/O operation is completed.

For 8008 users, the consideration will be
fairly easy for· most users to cope with if
their I/O device has a parallel type interface
with the computer such as commonly found

in devices that utilize a UART device. With
such an interface it is generally quite easy to
perform the necessary transfer functions us-
ing just the accumulator and a CPU register.
(Just remember to use register B!)

Users with a serial interface may find the
restriction somewhat challenging, especially
if restriction number two above also applies.
As an aid to those that might find themselves
in such a situation, an example input and out-
put routine designed to operate with a serial
electro-mechanical keyboard and printer, that

CHARACTER BINARY OCTAL

A 11 000 001 301
B 11 000 010 302
C 11 000 all 303
D 11 000 100 304
E 11 000 101 305
F 11 000 110 306
G 11 000 111 307
H 11 001 000 310
I 11 001 001 311
J 11 001 010 312
K 11 001 all 313
L 11 001 100 314
M 11 001 101 315
N 11 001 110 316
0 11 001 111 317
P 11 010 000 320
Q 11 010 001 321
R 11 010 010 322
S 11 010 011 323
T 11 010 100 324
U 11 010 101 325
V 11 010 110 326
W 11 010 111 327
X 11 all 000 330
Y 11 all 001 331
Z 11 011 010 332
[11 all all 333
\ 11 all 100 334
] 11 011 101 335
t 11 all 110 336
+- 11 all 111 337

SPACE 11 100 000 240

satisfies both conditions above, will be pro-
vided starting on the next page.

Consideration number two must be strictly
adhered to when SCELBAL is operating in an
8008 system. Naturally, for an 8080 based
unit with its stack residing in RAM memory,
the restriction does not apply provided that
the user allocates sufficient room for the
stack in memory. Recommendations of suit-
able areas in memory that may be reserved
for 8080 stack use are made in the chapter
that contains the object code listing of the
SCELBAL program for the 8080 CPU.

CHARACTER BINARY OCTAL

, 10 100 001 241 •

" 10 100 010 242
10 100 011 243
$ 10 100 100 244
% 10 100 101 245
& 10 100 110 246 , 10 100 111 247
(10 101 000 250
) 10 101 001 251
* 10 101 010 252
+ 10 101 all 253
, 10 101 100 254

10 101 101 255
• 10 101 110 256
/ 10 101 111 257
a 10 110 000 260
1 10 110 001 261
2 10 110 010 262
3 10 110 all 263
4 10 110 100 264
5 10 110 101 265
6 10 110 110 266
7 10 110 111 267
8 10 111 000 270
9 10 111 001 271
• 10 111 010 272 •

• 10 111 all 273 ,
< 10 111 100 274
- 10 111 101 275 -
> 10 111 110 276
? 10 111 111 277 •

Control 'C' 10 000 all 203

TABLE OF ASCII CODES WITH PARITY BIT MARKING AS USED BY SCELBAL

11 - 2

RCV, INP ttt
NDA
JTS RCV
XRA
LEI 104

MOREL DCB ,

JFZ MOREl
OUT ttt
CAL TIMER
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT
CAL NEXBIT

STOP, LAIOOl
OUT ttt
LAB
RLC
LEI 314

MORE3, DCB
JFZ MORE3
RET

NEXBIT, INP ttt
NDI200
RLC
OUT ttt
RRC
ADB
RRC

Routine to receive serial data from an INPUT device
connected to bit B7 of an input port. Incoming charac-
ters assumed to be in format: 1 start bit, eight data bits
(1 to 8) and 2 stop bits. Timing loops in example shown
for characters coming in at a rate of 10 characters per
second and assuming 8008 CPU clock set at 500 Khz.
Received character will be in the accumulator when
routine is finished. This routine will automatically echo
the character received to an OUTPUT device connected
to bit BO of an output port. To disable the echo replace
output instructions with NOPs such as LAA. This rout-
ine uses only register B and the accumulator and does
not push the CPU stack down more than two levels as
it operates.

Sample the current input on the serial line from input
Device. Check to see if the line has gone to logic zero
Condition indicating a possible START bit. If not, loop
To look for the start bit. If have start bit, clear the ACe.
Set a counter up in register B to cause time delay equal

To about half a bit. Fall into the first timing loop and
Time it out until counter in B is zero. Now start the
Echo process by sending logic zero to output device.
Call subroutine to provide time delay equal to one bit.
Input the first bit.
Input the second bit.
Input the third bit.
Input the fourth bit.
Input the fifth bit.
Input the sixth bit.
Input the seventh bit.
Input the eighth bit.

Set up stop bit for the output device.
Send a logic one to the output device.
Fetch the character from B to the ACC.
Format character to compensate for RRC by NEXBIT.
Set up a counter in register B to cause time delay equal

To about one and a half bits for STOP bits. Fall into the
Timing loop and time out until counter is zero.
Now return to calling routine with character in ACC.

Input a character to bit B7 from the selected input port.
Mask off bits b6 through BO to leave just bit B7.
Position the bit in B7 to bit BO to prepare to Echo bit.
Output bit BO to the output device.
Restore the bit back to B7.
Add previous bits in character stored in register B.
Rotate all bits to make room for next incoming bit.

11 - S

TIMER, LBI 213

MORE2, DCB
JFZ MORE2
LBA
RET

PRINT, NDA
RAL
OUT ttt
RAR
CAL TIMER
CAL BITOUT
CAL BITOUT
CAL BITOUT
CAL BITOUT
CAL BITOUT
CAL BITOUT
CAL BITOUT
CALBITOUT
LBA
LAI001
OUT ttt
LAB
CAL TIMER
LBI103
JMP MORE3

BITOUT, OUT ttt
RRC
CAL TIMER
RET

Set up a counter in register B to cause time delay equal

To about one bit. Fall into the timing loop and
Time out until counter is zero.
Now save the contents of the ACC in register B.
Return to main inputting routine.

Routine to send data in serial format to an OUTPUT
device connected to bit BO of an output port. Character
assumed to have same format and is sent at same rate
as in the example input routine. Routine expects ASCII
encoded character to be in the accumulator when the
routine is entered. This routine uses only register Band
the accumulator and does not push the CPU stack down
more than two levels during its execution.

Clear the carry flag prior to set up for sending START
Bit. Rotate the carry status into bit BO. Now output a
Logic zero level for START bit to output device.
Restore the original ASCII character in the ACC.
Provide one bit delay for sending of the START bit.
Output the first bit.
Output the second bit.
Output the third bit.
Output the fourth bit.
Output the fifth bit.
Output the sixth bit.
Output the seventh bit.
Output the eighth bit.
Save contents of the ACC in register B.
Set bit BO to a logic one for sending STOP bit.
Send a logic one from bit BO to the output device.
Restore the character from register B to the ACC.
Provide time delay for the two STOP bits.
Finish providing time delay for the STOP bits.
Exit from the PRINT routine when finished timing out.

Output status of BO to output device.
Position the next bit in the ACC to bit position BO.
Provide one bit time delay.
Return to main outputting routine.

It is important to reiterate, as illustrated in
the example INPUT subroutine, that the in-
put routine provided by the user for use with
SCELBAL should reflect the character input-
ted on the system's output device. If this is
not done, the operator will not be able to

see the information as it is inputted. This may
be done in the manner illustrated in the
example program (where the character is
reflected to the output device on a bit-by-bit
basis as it is received) or it may be accom-
plished by simply having the input subroutine

11 - 4

jump to the output subroutine when a charac-
ter has been completely received. The latter
technique, however, generally slows down the
overall inputting speed to a level that is un-
pleasant for many operators if an electro-
mechanical I/O device is being used. This is
because the operator must wait an extra frac-
tion of a second for the character to be sent
to the output device.

NOTE: The example I/O routines pre-
sented serve only as guide lines for the special
case mentioned where serial I/O devices are ,

being utilized with an 8008 equipped com-
puter. The actual values used in timing loops,
and other parameters would vary depending
on the individual system's I/O arrangements.
Many reader's will not require such elaborate
I/O subroutines.

The two types of I/O subroutines discussed
to this point are essential to the operation of
SCELBAL as they provide the means for the
operator to communicate with the program.
There are two more types of I/O routines that
might be considered optional by some users.
These two routines may be created by the
user to provide the capability of saving a
program that has been placed in the user pro-
gram buffer on an external bulk storage de-
vice, and vice versa.

The reader who desires to save user pro-
grams on a bulk storage device should note
that the vector to such a routine is located
in the EXECutive portion of SCELBAL in the
subsection headed by the label NOSCR (at
address 11 104 in the assembled version of
the program). This vector is taken when an
operator specifies the EXECutive command
SAVE.

In order to implement SAVE capability
the user need only provide a routine that
will effectively dump the contents of the user
program buffer and the contents of a pair of
memory words on the system's bulk storage
device. The pair of words that should be saved
is the pair that holds the pointer to the end
of the user program buffer! In the assembled
version of SCELBAL provided in this manual

11 - 5

that register pair is located at 26 364 and
26 365.

Thus, for whatever type of bulk storage
device the reader is utilizing, the reader need
simply create a routine that will first write
out the contents of the user program buffer.
(It starts at location 33 000 in the assem-
bled version of SCELBAL provided herein.
It ends at the point indicated by the con-
tents of the "end of user program buffer
pointer." That point will vary depending on
the particular size of a user's program.) Then,
the routine should write out the contents of
the "end of user program buffer pointer"
(which was just used to determine how much
of the user program buffer should be written
on the bulk storage device)!

The details of such a routine will be entire-
ly a function of the type of bulk storage
device the system utilizes. However, for most
systems, the creation of such a routine should
be quite easy and consist of a series of calls
to standard driver routines for the particular
device being utilized.

The fourth 1/0 routine referred to in
SCELBAL is the routine that would read in a
high level program from the bulk storage
device into the user program buffer area and
set the "end of user program buffer pointer"
to the appropriate value. In essence, all this
SUbroutine does is read back in what the sub-
routine discussed above wrote on the bulk
storage medium, placing it in the appropriate
addresses in memory. (The user program buf-
fer and the two bytes of the pointer.)

Reference to this routine is made in the
subsection of the EXECutive part of the
program labeled NOSCR (at address 11 122
in the assembled version of the program).
This routine would be executed when the
user issued the LOAD directive.

The two user provided routines for hand-
ling the bulk storage device are free to use all
of the CPU registers. Additionally, the devel-
oper of these routines need only ensure that
the use of the CPU stack (by subroutine nest-

ing operations) is kept within the capabilities
of the 8008, or, in the case of the 8080, with-
in the boundaries of the memory area reser-
ved for the CPU stack.

Both of the routines associated with the
bulk storage device operations should end by
directing program operation back to the start
of the EXECutive since these operations are
essentially independent events. (The EXEC-
utive starts at location 10 266 in the assem-
bled object code listing shown in this book.)

If the reader does not desire to implement
the SAVE and LOAD commands, the two
vector locations (11 104 and 11 122) can be
used to direct the program back to the start
of the EXECEtive in case a user inadver-
tently should enter one of those commands.

11 - 6

I/O routines may be placed on page 00 in
the system if desired. All of the locations on
that page were left for such use in the version
of SCELBAL illustrated in this publication.
If that page is not suitable, the I/O routines
may be tucked into some of the unused mem-
ory locations available in the assembled ver-
sion illustrated on pages 31 and 32 (if the
routines are relatively short). Alternately, the
reader may reduce the amount of area dedi-
cated to the storage of the user's program
(USER PROGRAM BUFFER). If this is done
it is recommended that the upper portion of
the buffer area be used for that purpose.
Then the programmer need only change the
"end of buffer page" value (page 12 location
122) so that the buffer area is limited to
protect the installed I/O routines.

SCELBAL ASSEMBLED FOR OPERATION IN AN 8008 BASED SYSTEM

This chapter presents an assembled version
of SCELBAL for operation in an 8008 based
microcomputer. This version may be loaded
into a system along with the user provided
I/O subroutines to provide the user with
SCELBAL capability.

The user may elect, by choosing the proper
machine codes at key locations, to load the
program as an 8 K version that does not have
the optional DIM statement capability. This
version of the program will leave room for
about 1,250 bytes in the user program buffer.
Or, the user may load the program as a 12 K
version with DIM capability. (Leaving about
4,500 bytes for program storage.) Alternately,
by changing a few specially marked locations,
the user may elect to have the program oper-
ate in 8 K of memory with DIM capability.
However, this version is not recommended
because it will leave only about 500 bytes for
storage of a high level language user program.
(It is mentioned as an option because some
prospective users may desire to run small pro-
grams that require the DIM capability.)
Finally, the user may opt to place the DIM
routines (by changing the associated pointers,
etc.) in the upper pages of available RAM
memory in any system having more than 8 K
of memory (such as a 10 K, 16 K, 32K sys-
tem) and using the area between the locations
used by the main SCELBAL routines and the
optional DIM routines as a user program buf-
fer.

The reader who has studied this book to
this point should have no difficulty under-
standing what is involved in selecting the
options just mentioned. Many readers may
well elect to make other alterations and may,
of course, do so at their own discretion. Let
it be said, that the version presented is just
one way in which the program may be as-
sembled for operation!

The reader should pay careful attention
in the following object code listing to all
locations marked by a double asterisk (* *),

12 - 1

double at sign (@@), or double cross (tt).
The convention established in the earlier
chapters for those special indicators will be
reviewed here.

A double asterisk (**) is of importance
only to those readers who might elect to
change the memory pages used for the storage
of pointers, counters, temporary buffers and
look-up tables. The pages used for these pur-
poses in the version of SCELBAL presented
are pages 01, 26 and 27. Readers who take
on the task of re-assigning these pages will
probably have elected to completely re-
assemble SCELBAL and should be equipped
(mentally and with suitable hardware!) to
take on such a task.

A double cross (tt) denotes an elective
value on the part of the user. These locations
generally refer to the starting addresses of
user provided routines (such as I/O drivers),
or the assignment of the starting and ending
address of the user program buffer area. (For
the version presented the user program buffer
is assumed to start on page 33 and end on
page 54. The ending address would be
changed to page 37 if an 8 K system was be-
ing used and the DIM capability left out. Or,
page 34 for an 8 K system with DIM capa-
bility provided, etc.)

Locations marked with a @@ should be re-
placed with the machine code for a no-opera-
tion instruction, such as LAA, if the user will
not be using the optional DIM statement
capability. Alternately, some of these loca-
tions relating to addressing values would be
altered if the user elected to change the
storage areas for the DIM and associated
array handling subroutines.

It is suggested that user I/O subroutines
be placed on page 00 if possible. Alternately,
they may be placed in the upper regions of
available memory. If this is done, the ending
address of the user program buffer should be
altered accordingly.

03124

03125
03130
03131
03134
03135
03140

03141
03143
03146
03150
03153
03155
03157
03161
03162
03163

03164
03165
03166
03171

03172
03173

03174
03175
03176
03177
03200
03201

03202
03203
03204
03206
03210
03211
03212
03213
03216
03217
03220

03221

03224
03226

053

106377 002
307
106202003
021
110125003
007

006215
106202003
006212
106202003
066043
056001
076001
353
364
007

061
060
110172003
051

061
007

306
201
360
003
050
007

335
346
066043
056001
317
010
371
106 ttt ttt
353
364
007

104 ttt ttt
066227
056001

**

**

tt

tt

**

12 - 10

RTZ

TEXTCL, CAL ADV
LAM

CRLF,

CAL ECHO
DCC
JFZ TEXTCL
RET

LAI215
CAL ECHO
LAI212
CAL ECHO
LLI 043
LHI001
LMI001
LHD
LLE
RET

DEC, DCL
INL
JFZ DECNO
DCH

DECNO, DCL
RET

INDEXB, LAL
ADB
LLA
RFC
INH
RET

ECHO, LDH
LEL
LLI 043
LHI001
LBM
INB
LMB
CAL ttt ttt
LHD
LLE
RET

CINPUT, JMP ttt ttt
EV AL, LLI 227

LHI001

03230
03232
03233
03235
03237
03242
03244
03246
03250
03251
03253

03254
03256
03261
03264
03266
03271
03273
03275

03300
03302
03305
03307
03310
03311
03314
03316
03317
03321
03324
03326
03331
03333
03336
03340
03342
03 '343

03345
03347

03351
03354

03357
03361
03364
03366
03370

076224
060
056026
076000
106255002
066210
076000
066276
317
066200
371

066200
106240002
150301004
074253
110300003
066176
076001
104351 003

074255
110357003
066120
307
240
110345003
066176
307
074007
150 345003
074003
150 152011
074005
150152011
066120
076001
060
076260

066176
076002

106 324004
104301004

074252
110 373003
066176
076003
104351003

**

12 -11

LMI224
INL
LHI026
LMIOOO
CAL CLESYM
LLI 210
LMIOOO
LLI 276
LBM
LLI200
LMB

SCAN1, LLI200
CAL GETCHR
JTZ SCAN10
CPI253
JFZ SCAN2
LLI176
LMI001
JMPSCANFN

SCAN2, CPI255
JFZ SCAN4
LLI120
LAM
NDA
JFZ SCAN3
LLI176
LAM
CPI007
JTZ SCAN3
CPI003
JTZ SYNERR
CPI005
JTZ SYNERR
LLI120
LMI001
INL
LMI260

SCAN3, LLI176
LMI002

SCANFN, CAL PARSER
JMP SCAN10

SCAN4, CPI252
JFZ SCAN5
LLI176
LMI003
JMP SCANFN

03373
03375
04000
04002
04004

04007
04011
04014
04016
04017
04020
04021
04024
04026
04030

04033
04035
04040
04042
04044
04047
04052
04054
04056
04057
04060
04061

04064
04066
04071
04073
04075

04100
04102
04105
04107
04110
04111
04112
04115
04117
04122
04124
04127
04131
04132
04133

074257
110007004
066176
076004
104351003

074250
110033004
066230
317
010
371
106100007
066176
076006
104351003

074251
110064004
066 176
076007
106324004
106003007
066230
056026
317
011
371
104301004

074336
110100004
066176
076005
104 351 003

074274
110143004
066200
317
010
371
106240002
074275
150251 004
074276
150267004
066200
317
011

..L

371

**

12 - 12

SCAN5, CPI257

SCAN6,

SCAN7,

JFZ SCA)J6
111176
1MI004
JMP SCANFN

CPI250
JFZ SCAN7
111230
IBM
INB
1MB
CA1FUNARR
1LI 176
1MI006
JMPSCANFN

CPI251
JFZ SCANS
1L1176
1MI007
CA1 PARSER
CA1 PRIGHT
111 230
LHI026
LBM
DCB
LMB
JMP SCAN10

SCANS CPI 336 ,

SCAN9,

JFZ SCAN9
LLI176
1MI005
JMP SCANFN

CPI274
JFZ SCAN11
LLI200
LBM
INB
1MB
CAL GETCHR
CPI275
JTZ SCAN13
CPI276
JTZ SCAN15
L1I 200
LBM
DCB
LMB

04134
04136
04140

04143
04145
04150
04152
04153
04154
04155
04160
04162
04165
04167
04172
04174
04175
04176
04177
04201
04203

04206
04210
04213
04215
04216
04217
04220
04223
04225
04230
04232
04235
04237
04240
04241
04242
04244
04246

04251
04253
04255

04260
04262
04264

04267

066176
076011
104 351 003

074275
110206004
066200
317
010
371
106240002
074274
150251004
074276
150260004
066200
317
011
371
066176
076012
104351003

074276
110276004
066200
317
010
371
106240002
074274
150267004
074275
150260004
066200
317
011
371
066176
076013
104 351 003

066176
076014
104351003

066176
076015
104351003

066176

12 -13

SCAN11 ,

SCAN12,

LLI 176
LMI011
JMP SCANFN

CPI275
JFZ SCAN12
LLI200
LBM
INB
LMB
CAL GETCHR
CPI274
JTZ SCAN13
cpr 276
JTZ SCAN14
LLI200
LBM
DCB
LMB
LLI176
LMI012
JMP SCANFN

CPI276
JFZ SCA..T\J16
LLI200
LBM
INB
LMB
CAL GETCHR
CPI274
JTZ SCAN15
cpr 275
JTZ SCAN14
LLI200
LBM
DCB
LMB
LLI176
LMI013
JMP SCANFN

SCAN13, LLI176
LMI014
JMP SCANFN

SCAN14, LLI176
LMI015
JMP SCANFN

SCAN15, LLI176

04271
04273

04276

04301
04303
04305
04306
04307
04310
04312
04313
04314
04315
04320
04323

04324
04326
04330
04331
04332
04335
04336
04337
04341
04344
04346
04351
04353

04356
04357
04360
04362
04365
04366
04367
04370
04372
04375
04377
05002

05005
05007
05011
05012
05014
05015

076016
104351 003

106310002

066200
056026
317
010
371
066277
307
011
271
110254003
104300031
000

066120
056026
307
240
150231005
060
307
074256
150356004
074260
160033005
074272
120033005

061
307
074001
150005005
206
360
307
074305
110005005
066200
106240002
104310002

066227
056001
307
004004
370
360

**

**

**

12 - 14

LMI016
JMP SCANFN

SCAN16, CAL CONCTS

SCAN10, LLI 200
LHI026
LBM
INB
LMB
LLI 277
LAM
DCB
CPB
JFZ SCAN1
JMP PARSEP
HLT

PARSER, LLI 120
LHI026
LAM
NDA
JTZ PARSE
INL
LAM
CPI256
JTZ PARNUM
CPI260
JTS LOOKUP
CPI272
JFS LOOKUP

PARNUM, DCL

NOEXPO,

LAM
CPI001
JTZ NOEXPO
ADL
LLA
LAM
CPI305
JFZ NOEXPO
LLI200
CAL GETCHR
JMP CONCTS

LLI 227
LHI001
LAM
ADI004
LMA
LLA

05016
05021
05023
05025
05030

05033
05035
05037
05041
05043
05045
05047
05050
05052
05055
05057

05061
05063
05065
05070
05071
05072
05073
05074
05077
05100
05103
05104
05105
05106

05111
05114
05116
05120
05121
05122
05123
05125
05127
05130
05131
05134
05136
05140
05141
05142
05143
05144

106255022
066120
056026
106044023
104231 005

066370
056026
076000
066120
036027
046210
307
074001
110061 005
066122
076000

066121
056026
106356022
307
060
317
060
106356022
277
110 111 005
060
301
277
150201005

106256006
066370
056026
317
010
371
066077
056027
301
277
110061005
066077
056027
317
010
371
301
074025

**

LOOKUP,
**

**

LOOKU1,
**

LOOKU2,

**

**

**

12 - 15

CAL FSTORE
LLI120
LHI026
CAL DINPUT
JMP PARSE

LLI370
LHI026
LMIOOO
LLI120
LDI027
LEI 210
LAM
CPI001
JFZ LOOKU1
LLI122
LMIOOO

LLI 121
LHI026
CAL SWITCH
LAM
INL
LBM
INL
CAL SWITCH
CPM
JFZ LOOKU2
INL
LAB
CPM
JTZ LOOKU4

CAL AD4DE
LLI370
LHI 026
LBM
INB
LMB
LLI077
LHI027
LAB
CPM
JFZ LOOKU1
LLI077
LHI027
LBM
INB
LMB
LAB
CPI025

05146
05151
05153
05155
05157
05162
05163
05164
05165
05166
05167
05170
05171
05172
05173
05174
05175
05177
05200

05201
05204
05206
05210
05211
05213
05214
05215
05220
05223
05226

05231
05234
05236
05237
05241
05244
05246
05247
05250
05252
05253
05256
05257
05261
05262
05263
05264
05267
05272

120222002
066121
056026
016002
106013021
364
353
250
370
060
370
060
370
060
370
306
024004
340
335

106 317 022
066227
056001
307
004004
370
360
106255022
106337022
106356022
106244022

106255002
066176
307
074007
150332005
004240
360
317
066210
327
106036023
307
004257
360
301
277
150307005
160307005
066176

**

**

12 - 16

JFS BIGERR
LLI121
LHI026
LEI 002
CAL MOVEIT
LLE
LHD
XRA
LMA
INL
LMA
INL
LMA
INL
LMA
LAL
SUI 004
LEA
LDH

LOOKU4, CALSAVEHL
LLI227
LHI001
LAM
ADI004
LMA
LLA
CAL FSTORE
CAL RESTHL
CAL SWITCH
CAL FLOAD

PARSE, CAL CLESYM
LLI176
LAM
CPI007
JTZ PARSE2
ADI240
LLA
LBM
LLI210
LCM
CALINDEXC
LAM
ADI257
LLA
LAB
CPM
JTZ PARSE 1
JTS PARSE 1
LLI176

05274
05275
05277
05300
05301
05302
05305
05306

05307
05311
05312
05313
05314
05315
05316
05317
05321
05322
05323
05324
05327

05332
05334
05336
05337
05340
05341
05342
05343
05346
05350
05351
05352
05353
05355
05356
05361

05364
05366
05370
05371
05373
05375
05376
05377
06002
06004
06005

317
066210
327
020
372
106036023
371
007

066210
307
206
360
307
240
053
066210
327
021
372
106364005
104231005

066210
056026
307
206
360
307
240
150104006
066210
327
021
372
074006
053
106364005
104332005

066 371
056026
370
066227
056001
307
360
106266022
066227
307
024004

**

**

**

12 - 17

LBM
LLI210
LCM
INC
LMC
CALINDEXC
LMB
RET

P ARSE1 , LLI 210
LAM
ADL
LLA
LAM
NDA
RTZ
LLI210
LCM
DCC
LMC

PARSE2,

FPOPER,

CAL FPOPER
JMP PARSE

LLI 210
LHI 026
LAM
ADL
LLA
LAM
NDA
JTZ PARNER
LLI210
LCM
DCC
LMC
CPI006
RTZ
CAL FPOPER
JMP PARSE2

LLI371
LHI 026
LMA
LLI227
LHI001
LAM
LLA
CAL OPLOAD
LLI227
LAM
SUI 004

06007
06010
06012
06014
06015
06017
06022
06024
06027
06031
06034
06036
06041
06043
06046
06050
06053
06055
06060
06062
06065
06067
06072
06074
06077
06101
06104
06106
06110
06112
06114
06116

06121
06124
06126
06127
06130
06133

06136
06141
06143
06144
06145
06150

06153
06156
06160
06161

370
066371
056026
307
074001
150211 020
074002
150032021
074003
150046021
074004
150 322 021
074005
150263006
074011
150121 006
074012
150136006
074013
150 153006
074014
150173006
074015
150213006
074016
150230006
066230
056026
076000
006311
026250
104226002

106032021
066126
307
240
160242006
104247 006

106032021
066126
307
240
150242006
104247 006

106032021
066126
307

, 240

**

**

12 - 18

LMA
LLI 371
LHI026
LAM
CPI001
JTZ FPADD
CPI002
JTZ FPSUB
CPI003
JTZ FPMULT
CPI004
JTZ FPDIV
CPI005
JTZ INTEXP
CPI011
JTZ LT
CPI012
JTZ EQ
CPI013
JTZ GT
CPI014
JTZ LE
CPI015
JTZ GE
CPI016
JTZ NE

PARNER, LLI230
LHI026
LMIOOO
LAI311
LCI250
JMP ERROR

LT, CAL FPSUB
LLI126
LAM
NDA
JTS CTRUE
JMP CFALSE

EQ, CAL FPSUB
LLI126
LAM
NDA
JTZ CTRUE
JMP CFALSE

GT, CAL FPSUB
LLI126
LAM
NDA

06162
06165
06170

06173
06176
06200
06201
06202
06205
06210

06213
06216
06220
06221
06222
06225

06230
06233
06235
06236
06237

06242
06244

06247
06251
06253

06256
06257
06261
06262

06263
06265
06267
06270
06272
06273
06274
06277
06302
06305
06307
06310
06312
06313

150 247 006
120242006
104247006

106032021
066126
307
240
150242006
160242006
104247 006

106032021
066126
307
240
120242006
104247006

106032021
066126
307
240
150 247 006

066004
104244022

066127
076000
104051 020

304
004004
340
007

066126
056001
307
066003
370
240
150242006
162202020
106000020
066124
317
066013
371
066134

**

LE,

GE,

JTZ CFALSE
JFS CTRUE
JMP CFALSE

CAL FPSUB
LLI126
LAM
NDA
JTZ CTRUE
JTS CTRUE
JMP CFALSE

CAL FPSUB
LLI126
LAM
NDA
JFS CTRUE
JMP CFALSE

NE, CAL FPSUB
LLI126
LAM
NDA
JTZ CFALSE

CTRUE, FPONE, LLI 004
JMP FLOAD

12 - 19

CFALSE, LLI127
LMIOOO
JMP FPZERO

AD4DE, LAE

INTEXP,

ADI004
LEA
RET

LLI 126
LHI 001
LAM
LLI003
LMA
NDA
JTZ FPONE
CTS FPCOMP
CAL FPFIX
LLI 124
LBM
LLI013
LMB
LLI134

Hopefully, all this information makes
plenty of sense to the serious reader who has
read this publication and is ready to imple-
ment SCELBAL.

One final word before presenting the ob-
ject code is in order. Do not attempt to skip
over the machine code listings provided for
the special pages 01. 26 and 27. The values
in the look-up tables must be in memory
along with the initial values of many of the
locations on those pages when the program

01000 XXX
01001 XXX
01002 XXX
01003 XXX
01004 000
01005 000
01006 100
01007 001
01010 XXX
01011 XXX
01012 XXX
01013 000
01014 000
01015 000
01016 000
01017 000
01020 XXX
01021 XXX
01022 XXX
01023 XXX
01024 000
01025 000
01026 300
01027 001
01030 000

• • •

• • •

01047 000
01050 001
01051 120
01052 162
01053 002
01054 XXX
01055 XXX
01056 XXX
01057 XXX

12 - 2

is first started. (Those locations where the
initial values are irrelevant are denoted by
XXX.) The format of the object code listing
for these special pages will be slightly diffe-
rent than the rest of the listing in that the
mnemonics column will contain comments
relating to the use of the locations (since the
locations will contain "data" versus actual
instructions.)

An assembled listing for an 8008
of SCELBAL will now be presented.

Not Assigned
N at Assigned
N at Assigned
N at Assigned
Stores floating
point
constant
value +1.0
Not Assigned
N at Assigned
N at Assigned
Exponent Counter
Stores floating
point
number
temporarily
N at Assigned
N at Assigned
N at Assigned
N at Assigned
Stores floating
point
constant
value -1.0
Scratch Pad Area

Scratch Pad Area
Stores random
number ,generator
constant
value
Not Assigned
Not Assigned
N at Assigned
N at Assigned

• verSIon

06315 046 014 LEI 014
06317 056001 ** LHI001
06321 335 LDH
06322 016004 LEI 004
06324 106013021 CAL MOVEIT
06327 106242006 CAL FPONE
06332 066003 LLI003
06334 307 LAM
06335 240 NDA
06336 160362006 JTS DVLOOP

06341 066014 MULOOP, LLI014
06343 106277 022 CAL FACXOP
06346 106046021 CAL FPMULT
06351 066013 LLl 013
06353 317 LBM
06354 011 DCB
06355 371 LMB
06356 110341006 JFZ MULOOP
06361 007 RET

06362 066014 DVLOOP, LLI014
06364 106277 022 CAL FACXOP
06367 106322021 CAL FPDIV
06372 066013 LLI013
06374 317 LBM
06375 011 DCB
06376 371 LMB
06377 110362006 JFZ DVLOOP
07002 007 RET

07003 066230 PRIGHT, LLI230
07005 056026 ** LHI026
07007 307 LAM
07010 206 ADL
07011 360 LLA
07012 307 LAM
07013 076000 LMIOOO
07015 066203 LLI203
07017 056027 ** LHI027
07021 370 LMA
07022 240 NDA
07023 053 RTZ
07024 160000 055 @@ JTS PRIGHl
07027 074001 CPI001
07031 150243007 JTZ INTX
07034 074002 CPI002
07036 150360007 JTZ SGNX
07041 074003 CPI003
07043 150346007 JTZ ABSX
07046 074004 CPI004

, 12 - 20

07 050
07053
07 055
07060
07 062
07 065
07 067
07072
07074
07077

07 100
07102
07104
07 105
07 106
07 107
07 111
07 113

07 115
07117
07121
07 '??

07123
07 124
07 126
07130
07 132
07135
07 137
07 141
07 144
07 147
07151
07153
07154
07 156
07161
07 163
07165
07167

07172
07174
07 176
07200
07202
07204

07207

150 000 032
074 005
150 017 010
074 006
150 240 032
074007
150 :)77 007
074010
150 ttt ttt . ., .,
000

066120
056026
307
240
053
066202
056 027
076000

066202
056027
317
010
371
026002
066274
056026
106230007
036026
046120
106332 002
150207 007
066202
056027
307
074010
110115007
066202
056027
076000
104054 055

066230
056026
076000
006306
026 301
104226002

066202

tt

**

**

**

**

**

**

**
@@

**

12 - 21

JTZ SQRX
CPI005
JTZ TABX
CPI006
JTZ RNDX
CPI007
JTZ CHRX
CPI010
JTZ UDEFX
HLT

FUNARR, LLI120
LHI026
LAM
NDA
RTZ
LLl202
LHI027
LMIOOO

FUNARI, LLl 202
LHI027
LBM
INB
LMB
LCI002
LLI274
LHI026
CALTABADR
LDI026
LEI 120
CAL STRCP
JTZ FUNAR4
LLI 202
LHI027
LAM
CPI010
JFZ FUNARI
LLl 202
LHI027
LMIOOO
JMP FUNAR2

FAERR, LLI 230
LHI026
LMIOOO
LAI306
LCI301
JMP ERROR

FUN AR4 LLI 202 ,

07211
07213
07214
07216
07220
07221
07224
07225

07230
07231
07232
07233
07236
07237
07240
07241
07242

07243
07245
07247
07250
07 251
07254
07256
07261
07264
07266
07270
07273
07275
07300
07303
07305
07306
07 307
07312
07314
07 317
07321
07324

07327
07332
07334
07336

07 341
07343

056027
317
066230
056026
327
106036023
371
104255002

301
002
021
110231007
206
360
003
050
007

066126
056001
307
240
120327007
066014
106255022
106000020
066123
076000
106064020
066014
106266022
106032021
066126
307
240
150 341007
066014
106244022
066024
106277 022
106211 020

106000020
066123
076000
104064020

066014
104244022

**

**

**

12 - 22

LHI027
LBM
LLI230
LHI026
LCM
CALINDEXC
LMB
JMP CLESYM

TABADR, LAB
TABAD1, RLC

DCC

INTX,

JFZ TABAD1
ADL
LLA
RFC
INH
RET

LLI126
LHI001
LAM
NDA
JFSINT1
LLI 014
CAL FSTORE
CAL FPFIX
LLI123
LMIOOO
CAL FPFLT
LLI 014
CAL OPLOAD
CAL FPSUB
LLI126
LAM
NDA
JTZ INT2
LLI014
CAL FLOAD
LLI024
CAL FACXOP
CAL FPADD

INTI, CAL FPFIX
LLI123
LMIOOO
JMP FPFLT

INT2, LLI 014
JMP FLOAD

07346 066126 ABSX, LLI 126
07350 056001 ** LHI001
07352 307 LAM
07 353 240 NDA
07354 160202020 JTS FPCOMP
07357 007 RET

07360 066126 SGNX, LLI 126
07362 056001 ** LHI001
07364 307 LAM
07365 240 NDA
07366 053 RTZ
07367 120242006 JFS FPONE
07 372 066024 LLI024
07374 104244022 JMP FLOAD

07377 106000020 CHRX, CAL FPFIX
10002 066124 LLI124
10004 307 LAM
10005 106202003 CAL ECHO
10010 066177 LLI 177
10012 056026 ** LHI026
10014 076377 LMI377
10016 007 RET

10017 106000020 TABX, CAL FPFIX
10022 066124 TAB1, LLI124
10024 307 LAM
10025 066043 LLI 043
10027 227 SUM
10030 066 177 LLll77
10032 056026 ** LHI026
10034 076377 LMI377
10036 160 217 031 JTS BACKSP
10041 053 RTZ

10042 320 TABC, LCA
10043 006240 LAI240
10045 106202003 TABLOP, CAL ECHO
10050 021 DCC
10051 110045010 JFZ TABLOP
10054 007 RET

10055 066201 STOSYM, LLI201
10057 056027 ** LHI027
10061 307 LAM
10062 240 NDA
10063 150100010 JTZ STOSY1
10066 076000 LMIOOO
10070 066204 LLI 204
10072 367 LLM

12 - 23

10073
10075

10 100
10102
10104
10106
10110
10112
10114
10115
10117
10122
10124

10126
10130
10132
10135
10136
10137
10140
10141
10144
10145
10150
10151
10152
10153

10156
10161
10163
10165
10166
10167
10170
10172
10174
10175
10176
10201
10203
10205
10206
10207
10210
10211
10213
10216
10220

056057
104255022

066370
056026
076000
066120
036027
046210
307
074001
110126010
066122
076000

066121
056026
106356022
307
060
317
060
106356022
277
110156010
060
301
277
150227 010

106256006
066370
056026
317
010
371
066077
056027
301
277
110126010
066077
056027
317
010
371
301
074025
120222002
066121
056026

tt

**

**

**

**

**

**

**

12 - 24

LHI057
JMP FSTORE

STOSY1, LLI 370
LHI026
LMIOOO
LLI120
LDI027
LEI 210
LAM
CPI001
JFZ STOSY2
LLI 122
LMIOOO

STOSY2, LLI 121
LHI026
CAL SWITCH
LAM
INL
LBM
INL
CAL SWITCH
CPM
JFZ STOSY3
INL
LAB
CPM
JTZ STOSY5

STOSY3, CAL AD4DE
LLI370
LHI026
LBM
INB
LMB
LLI077
LHI027
LAB
CPM
JFZ STOSY2
LLI077
LHI027
LBM
INB
LMB
LAB
CPI025
JFS BIGERR
LLI 121
LHI026

10222
10224

10227
10232
10235

10240
10242
10244
10245
10247

10252
10254
10256
10257

10261
10262
10263

10266
10270
10272

10275
10277
10301
10304
10305
10306
10311
10313
10315
10317
10321
10324
10327
10331

10333
10334
10335
10340
10343
10346
10351

10354
10356

016002
106013021

106356022
106255022
104255002

066120
056026
335
046144
104261010

066144
056026
335
046120

317
010
104013021

066352
056001
106 121 003

066000
056026
106014003
307
240
150275 010
066335
056001
036026
046000
106332002
110 354010
066000
056033

307
240
150266010
106 121 003
106377 002
106 141 003
104 333010

066342
056001

**

**

**

**

**
**

tt

**

12 - 25

LEI 002
CAL MOVEIT

STOSY5, CAL SWITCH
CAL FSTORE
JMP CLESYM

SAVESY, LLI120
LHI026
LDH
LEI 144
JMP MOVECP

RESTSY, LLI 144
LHI026
LDH
LEI 120

MOVECP, LBM
INB
JMP MOVEIT

EXEC, LLI 352

EXEC1,

LIST,

LHI 001
CALTEXTC

LLI 000
LHI026
CAL STRIN
LAM
NDA
JTZ EXECI
LLI335
LHIOOI
LDI026
LEI 000
CAL STRCP
JFZ NO LIST
LLI 000
LHI033

LAM
NDA
JTZ EXEC
CALTEXTC
CAL ADV
CAL CRLF
JMP LIST

NOLIST, LLI342
LHIOOI

10360
10362
10364
10366
10371
10374
10376
11 000
11 002
11 004
11 007
11 012
11 014
11 016
11 020
11 021
11 023
11 025
11 027
11 031
11 033
11 035
11 037
11 041
11 043
11 045
11 046
11 050
11 052
11 054
11 056

11 060
11 062
11 063
11 066

11071
11 073
11 075
11077
11101
11104
11107
11111
11113
11115
11117
11122
11125
11127

046000
036026
046000
106332002
150070013
036026
046000
066346
056001
106332002
110071 011
056026
066364
076033
060
076000
066077
056027
076001
066075
076000
066120
076000
066210
076000
060
076000
056033
066000
076000
056057

076000
060
110060011
104266010

046272
036001
056026
066000
106332002
150 ttt ttt
066277
056001
036026
046000
106332002
150 ttt ttt
066360
056026

**

**

**

**

tt

**

@@
@@
@@

tt

@@

@@
@@
@@

**
**

tt
**
**

tt
**

12 - 26

LEI 000
LDI026
LEI 000
CAL STRCP
JTZ RUN
LDI026
LEI 000
LLI346
LHI001
CAL STRCP
JFZ NOSCR
LHI026
LLI364
LMI033
INL
LMIOOO
LLI077
LHI027
LMI001
LLI 075
LMIOOO
LLI120
LMIOOO
LLI210
LMIOOO
INL
LMIOOO
LHI033
LLI 000
LMIOOO
LHI057

SCRLOP, LMI 000
INL

NOSCR,

JFZ SCRLOP
JMP EXEC

LEI 272
LDI001
LHI026
LLI 000
CAL STRCP
JTZ SAVE
LLI277
LHI001
LDI026
LEI 000
CAL STRCP
JTZ LOAD
LLI360
LHI026

11131
11133
11134
11136
11141
11143
11145
11146
11147

11152
11154
11156

11161
11163
11164
11165
11170
11172
11174
11175

11177
11 201
11 203
11205
11 207

11211
11 213
11216
11 221
11 223
11 226
11 230
11233
11 235
11 237

11 242
11244
11246
11247
11 250
11 251
11 253
11 255
11 256
11 257
11 260

076033
060
076000
106000002
066203
056026
307
240
120161011

006323
026331
104226002

066340
307
240
150211 013
066360
076033
060
076000

066201
056026
076001
066350
076000

066201
106123012
150242011
074260
160267011
074272
120267 011
066350
056026
106314002

066201
056026
317
010
371
066360
056026
327
060
367
352

tt

**

tt

**

**

**

**

12 - 27

LMI033
INL
LMIOOO
CAL SYNTAX
LLI203
LHI026
LAM
NDA
JFS SYNTOK

SYNERR, LAI 323
LCI331
JMP ERROR

SYNTOK, LLI340
LAM
NDA
JTZ DIRECT
LLI360
LMI033
INL
LMIOOO

GET AUX, LLI 201
LHI026
LMI001
LLI350
LMIOOO

GETAUO, LLI201
CAL GETCHP
JTZ GETAU1
CPI260
JTS GETAU2
CPI272
JFS GETAU2
LLI350
LHI026
CAL CONCT1

GETAU1, LLI201
LHI026
LBM
INB
LMB
LLI360
LHI026
LCM
INL
LLM
LHC

11 261
11 262
11 263
11264

11 267
11 271
11 273
11 274
11 275
11 276
11 277
11300
11 301
11 304

307
011
271
110211 011

066360
056026
337
060
367
353
307
240
110336011
104005012

Note open addresses.
This space available
for patching.

11 336 066350
11 340 056026
11342 036026
11 344 046340
11 346 106 332 002
11 351 160073012
11 354 110005012
11357 066360
11 361 056026
11 363 327
11364 060
11 365 367
11 366 352
11 367 317
11 370 010
11 371 106144012
11 374 066203
11 376 056026
12000 307
12001 240
12002 150266010

12005 066360
12007 056026
12011 337
12012 060
12013 347
12014 066000
12016 056026
12020 317
12021 010

**

**
**

**

**

**

**

12 - 28

GETAU2,

NOTEND,

NOSAME,

LAM
DCB
CPB
JFZ GETAUO

LLl36Q
LHI026
LDM
INL
LLM
LHD
LAM
NDA
JFZ NOTEND
JMP NOSAME

LLI 350
LHI026
LDI026
LEI 340
CAL STRCP
JTS CONTIN
JFZ NOSAME
LLI360
LHI02G
LCM
INL
LLM
LHC
LBM
INB
CAL REMOVE
LLI203
LHI026
LAM
NDA
JTZ EXEC

LLI360
LIn 026
LDM
INL
LEM
LLI 000
LHI026
LBM
INB

12022
12025
12027
12031
12032
12033
12034
12036
12040
12043

12046
12047

12050
12051
12054
12057
12060
12063
12066
12067
12072

12073
12075
12077
12100
12101
12102
12103
12104
12105
12106
12111
12113
12115
12116
12117
12120

12123
12125
12126
12130
12131
12132
12133
12136
12137
12140

106 205 012
066360
056026
337
060
347
066000
056026
106046012
104275010

317
010

307
106377 002
106356022
370
106377 002
106356022
011
110050012
007

066360
056026
337
060
347
353
364
317
010
106305012
066360
056026
373
060
374
104 177 011

056026
317
066360
337
060
347
106305012
353
364
307

**

**

**

**

**

12 - 29

CAL INSERT
LLI360
LHI026
LDM
INL
LEM
LLIOOO
LHI026
CAL MOVEC
JMP EXEC1

MOVEC, LBM
INB

MOVEPG, LAM
CAL ADV
CAL SWITCH
LMA
CAL ADV
CAL SWITCH
DCB
JFZ MOVEPG
RET

CONTIN, LLI360
LHI026
LDM
INL
LEM
LHD
LLE
LBM
INB
CAL ADBDE
LLI360
LHI026
LMD
INL
LME
JMP GETAUX

GETCHP, LHI026
LBM
LLI360
LDM
INL
LEM
CAL ADBDE
LHD
LLE
LAM

01060 003
01061 150
01062 157
01063 014
01064 000
•• •

" .
01077 000

01100 000
01101 000
01102 000
01103 000
01104 000
01105 000
01106 000
01107 000
01110 000
01111 XXX

• • •

• • •

01117 XXX
01120 000
01121 000
01122 000
01123 000
01124 000
01125 000
01126 000
01127 000
01130 000
01131 000
01132 000
01133 000
01134 000
01135 000
01136 OOO!'
01137 000
01140 000

• • •

" '.
01167
01170

000
xxx

•• •

• • •

01177 XXX
01200 000
01201 000
01202 000
01203 000

12 - 3

Stores random
number generator
constant
value
Scratch Pad Area

Scratch Pad Area

Sign Indicator
Sign Indicator
Bits Counter
Sign Indicator
Sign Indicator
Input Digit Counter
Temp Storage
Output Digit Counter
FP Mode Indicator
Not Assigned

Not Assigned
FP ACC Extension
FP ACC Extension
FP ACC Extension
FP ACC Extension
FPACC LSW
FPACC NSW
FPACC MSW
FP ACC Exponent
FPOP Extension
FPOP Extension
FPOP Extension
FPOP Extension
FPOP LSW
FPOP NSW
FPOP MSW
FPOP Exponent
Floating point working area

Floating point working area
Not Assigned

Not Assigned
Temporary
register
storage
area (D, E, H & L)

12141
12143

12144
12147
12150
12153
12154
12155
12156
12161
12164

12167
12171
12173
12174
12175
12176
12177
12200
12201
12202
12203
12204

12205
12207
12211
12212
12213
12214
12215
12220
12221
12223
12226

12231
12232
12235
12236
12241
12244
12247
12252

12255
12257
12261
12262

074240
007

106174003
327
106113003
372
302
240
150 167 012
106377002
104144012

066364
056026
337
060
307
221
370
003
061
031
373
007

066 364
056026
307
060
367
350
106174003
305
074054
120222002
106113003

327
106 174003
372
106113003
106277 012
150255012
106164003
104231 012

066000
056026
317
010

**

**

tt

**

CPI ?40
RET

REMOVE, CALINDEXB

REMOV1,

INSERT,

LCM
CAL SUBHL
LMC
LAC
NDA
JTZ REMOV1
CALADV
JMP REMOVE

LLI364
LHI026
LDM
INL
LAM
SUB
LMA
RFC
DCL
DCD
LMD
RET

LLI364
LHI026
LAM
INL
LLM
LHA
CALINDEXB
LAH
CPI054
JFS BIGERR
CAL SUBHL

INSER1, LCM
CALINDEXB
LMC
CAL SUBHL
CAL CPHLDE
JTZ INSER3
CAL DEC
JMP INSER1

INSER3, INCLIN, LLIOOO
LHI026
LBM
INB

12 - 30

12263
12265
12266
12267
12270
12273
12274
12275
12276

12277
12300
12301
12302
12303
12304

12305
12306
12307
12310
12311
12312

12313
12315
12317

12322
12324
12326
12327
12330
12333
12335
12337
12342
12344
12346

12351
12354

12357
12361
12363

12366
12370
12372

066364
337
060
347
106305012
374
061
373
007

305
273
013
306
274
007

304
201
340
003
030
007

006336
026303
104226002

066340
056026
307
240
150 351 012
066366
056001
106 121 003
066340
056026
106121003

106141003
104266010

006304
026332
104226002

006306
026330
104226002

**

**

**

12 - 31

CPHLDE,

ADBDE,

LLI364
LDM
INL
LEM
CAL ADBDE
LME
DCL
LMD
RET

LAH
('PD
RFZ
LAL
('PE
RET

LAE
ADB
LEA
RFC
IND
RET

CTRLC, LAI 336
LCI303
JMP ERROR

FINERR, LLI340
LHI026
LAM
NDA
JTZ FINER1
LLI366
LHI001
CALTEXTC
LLI340
LHI026
CALTEXTC

FINER1, CAL CRLF
JMP EXEC

DVERR, LAI 304
LCI332
JMP ERROR

FIXERR, LAI 306
LCI330
JMP ERROR

12375
12377
13001
13003
13005
13007

13012
13014

13016
13021
13024
13025
13030
13033
13036
13041
13043
13045
13046
13047
13052
13055
13060

13061
13063

13064
13065
13066
13067

13070
13072
13074
13076
13100
13102
13104
13106
13110
13111
13113

13116
13120
13122
13123
13124

006311
026316
066220
056001
076000
104226002

036026
046000

106064013
106317022
317
106377 002
106370002
150 337 022
106337022
066000
056026
307
274
150061013
106337022
104016013
000

046000
007

040
013
030
007

066073
056027
076000
066205
076000
066360
056026
076033
060
076000
104156013

066360
056026
337
060
347

**

**

**

**

**
tt

**

12 - 32

NUMERR, LAI311
LCI316
LLI220
LHI001
LMIOOO
JMP ERROR

INSTR, LDI 026
LEI 000

INSTR1, CALADVDE
CAL SAVEHL
LBM
CAL ADV
CAL STRCPC
JTZ RESTHL
CAL RESTHL
LLIOOO
LHI026
LAM
CPE
JTZ INSTR2
CAL RESTHL
JMP INSTR1
HLT

INSTR2, LEI 000
RET

ADVDE, INE

RUN,

RFZ
IND
RET

LLI073
LHI027
LMIOOO
LLI 205
LMIOOO
LLI360
LHI026
LMI033
INL
LMIOOO
JMP SAMLIN

NXTLIN, LLI360
LHI026
LDM
INL
LEM

13125 353 LHD
13126 364 LLE
13127 317 LBM
13130 010 INB
13131 106305012 CAL ADBDE
13134 066360 LLI360
13136 056026 ** LHI026
13140 373 LMD
13141 060 INL
13142 374 LME
13143 066340 LLI340
13145 056026 ** LHI026
13147 307 LAM
13150 240 NDA
13151 150266010 JTZ EXEC
13154 300 LAA
13155 300 LAA

13156 066360 SAMLIN, LLI360
13160 056026 ** LHI026
13162 327 LCM 1

13163 060 INL
13164 367 LLM
13165 352 LHC
13166 036026 ** LDI026
13170 046000 LEI 000
13172 106046 012 CAL MOVEC
13175 066 000 LLIOOO
13177 056026 ** LHI026
13201 307 LAM
13202 240 NDA
13203 150266010 JTZ EXEC
13206 106000 002 CAL SYNTAX

13211 066203 DIRECT, LLI203
13213 056026 ** LHI026
13215 307 LAM
13216 074001 CPI001
13220 150 116013 JTZ NXTLIN
13223 074002 CPI002
13225 150027016 JTZ IF
13230 074003 CPI003
13232 150 031 015 JTZ LET
13235 074004 CPI004
13237 150 174015 JTZ GOTO
13242 074005 CPI005
13244 150 345013 JTZ PRINT
13247 074006 CPI006
13251 150 365 016 JTZ INPUT
13254 074007 ('PI 007
13256 150 164017 JTZ FOR

12 - 33

13261
13263
13266
13270
13273
13275
13300
13302
13305
13307
13312
13314
13317
13321
13324
13327
13331
13333
13334
13336
13337
13342

13345
13347
13351
13352
13354
13355
13360
13363

13366
13371
13373
13375
13376
13377
14001

14002
14004
14007
14011
14 014
14016
14021
14023
14026
14030
14033

074010
150013030
074011
150236016
074012
150304016
074013
150 365 055
074014
150266010
074015
150013015
074016
110152011
106 153 055
066206
056026
317
066202
371
106240010
104042015

066202
056026
307
066000
277
160366013
106 141 003
104116013

106255002
066202
056026
317
010
066203
371

066203
106240002
074247
150203014
074242
150203014
074254
150043014
074273
150043014
066203

@@

@@

@@
@@
@@**
@@
@@
@@
@@
@@

**

**

12 - 34

CPI010
JTZ NEXT
CPI011
JTZ GOSUB
CPI012
JTZ RETURN
CPI013
JTZ DIM
CPI014
JTZ EXEC
CPI015
JTZ LETO
CPI016
JFZ SYNERR
CAL ARRAY1
LLI206
LHI026
LBM
LLI202
LMB
CAL SAVESY
JMP LET1

PRINT, LLI202
LHI026
LAM
LLIOOO
CPM
JTS PRINT1
CAL CRLF
JMP NXTLIN

PRINT1, CAL CLESYM
LLI202
LHI026
LBM
INB
LLI203
LMB

PRINT2, LLI 203
CAL GETCHR
CPI247
JTZ QUOTE
CPI242
JTZ QUOTE
CPI254
JTZ PRINT3
CPI273
JTZ PRINT3
LLI203

14035
14040

14043
14 045
14046
14047
14051
14052
14054
14055
14056
14060
14 061
14063
14064
14065
14070
14072

14075
14100
14102
14104
14105
14106
14110
14112

14114
14117
14121
14123

14125
14127
14132
14134
14137
14141
14143
14144
14146
14147
14 151
14152
14153
14156
14160
14163
14165

106003003
110002014

066202
317
010
066276
371
066203
317
011
066277
371
066367
307
240
150075014
076000
104125014

106224003
066177
056026
307
240
066110
056001
076377

152314014
066177
056026
076000

066203
106240002
074254
152 357 014
066203
056026
317
066202
371
066000
301
277
160366013
066000
106240002
074254
150 116013

**

**

**

**

12 - 35

PRINT3,

PRINT4,

CAL LOOP
JFZ PRINT2

LLI202
LBM
INB
LLI276
LMB
LLI203
LBM
DCB
LLI277
LMB
LLI367
LAM
NDA
JTZ PRINT4
LMIOOO
JMP PRINT6

CAL EVAL
LLIl77
LHI026
LAM
NDA
LLI110
LHI001
LMI377

PRINT5, CTZ PFPOUT
LLIl77
LHI026
LMIOOO

PRINT6, LLI 203
CAL GETCHR
CPI254
CTZ PCOMMA
LLI203
LHI026
LBM
LLI202
LMB
LLIOOO
LAB
CPM
JTS PRINT1
LLIOOO
CAL GETCHR
CPI254
JTZ NXTLIN

14170
14172
14 175
14200

14203
14205
14206
14211
14213
14214
14215
14 217

14 220
14222
14225
14227
14230
14233
14236
14240
14 243

14 246
14 250
14252
14254
14256
14260

14263
14265
14266
14270
14271
14272
14274
14275
14300
14303
14305
14307
14311

14314
14316
14 320
14321
14 322
14325

074273
150116013
106141 003
104116013

066367
370
106255002
066203
317
010
066204
371

066204
106240002
066367
277
150263014
106202003
066204
106003003
110220014

006311
026321
066367
056026
076000
104226002

066204
317
066202
371
301
066000
277
110366013
106141003
066367
056026
076000
104116013

066 126
056001
307
240
150 336014
060

**

**

**

12 - 36

CPI273
JTZ NXTLIN
CAL CRLF
JMP NXTLIN

QUOTE, LLI367
LMA
CAL CLESYM
LLI203
LBM
INB
LLI204
LMB

QUOTE1, LLI204

QUOTER,

QUOTE2,

PFPOUT,

CAL GETCHR
LLI367
CPM
JTZ QUOTE2
CAL ECHO
LLI204
CAL LOOP
JFZ QUOTE1

LAI311
LCI321
LLI 367
LHI026
LMIOOO
JMP ERROR

LLI204
LBM
LLI202
LMB
LAB
LLIOOO
CPM
JFZ PRINT1
CAL CRLF
LLI367
LHI026
LMIOOO
JMP NXTLIN

LLI126
LHI001
LAM
NDA
JTZ ZERO
INL

14326
14 327
14330
14 333

14336
14340
14343
14345

14350
14352
14354

1 A 3 . '± u I
14361
14362
14364
14365
14366
14370
14372
14373
14375
14377
15000
15001

15003
15006
15007
15012

15013
15016
15020
15022
15023
15025
15026

15031
15034
15036
15040

15042
15044
15046
15047
15050

307
240
150350014
104 165 024

006240
106202 003
006 260
104202 003

066 110
076000
104 165 024

066000
307
066203
227
063
066043
056 001
307
044360
004020
?2'"' - ,
320
006240

106202003
021
110003015
007

106240010
066202
056026
317
066203
371
104 141 015

106 255 002
066144
056026
076000

066202
056026
317
010
066203

*:r

**

**

**

12 - 37

LAM
NDA
JTZ FRAC
JMP FPOLTT

ZERO, LAI 240
CAL ECHO
LAI260
JMP ECHO

FRAC. LLIll0

PCOMMA,

LMJ 000
JMP FPOUT

LLIOOO
LAM
LLI203
SUM
RTS
LLI 043
LHl 001
LAM
NDI360
ADI 020
SUM
LCA
LAI240

PCOM1, CAL ECHO
DCC

LETO,

,JFZ PCOM1
RET

CAL SAVSYM
LLI 202
LHI026
LBM
LLI203
LMB
JMP LET5

LET, CAL CLESYM
LL1144
LHI026
LM1000

LET1, LLI 202
LHI026
LBM
INB
LLI203

15052

15053
15055
15060
15063
15065
15070
15072
15075
15100
15102
15104
15105
15107
15110

15 113
15 115
15 117

15122
15124
15127

15132
15134
15136

15141
15143
15145
15146
15147
15151
15152
15154
15155
15157
15160
15163
15166
15171

15174
15176
15200
15202
15204
15205
15206

371

066203
106240002
150122015
074275
150 141 015
074250
110 113 015
106 145 055
066206
056026
317
066203
371
104122015

066144
056026
106314002

066203
106003003
110 053 015

006314
026305
104226002

066203
056026
317
010
066276
371
066000
317
066277
371
106224003
106252010
106055010
104 116 013

066350
056026
076000
066202
317
010
066203

@@

@@
@@
@@**
@@
@@
@@
@@

**

**

**

12 - 38

LMB

LET2, LLI203
CAL GETCHR
JTZ LET4
CPI275
JTZ LET5
CPI250
JFZ LET3
CAL ARRAY
LLI206
LHI026
LBM
LLI203
LMB
JMP LET4

LET3, LLI144
LHI026
CAL CONCT1

LET4, LLI 203
CAL LOOP
JFZ LET2

LETERR, LAI314
LCI305
JMP ERROR

LET5, LLI203
LHI026
LBM
INB
LLI276
LMB
LLIOOO
LBM
LLI277
LMB
CAL EVAL
CAL RESTSY
CAL STOSYM
JMP NXTLIN

GOTO, LLI350
LHI026
LMIOOO
LLI202
LBM
INB
LLI203

15210

15211
15213
15216
15221
15223
15226
15230
15233
15235

15240
15242
15245

15250
15252
15254
15256
15257

15261
15264
15266

15270
15272
15275
15300
15302
15305
15307
15312

15315
15317
15321
15322
15323
15324
15326
15327
15330
15331
15332
15333
15334
15335

15340

371

066203
106240002
150240015
074260
160250015
074272
120250015
066350
106 314002

066203
106003003
110211 015

066360
056026
076033
060
076000

106255002
066204
076001

066204
106 123012
150 315 015
074260
160 340 015
074272
120340015
106310002

066204
056026
317
010
371
066360
327
060
367
352
307
011
271
110270015

066120

**
tt

**

12 - 39

LMB

GOT01, LLI 203
CAL GETCHR
JTZ GOT02
CPI260
JTS GOT03
CPI272
JFS GOT03
LLI350
CAL CONCT1

GOT02, LLI 203
CAL LOOP
JFZ GOT01

GOT03, LLI 360
LHI026
LMI033
INL
LMIOOO

GOT04, CAL CLESYM
LLI204
LMI001

GOT05, LLI204

GOT06,

CAL GETCHP
JTZ GOT06
CPI260
JTS GOT07
CPI272
JFS GOT07
CAL CONCTS

LLI204
LHI026
LBM
INB
LMB
LLI360
LCM
INL
LLM
LHC
LAM
DCB
CPB
JFZ GOT05

GOT07, LLI120

01204 XXX
01 205 XXX
01206 XXX
01 207 XXX
01210 000
01211 000
01212 120
01213 004
01214 147
01215 146
01 216 146
01217 375
01220 000
01 221 XXX
01222 XXX
01 223 XXX
01224 XXX
01225 XXX
01226 XXX
01227 000
01230 000

• •

• •

01277
01300
01 301
01302
01303
01 304
01305
01306
01 307
01310
01 311
01312
01 313
01314
01315
01 316
01317

01 320
01321
01322
01323
01324

•

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

004
324
310
305
316

Not Assigned
Not Assigned
Not Assigned
Not Assigned
Stores floatmg

. ... pome
constant
value +10.0
Stores floating
point
constant
value +0.1
G ETINP Counter
Not Assigned
Not Assigned
Not Assigned
N at Assigned
Not Assigned
N at Assigned
Arithmetic Stack Pointer
Arithmetic Stack

Arithmetic Stack
FPACC
temporary
storage
location
STEP value
temporary
storage
location
FOR/NEXT Limit
temporary
storage
location
Array pointer
temporary
storage
location

Executive & special messages
look-up table and storage area.

12-4

(cc) for THEN
T
H
E
N

15342
15344
15346
15350
15353
15356
15360
15362
15363
15364
15365
15366
15367
15370
15371
15374
15376
16000
16001
16002
16003
16005
16006
16007
16012
16013
16014
16015

16020
16022
16024

16027
16031
16033
16034
16035
16037
16040
16043
16045
16047
16052
16053
16054
16057
16061
16063
16066
16067

056026
036026
046350
106332002
150 156 013
066360
056026
337
060
347
353
364
317
010
106305012
066360
056026
373
060
374
066364
303
277
110261 015
060
304
277
110261015

006325
026316
104226002

066202
056026
317
010
066276
371
106255002
066320
056001
106012013
304
240
110102016
066013
056027
106012013
304
240

**
**

**

**

**

**

**

12 - 40

LHI026
LDI026
LEI 350
CAL STRCP
JTZ SAMLIN
LLI360
LHI026
LDM
INL
LEM
LHD
LLE
LBM
INB
CAL ADBDE
LLI360
LHI026
LMD
INL
LME
LLI364
LAD
CPM
JFZ GOT04
INL
LAE
CPM
JFZ GOT04

GOTOER, LAI325
LCI316
JMP ERROR

IF, LLI202
LHI026
LBM
INB
LLI276
LMB
CAL CLESYM
LLI320
LHI001
CALINSTR
LAE
NDA
JFZ IF1
LLI013
LHI027
CAL INSTR
LAE
NDA

16070

16073
16075
16077

16102
16104
16106
16107
16110
16113
16115
16117
16120
16121
16124
16126
16130
16131
16133
16135
16136
16137
16140
16142

16143
16145
16150
16153
16155
16160
16163

16166
16170
16173
16175

16200
16202
16203
16205
16206
16207
16210
16211
16213
16214
16215

110 102 016

006311
026306
104226002

066277
056026
041
374
106224003
066126
056001
307
240
150 116013
066277
056026
307
004005
066202
370
310
010
066204
371

066204
106240002
110166016
066204
106003003
110143016
104073016

074260
160200016
074272
160174015

066000
307
066204
227
310
010
327
066000
371
362
036026

**

**

**

**

12" 41

JFZ 1F1

1FERR, LA1311
LC1306
JMP ERROR

1F1, LL1277
LH1026
DCE
LME
CAL EVAL
LLI126
LH1001
LAM
NDA
JTZ NXTL1N
LL1277
LH1026
LAM
AD1005
LL1202
LMA
LBA
1NB
LL1204
LMB

1F2, LL1204
CAL GETCHR
JFZ 1F3
LL1204
CAL LOOP
JFZ 1F2
JMP 1FERR

1F3, CP1260

1F4,

JTS 1F4
CP1272
JTS GOTO

LL1000
LAM
LL1204
SUM
LBA
1NB
LCM
LL1000
LMB
LLC
LD1026

16217
16221
16224
16226
16230
16233

16236
16240
16242
16243
16244
16245
16250
16252
16253
16254

16255
16257
16261
16262
16264
16266
16271
16272
16274
16275
16276
16277
16300
16301

16304
16306
16310
16311
16313
16316
16317
16321
16323
16324
16325
16326
16327
16330
16333
16334
16335
16337

046001
106013 021
066202
076001
106067002
104211 013

066340
056026
337
030
031
150 255 016
066360
337
060
347

066073
056027
307
004002
074021
120347 016
370
066076
206
360
373
060
374
104174015

066073
056027
307
024002
160356016
370
004002
066076
206
360
337
030
031
150 266 010
060
347
066360
056026

GOSUB,
**

GOSUB1,
**

RETURN,
**

**

12 - 42

LEI 001
CAL MOVEIT
LLI202
LMI001
CAL SYNTAX4
JMP DIRECT

LLI 340
LHI026
LDM
IND
DCD
JTZ GOSUB1
LLI360
LDM
INL
LEM

LLI073
LHI027
LAM
ADI002
CPI021
JFS GOSERR
LMA ,

LLI076
ADL
LLA
LMD
INL
LME
JMP GOTO

LLI073
LHI027
LAM
SUI 002
JTS RETERR
LMA
ADI002
LLI076
ADL
LLA
LDM
IND
DCD
JTZ EXEC
INL
LEM
LLI360
LHI026

16341
16342
16343
16344

16347
16351
16353

16356
16360
16362

16365
16370
16372
16373
16374
16376

16377
17001
17004
17007
17011
17014
17016
17021
17024
17026
17030
17031
17033
17034

17037

17042
17044
17047
17052
17055
17060

17063
17066
17071
17073
17075
17076
17100

373
060
374
104116013

006307
026323
104226002

006322
026324
104226002

106255002
066202
317
010
066203
371

066203
106240002
150042017
074254
150063017
074250
110037017
106160055
066206
056026
317
066203
371
104042017

106310002

066203
106003003
110377 016
106104017
106055010
104116013

106 104017
106055010
056026
066203
317
066202
371

@@
@@
@@**
@@
@@
@@
@@

**

12 - 43

LMD
INL
LME
JMP NXTLIN

GOSERR, LAI 307
LCI323
JMP ERROR

RETERR, LAI322
LCI324
JMP ERROR

INPUT, CAL CLESYM
LLI202
LBM
INB
LLI203
LMB

INPUT1, LLI203
CAL GETCHR
JTZ INPUT3
CPI254
JTZ INPUT4
CPI250
JFZ INPUT2
CAL ARRAY2
LLI206
LHI026
LBM
LLI203
LMB
JMPINPUT3

INPUT2, CAL CONCTS

INPUT3, LLI 203

INPUT4,

CAL LOOP
JFZ INPUT1
CALINPUTX
CAL STOSYM
JMP NXTLIN

CALINPUTX
CAL STOSYM
LHI026
LLI203
LBM
LLI202
LMB

17 101 104365016 JMPINPUT

17 104 066120 INPUTX, LLI 120
17 106 307 LAM
17 107 206 ADL
17110 360 LLA
17111 307 LAul\1
17112 074244 CPI244
17114 110140017 JFZINPUTN
17117 066120 LLI120
17 121 317 LBM
17122 011 DCB
17123 371 LMB
17 124 106 157 017 CAL FPO
17127 106221 003 CAL CINPUT
17 132 066124 LLl124
17 134 370 LMA
17 135 104064020 JMP FPFLT

17 140 066144 INPUTN, LLI144
r 14 0 . I 056026 ** LHI026
17 144 006277 LAI277
''7 146 1 .• 106202003 CAL ECHO
17 151 106014003 CAL STRIN
17 154 104 044 023 JMP DINPUT

17 157 056001 , , FPO, LHI001
17 161 104 247006 ,JMP CFALSE

17 164 066144 FOR, LLI144
17 166 056026 ** LHI026
17 170 076000 LMIOOO
17172 066 146 LLI146
17174 076000 LMIOOO
17 176 066205 LLI205
17200 056027 ** LHI027
17 202 317 LBM
17203 010 INB
17 204 371 LMB
17205 066360 LLI360
17207 056026 ** LHI026
17 211 337 LDM
17212 060 INL
17 213 347 LEM
17214 301 LAB
17 215 002 RLC
17216 002 RLC
17217 004134 ADI134
17221 360 LLA
17222 056027 ** LHI027
17224 373 LMD

12 - 44

17225
17226
17227
17231
17 233
17236
17 237
17240
17 243
17245
17247
17252
17254
17 256
17257
17 260
17262
17263
17 265

17266
17270
17 273
17 276
17300
17303
17305

17310
17312
17 315
17 320

17323
17 325
17326
17 327
17331
17 332
17334
17335
17336
17340
17 341
17 344
17347
17351
17353
17354
17356
17361

060
374
066325
056001
106012013
304
240
110252017
006306
026305
104226002
066202
056026
317
010
066 204
371
066203
374

066204
106240002
150 310 017
074275
150323017
066144
106314002

066204
106003003
110266017
104243017

066 204
317
010
066276
371
066203
317
011
066277
371
106224003
106 252 010
066144
056026
307
074001
110246031
066146

**

**

**

12 - 45

INL
LME
LLI325
LHI001
CAL INSTR
LAE
NDA
JFZ FOR1

FORERR, LAI306
LCI305
JMP ERROR

FOR1, LLI202
LHI026
LBM
INB
LLI 204
LMB
LLI203
LME

FOR2, LLI204
CALGETCHR
JTZ FOR3
CPI275
JTZ FOR4
LLI144
CAL CONCT1

FOR3, LLI 204

FOR4,

CAL LOOP
JFZ FOR2
JMP FORERR

LLI 204
LBM
INB
LLI276
LMB
LLI203
LBM
DCB
LLI 277
LMB
CAL EVAL
CAL RESTSY
LLI144
LHI026
LAM
CPI001
JFZ FOR5
LLI146

17363
17365

076000
104246031

Note open addresses.
This space available
for patching.

20000 066126
20002 056001
20004 307
20005 066100
20007 370
20010 240
20011 162202020
20014 066127
20016 006027
20020 317
20021 010
20022 011
20023 160051020
20026 221
20027 160366012
20032 320
20033 066126
20035 016003
20037 106211 022
20042 021
20043 110033020
20046 104175020
20051 066126
20053 250
20054 370
20055 061
20056 370
20057 061
20060 370
20061 061
20062 370
20063 007

20064 016027

20066 301
20067 056001
20071 066127
20073 240
20074 150100020
20077 371
20100 061
20101 307
20102 066 100

**

**

12 - 46

FPFIX,

FPFIXL,

FPZERO,

LMIOOO
JMP FOR5

LLI126
LHI001
LAM
LLI100
LMA
NDA
CTS FPCOMP
LLI127
LAI027
LBM
INB
DCB
JTS FPZERO
SUB
JTS FIXERR
LCA
LLI126
LEI 003
CAL ROTATR
DCC
JFZ FPFIXL
JMP RESIGN
LLI126
XRA
LMA
DCL
LMA
DCL
LMA
DCL
LMA
RET

FPFLT, LBI027

FPNORM, LAB
LHI001
LLI127
NDA
JTZ NOEXCO
LMB

NOEXCO, DCL
LAM
LLI100

20104 370 LMA
20105 240 NDA
20106 120120020 JFS ACZERT
20111 016004 LBI004
20113 066123 LLI123
20115 106150022 CAL COMPLM
20120 066126 ACZERT, LLI126
20122 016004 LEI 004
20124 307 LOOKO, LAM
20125 240 NDA
20126 110 143020 JFZ ACNONZ
20131 061 DCL
20132 011 DCB
20133 110124020 JFZ LOOKO
20136 066127 LLI127
20140 250 XRA
20141 370 LMA
20142 007 RET
20143 066123 ACNONZ, LLI123
20145 016004 LBI004
20147 106177 022 CAL ROTATL
20152 307 LAM
20153 240 NDA
20154 160166020 JTS ACCSET
20157 060 INL
20160 317 LBM
20161 011 DCB
20162 371 LMB
20163 104143020 JMP ACNONZ
20166 066126 ACCSET, LLI126
20170 016003 LBI003
20172 106211 022 CAL ROTATR
20175 066100 RESIGN, LLI100
20177 307 LAM
20200 240 NDA
20201 023 RFS
20202 066124 FPCOMP, LLI124
20204 016003 LBI003
20206 104150022 JMP COMPLM

20211 066126 FPADD, LLI126
20213 056001 ** LHI001
20215 307 LAM
20216 240 NDA
20217 110235020 JFZ NONZAC
20222 066124 MOVOP, LLI124
20224 335 LDH
20225 346 LEL
20226 066 134 LLI134
20230 016004 LBI004
20232 104013021 JMP MOVEIT

12 - 47

20235 066136 NONZAC, LLI136
20237 307 LAM
20240 240 NDA
20241 053 RTZ
20242 066127 CKEQEX, LLI127
20244 307 LAM
20245 066137 LLI137
20247 277 CPM
20250 150341020 JTZ SHACOP
20253 310 LBA
20254 307 LAM
20255 231 SBB
20256 120264020 JFS SKPNEG
20261 310 LBA
20262 250 XRA
20263 231 SBB
20264 074030 SKPNEG, CPI030
20266 160303020 JTS LINEUP
20271 307 LAM
20272 066 127 LLI127
20274 227 SUM
20275 063 RTS
20276 066124 LLI124
20300 104222020 JMP MOVOP
20303 307 LINEUP, LAM
20304 066127 LLI127
20306 227 SUM
20307 160327020 JTS SHIFTO
20312 320 LCA
20313 066127 MORACC, LLI127
20315 106374020 CAL SHLOOP
20320 021 DCC
20321 110313020 JFZ MORACC
20324 104341020 JMP SHACOP
20327 320 SHIFTO, LCA
20330 066137 MOROP, LLI137
20332 106374020 CAL SHLOOP
20335 020 INC
20336 110330020 JFZ MOROP
20341 066123 SHACOP, LLI123
20343 076 000 LMIOOO
20345 066127 LLI127
20347 106374020 CAL SHLOOP
20352 066137 LLI137
20354 106374020 CAL SHLOOP
20357 335 LDH
20360 046123 LEI 123
20362 016004 LEI 004
20364 106127022 CAL ADDER
20367 016000 LBIOOO
20371 104066020 JMP FPNORM

12 - 48

20374
20375
20376
20377
21000
21002
21003
21004
21007
21010
21013
21014
21015
21020
21021
21022
21025
21026
21027

21032
21034
21036
21 040
21043

21046
21051
21053
21054
21056
21057
21061
21062
21064
21066
21070
21072
21075
21100
21102
21104
21107
21111
21112
21113
21114
21117
21121
21123
21126

317
010
371
061
016004
307
240
120211 022
022
104212022
307
060
106356022
370
060
106356022
011
053
104013021

066124
056001
016003
106150022
104211 020

106166021
066137
307
066127
207
004001
370
066102
076027
066 126
016003
106211022
142270021
066146
016006
106211 022
066102
327
021
372
110066021
066146
016006
106211 022
066143

**

12 - 49

SHLOOP, LBM
INB
LMB
DCL
LEI 004

FSHIFT, LAM
NDA
JFS ROTATR

BRING1, RAL
JMP ROTR

MOVEIT, LAM
INL
CAL SWITCH
LMA
INL
CAL SWITCH
DCB
RTZ
JMP MOVEIT

FSUB, LLI 124
LHIOO1
LBI003

FPMULT,
ADDEXP,

SETMCT,

MULTIP,

CAL COMPLM
JMP FPADD

CAL CKSIGN
LLI137
LAM
LLI127
ADM
ADI001
LMA
LLI102
LMI027
LLI126
LBI003
CAL ROTATR
CTC ADOPPP
LLI146
LEI 006
CAL ROTATR
LLI102
LCM
DCC
LMC
JFZ MULTIP
LLI146
LBI006
CAL ROTATR
LLI143

01325 002 (cc) for TO
01 326 324 T
01327 317 0
01330 004 (cc) for STEP
01 331 323 S
01332 324 T
01333 305 E
01 334 320 P
01 335 004 (cc) for LIST
01336 314 L
01 337 311 I
01340 323 S
01341 324 T
01342 003 (cc) for RUN
01343 322 R
01344 325 U
01345 316 N
01346 003 (cc) for SCR
01347 323 S
01350 303 C
01 351 322 R
01352 013 (cc) for READY message
01353 224 Ctrl T
01354 215 Carriage-return
01355 212 Line-feed
01356 322 R
01357 305 E
01360 301 A
01361 304 D
01362 331 Y
01363 215 Carriage-return
01 364 212 Line-feed
01 365 212 Line-feed
01 366 011 (cc) for AT LINE message
01367 240 Space
01 370 301 A
01371 324 T
01 372 240 Space
01 373 314 L
01 374 311 I
01375 316 N
01376 305 E
01377 240 Space

End of page 01.

12 - 5

21130
21131
21132
21133
21136
21140
21141
21142
21144

21146
21151
21153
21156
21160
21161
21162
21163
21166
21170
21172
21174
21175
21176
21177
21200
21203
21205
21207
21210
21211
21212
21215
21217
21221
21223
21 224
21225
21230
21232
21233
21234
21235
21 237
21240
21241
21242
21244
21246

21251

307
022
240
162302021
066123
346
335
066143
016004

106013021
016000
106066020
066101
307
240
013
104202020
066140
056001
016010
250
370
060
011
110175021
016004
066130
370
060
011
110207021
066101
076001
066126
307
240
160251 021
066136
307
240
023
066101
327
021
372
066134
016003
104150022

066101

**

12 - 50

EXMLDV,

CKSIGN,

CLRNEX,

CLROPL,

CLRNX1,

OPSGNT,

LAM
RAL
NDA
CTS MROUND
LLI123
LEL
LDH
LLI143
LEI 004

CAL MOVEIT
LEI 000
CAL FPNORM
LLI101
LAM
NDA
RFZ
JMP FPCOMP
LLI140
LHI001
LEI 010
XRA
LMA
INL
DCB
JFZ CLRNEX
LBI004
LLI130
LMA
INL
DCB
JFZ CLRNX1
LLI 101
LMI001
LLI126
LAM
NDA
JTS NEGFPA
LLI136
LAM
NDA
RFS
LLI101
LCM
DCC
LMC
LLI134
LEI 003
JMP COMPLM

NEG FP A, LLI 101

21253 327 LCM
21254 021 DCC
21255 372 LMC
21256 066124 LLI124
21260 016003 LEI 003
21262 106150022 CAL COMPLM
21265 104230021 JMP OPSGNT
21270 046141 ADOPPP, LEI 141
21 272 335 LDH
21273 066131 LLI131
21275 016006 LBI006
21277 104127022 JMPADDER
21302 016003 MROUND, LBI003
21304 006100 LAI100
21306 207 ADM
21307 370 CROUND, LMA
21310 060 INL
21311 006000 LAIOOO
21313 217 ACM
21314 011 DCB
21315 110307021 JFZ CROUND
21320 370 LMA
21321 007 RET

21322 106166021 FPDIV, CAL CKSIGN
21325 066126 LLI126
21327 307 LAM
21330 240 NDA
21331 150357012 JTZ DVERR
21334 066137 SUBEXP, LLI137
21336 307 LAM
21337 066127 LLI127
21341 227 SUM
21342 004001 ADI001
21344 370 LMA
21345 066102 SETDCT, LLI102
21347 076027 LMI027
21351 106 101022 DIVIDE, CAL SET SUB
21354 160376021 JTS NOGO
21357 046134 LEI 134
21361 066131 LLI131
21363 016003 LBI003
21365 106013021 CAL MOVEIT
21370 006001 LAI001
21372 032 RAR
21373 104377021 JMPQUOROT
21376 250 NOGO, XRA
21377 066144 QUOROT, LLI144
22001 016003 LEI 003
22003 106200022 CAL ROTL
22006 066134 LLI134

12 - 51

22010
22012
22015
22017
22020
22021
22022
22025
22030
22033
22035
22036
22040
22041
22043
22044
22045
22046
22050
22051
22052
22053
22056
22060
22063
22065
22066
22067
22070
22072
22074
22076
22101
22103
22104
22106
22110
22113
22115
22117
22121
22124
22125
22126

22127
22130
22131
22134
22135
22136

016003
106177 022
066102
327
021
372
110351 021
106101022
160070022
066144
307
004001
370
006000
060
217
370
006000
060
217
370
120070022
016003
106211 022
066127
317
010
371
066144
046124
016003
104146021
046131
335
066124
016003
106 013 021
046 131
066134
016003
106223022
207
240
007

240
307
106356022
217
370
011

12 - 52

LBI003
CAL ROTATL
LLI102
LCM
DCC
LMC
JFZ DIVIDE
CAL SETSUB
JTS DVEXIT
LLI 144
LAM
ADI001
LMA
LAIOOO
INL
ACM
LMA
LAIOOO
INL
ACM
LMA
JFS DVEXIT
LEI 003
CAL ROTATR
LLI127
LBM
INB
LMB

DVEXIT, LLI144
LEI 124
LBI003
JMP EXMLDV

SETSUB, LEI 131
LDH
LLI124
LBI003
CAL MOVEIT
LEI 131
LLI134
LEI 003
CAL SUBBER
LAM
NDA
RET

ADDER, NDA
ADDMOR, LAM

CAL SWITCH
ACM
LMA
DCB

22137
22140
22141
22144
22145

22150
22151
22153
22155
22156
22157
22160
22161
22162
22163
22164
22166
22167
22170
22171
22173
22174

22177
22200
22201
22202
22203
22204
22205
22206

22211
22212
22213
22214
22215
22216
22217
22220

22223
22224
22225
22230
22231
22232
22233
22234
22235

053
060
106 356022
060
104130022

307
054377
004001
370
032
330
011
053
060
307
054377
340
303
022
006000
214
104155022

240
307
022
370
011
053
060
104200022

240
307
032
370
011
053
061
104 212 022

240
307
106 356022
237
370
011
053
060
106356022

12 - 53

COMPLM,

MORCOM,

ROTATL,
ROTL. ,

ROTATR,
ROTR,

RTZ
INL
CAL SWITCH
INL
JMP ADDMOR

LAM
XRI377
ADI001
LMA
RAR
LDA
DCB
RTZ
INL
LAlVf
XRI377
LEA
LAD
RAL
LAIOOO
ACE
JMP MORCOM

NDA
LAM
RAL
LMA
DCB
RTZ
INL
JMP ROTL

NDA
LAcl\1
RAR
LMA
DCB
RTZ
DCL
JMP ROTR

SUBBER, NDA
SUBTRA, LAM

CAL SWITCH
SBM
LMA
DCB
RTZ
INL
CAL SWITCH

22240
22241

22244
22246
22250
22252

22255
22256
22257
22261
22263

22266
22270
22272
22274

22277
22302
22304
22306
22311
22314

22317
22320
22321
22323
22325
22326
22327
22330
22331
22332
22333
22334
22335
22336

22337
22341
22343
22344
22345
22346
22347
22350
22351
22352

060
104224022

036001
046124
016004
104013021

346
335
066124
056001
104272022

036001
046134
016004
104013021

106317022
066124
056001
106266022
106337022
104244022

305
316
066200
056001
370
060
371
060
373
060
374
350
361
007

066200
056001
307
060
317
060
337
060
347
350

**

**

**

**

**

**

12 - 54

INL
JMP SUBTRA

FLOAD, LDI 001
LEI 124
LBI004
JMP MOVEIT

FSTORE, LEL
LDH
LLI124
LHIOO1
JMP SETIT

OPLOAD, LDI 001
LEI 134

SET IT , LBI 004
JMP MOVEIT

FACXOP, CAL SAVEHL
LLI124
LHI001
CALOPLOAD
CAL RESTHL
JMP FLOAD

SAVEHL, LAH
LBL
LLI200
LHI001
LMA
INL
LMB
INL
LMD
INL
LME
LHA
LLB
RET

RESTHL, LLI200
LHI001
LAM
INL
LBM
INL
LDM
INL
LEM
LHA

22353
22354
22355

22356
22357
22360
22361
22362
22363
22364

22365
22367
22371
22372
22373
22374
22377
23000
23001
23002
23003
23006

23010
23012
23014
23015
23016
23017
23020
23021
23024
23025
23026
23030
23031
23033
23035

23036
23037
23040
23041
23042
23043

23044
23045
23046

361
307
007

325
353
332
326
364
342
007

056001
066220
327
020
021
110010023
364
353
327
020
106036023
076000

066220
056001
327
020
372
364
353
106036023
307
240
056001
013
066220
076000
007

306
202
360
003
050
007

346
335
056001

**

**

**

**

12 - 55

SWITCH,

GETINP,

NOTO,

INDEXC,

LLB
LAM
RET

LCH
LHD
LDC
LCL
LLE
LEC
RET

LHI001
LLI220
LCM
INC
DCC
JFZ NOTO
LLE
LHD
LCM
INC
CALINDEXC
LMIOOO

LLI220
LHI001
LCM
INC
LMC
LLE
LHD
CALINDEXC
LAM
NDA
LHI001
RFZ
LLI220
LMIOOO
RET

LAL
ADC
LLA
RFC
INH
RET

DINPUT, LEL
LDH
LHI001

23050
23052
23053
23055
23056
23057
23060
23063
23065
23067
23070
23071
23072
23075
23100
23102
23105
23107
23112
23114

23115

23120
23122
23125
23127
23132
23134
23137
23140
23143
23145
23150
23152
23155
23157
23160
23162
23163
23166
23170
23171
23172
23173
23176

23201
23202
23204
23205

066150
250
016010
370
060
011
110055023
066103
016004
370
060
011
110067023
106365022
074253
150115023
074255
110120023
066103
370

106365022

074256
150201023
074305
150221 023
074240
150 115023
240
150311 023
074260
160 375 012
074272
120 375 012
066156
320
006370
247
110115023
066105
317
010
371
106056024
104115023

310
066106
307
240

12 - 56

LLI150
XRA
LEI 010

CLRNX2, LMA
INL
DCB
JFZ CLRNX2
LLI103
LBI004

CLRNX3, LMA
INL
DCB
JFZ CLRNX3
CAL GETINP
CPI253
JTZ NINPUT
CPI255
JFZ NOTPLM
LLI103
LMA

NINPUT, CAL GETINP

NOTPLM, CPI256
JTZ PERIOD
CPI305
JTZ FNDEXP
CPI240
JTZ NINPUT
NDA
JTZ ENDINP
CPI260
JTS NUMERR
CPI272
JFS NUMERR
LLI156
LCA
LAI370
NDM
JFZ NINPUT
LLI105
LBM
INB
LMB
CAL DECBIN
JMP NINPUT

PERIOD, LBA
LLI106
LAM
NDA

23206
23211
23213
23214
23215
23216

23221
23224
23226
23231
23233
23236
23240

23241

23244
23245
23250
23252
23255
23257
23262
23264
23265
23267
23271
23272
23275
23276
23277
23300
23301
23302
23303
23304
23305
23306

23311
23313
23314
23315
23320
23322
23324

23327
23331
23332

110375012
066105
370
060
371
104115023

106365022
074253
150241023
074255
110244023
066104
370

106365022

240
150311 023
074260
160 375 012
074272
120375012
044017
310
066157
006003
277
160 375 012
327
307
240
022
022
202
022
201
370
104241023

066103
307
240
150 327 023
066154
016003
106150022

066153
250
370

12 - 57

JFZ NUMERR
LLI105
LMA
INL
LMB
JMP NINPUT

FNDEXP, CAL GETINP
CPI253
JTZ EXPINP
CPI255
JFZ NOEXPS
LLI104
LMA

EXPINP, CAL G ETINP

NOEXPS, NDA
JTZ ENDINP
CPI260
JTS NUMERR
CPI272
JFS NUMERR
NDI017
LBA
LLI157
LAI003
CPM
JTS NUMERR
LCM
LAM
NDA
RAL
RAL
ADC
RAL
ADB
LMA
JMP EXPINP

ENDINP, LLI103
LAM
NDA
JTZ FININP
LLI154
LBI003
CAL COMPLM

FININP, LLI153
XRA
LMA

23333
23334
23336
23340
23343
23346
23350
23351
23352
23354
23357
23360
23362
23364

23365
23367
23370
23371
23374
23376
23377

24000
24002
24003
24004
24007

24010
24012
24014
24017
24022
24024
24025
24026
24027
24032

24033
24035
24037
24042
24045
24047
24050
24051
24052
24055

335
046123
016004
106013021
106064020
066104
307
240
066157
150365023
307
054377
004001
370

066106
307
240
150000024
066105
250
227

066157
207
370
160033024
053

066210
056001
106277022
106046021
066157
327
021
372
110010024
007

066214
056001
106277 022
106046021
066157
317
010
371
110033024
007

**

**

POSEXP,

LDH
LEI 123
LEI 004
CAL MOVEIT
CAL FPFLT
LLI104
LAM
NDA
LLI157
JTZ POSEXP
LAM
XRI377
ADI001
LMA

LLI 106
LAM
NDA
JTZ EXPOK
LLI105
XRA
SUM

EXPOK, LLI157

FPX10,

ADM
LMA
JTS MINEXP
RTZ

LLI210
LHI001
CAL FACXOP
CAL FPMULT
LLI157
LCM
DCC
LMC
JFZ FPX10
RET

MINEXP, FPD10, LLI214
LHI001

12 - 58

CAL FACXOP
CAL FPMULT
LLI157
LBM
INB
LMB
JFZ FPD10
RET

24056
24061
24063
24064
24066
24067
24071
24073
24074
24076
24101
24103
24105
24110
24112
24114
24117
24121
24123
24125
24130
24132
24134
24137
24141
24142
24143
24144
24145
24147
24150
24152
24153
24155
24157
24162

24165
24167
24171
24173
24175
24176
24177
24202
24204

24207
24211
24213
24216

106317022
066153
302
044017
370
046 150
066154
335
016003
106013021
066154
016003
106177 022
066154
016003
106177 022
046154
066150
016003
106 127 022
066154
016003
106177 022
066152
250
370
061
370
066153
307
066150
370
046154
016003
106127022
104337022

056001
066157
076000
066126
307
240
160207024
006240
104220024

066124
016003
106150022
006255

**

12 - 59

DECBIN, CAL SAVEHL
LLI153
LAC
NDI017
LMA
LEI 150
LLI154
LDH
LEI 003
CAL MOVEIT
LLI154
LBI003
CAL ROTATL
LLI154
LEI 003
CAL ROTATL
LEI 154
LLI150
LEI 003
CAL ADDER
LLI154
LBI003
CAL ROTATL
LLI152
XRA
LMA
DCL
LMA
LLI153
LAM
LLI150
LMA
LEI 154
LEI 003
CAL ADDER
JMP RESTHL

FPOUT, LHI001
LLI157
LMIOOO
LLI126
LAM
NDA
JTSOUTNEG
LAI240
JMP AHEAD1

OUTNEG, LLI124
LEI 003
CAL COMPLM
LAI255

02000
02003
02005
02007
02011
02013

02015
02017
02022
02025
02027
02032
02034
02037
02041

02044
02046
02051
02054
02056
02060

02061
02063
02064
02066

02067
02071
02074
02077
02101
02104
02106
02111
02114
02116
02120
02122

02124
02126
02130
02133
02134

02137
02140
02141

106255002
066340
056026
076000
066201
076001

066201
106240002
150044002
074260
160061002
074272
120061002
066340
106314002

066201
106003003
110015002
066203
076000
007

066201
317
066202
371

066202
106240002
150171 002
074275
150210002
074250
150215002
106310002
066203
076001
056027
066000

036026
046120
106332002
053
106356022

060
307
044300

**

**

**

12 - 6

SYNTAX, CAL CLESYM
LLI340
LHI026
LMIOOO
LLI201
LMI001

SYNTX1, LLI 201
CAL GETCHR
JTZ SYNTX2
CPI260
JTS SYNTX3
CPI272
JFS SYNTX3
LLI340
CAL CONCT1

SYNTX2, LLI 201
CAL LOOP
JFZ SYNTX1
LLI203
LMIOOO
RET

SYNTX3, LLI 201
LBM
LLI202
LMB

SYNTX4, LLI 202
CAL GETCHR
JTZ SYNTX6
CPI275
JTZ SYNTX7
CPI250
JTZ SYNTX8
CAL CONCTS
LLI 203
LMI001
LHI027
LLI 000

SYNTX5, LDI026
LEI 120
CAL STRCP
RTZ
CAL SWITCH

SYNTXL, INL
LAM
NDI300

24220
24223
24225
24226
24227
24232
24234
24236
24237
24240
24241
24244
24245
24250

24253
24255
24257
24261
24264
24266

24271
24273
24275
24276

24277
24302
24304
24305
24310
24312
24314
24317
24322
24324
24325
24326

24327
24331
24332
24333

24336
24340
24342
24345
24350
24352

106202003
066110
307
240
150253024
066127
006027
317
010
011
160253024
221
160253024
104271024

066110
076000
006260
106202003
006256
106202003

066127
006377
207
370

120336024
006004
207
120360024
066210
056001
106277 022
106046021
066157
327
021
372

066127
307
240
104277 024

066214
056001
106277 022
106046021
066157
317

**

**

12 - 60

AHEAD1, CAL ECHO
LLI110
LAM
NDA
JTZ OUTFLT
LLI127
LAI027
LBM
INB
DCB
JTS OUTFLT
SUB
,ITS OUTFLT
JMP OUTFIX

OUTFLT, LLI110
LMIOOO
LA1260
CAL ECHO
LAI256
CAL ECHO

OUTFIX, LLI 127
LAI377
ADM
LMA

DECEXT, JFS DECEXD
LA1004
ADM
JFS DECOUT
LL1210
LHI001
CAL FACXOP
CAL FPMULT
LL1157
LCM
DCC
LMC

DECREP, LLI127

DECEXD,

LAM
NDA
JMP DECEXT

LL1214
LHI001
CAL FACXOP
CAL FPMULT
LLI 157
LBM

24353
24354
24355

24360
24362
24363
24365
24367
24372
24374
24376
25000
25002
25005

25010
25012
25013
25014
25015
25020
25022
25024
25027
25032
25034
25036
25040
25041
25042

25045
25047
25050
25051
25054
25056
25057
25060
25063
25065
25066
25067
25070
25073
25075
25076
25100
25103

010
371
104327024

046164
335
066124
016003
106 013 021
066167
076 000
066164
016003
106177 022
106223025

066127
317
010
371
150032025
066167
016004
106211022
104010025
066107
076007
066167
307
240
150165025

066167
307
240
110105025
066 110
307
240
150104025
066157
327
021
020
120104025
066166
307
044340
110104025
007

DECOUT,

COMPEN. ,

OUTDIG,

OUTDGS,

12 - 61

INB
LMB
,IMP DECREP

LEI 164
LDH
LLI124
LEI 003
CAL MOVEIT
LLI167
LMIOOO
LL1164
LEI 003
CAL ROTATL
CAL OUTX10

LLI 127
LBM
INB
LMB
JTZ OUTD1G
LLI167
LEI 004
CAL ROTATR
JMP COMPEN
LLI107
LMI007
LL1167
LAM
NDA
JTZ ZERODG

LLI167
LAM
NDA
JFZ OUTDGX
LL1110
LAM
NDA
JTZ OUTZER
LLI157
LCM
DCC
INC
JFS OUTZER
LLI166
LAM
ND1340
JFZ OUTZER
RET

25104

25105
25107

25112
25114
25115
25116

25121
25123
25124
25125
25126
25131
25134

25137
25141
25142
25143
25144
25147
25151
25154
25156
25157
25160
25161
25162

25165
25167
25170
25171
25172
25174
25175
25176
25201
25202
25203
25204
25207
25210
25211
25212
25215
25217
25220

250

004260
106202003

066 110
307
240
110137025

066107
327
021
372
150 300025
106223025
104045025

066157
327
021
372
110154025
006256
106 202003
066107
327
021
372
053
104131025

066157
327
021
372
066166
307
240
110 112025
061
307
240
110112025
061
307
240
110112025
066157
370
104112025

12 - 62

OUTZER, XRA

OUTDGX, AD1 260
CAL ECHO

DECRDG, LL1110
LAM
NDA
JFZ CKDECP

LLI 107
LCM
DCC
LMC
JTZ EXPOUT

PUSH1T, CAL OUTX10
JMP OUTDGS

CKDECP, LLI 157
LCM
DCC
LMC
JFZ NODECP
LA1'J.56
CAL ECHO

NODECP, LLI 107
LCM
DCC
LMC
RTZ
JMP PUSH1T

ZERODG, LL1157
LCM
DCC
LMC
LL1166
LAM
NDA
JFZ DECRDG
DCL
LAM
NDA
JFZ DECRDG
DCL
LAM
NDA
JFZ DECRDG
LLI 157
LMA
JMP DECRDG

25 223
25225
25227
25231
25232
25234
25236
25241
25243
25245
25250
25252
25254
25257
25261
25263
25265
25270
25272
25274
25277

25300
25302
25303
25304
25305
25307
25312
25313
25314
25317
25321

25324
25326
25330
25331

25333
25336
25340

25341
25343
25346
25347
25350

25353
25355

066167
076000
066164
335
046160
016004
106013021
066164
016004
106 177 022
066164
016004
106177 022
066160
046 164
016004
106 127 022
066 164
016004
106177 022
007

066157
307
240
053
006305
106202003
307
240
160324025
006253
104333025

054377
004001
370
006255

106202003
016000
307

024012
160 353 025
370
010
104 341 025

006260
201

12 - 63

OUTX10, LLI167
LMIOOO
LLI164
LDH
LEI 160
LEI 004
CAL MOVEIT
LLI164
LBI004
CAL ROTATL
LLI164
LEI 004
CAL ROTATL
LL1160
LE1164
LBI004
CAL ADDER
LLI164
LEI 004
CAL ROTATL
RET

EXPOUT, LL1157
LAM
NDA
RTZ
LAl305
CAL ECHO
LAM
NDA
JTS EXOUTN
LAl253
JMP AHEAD2

EXOUTN, XRl377
ADI001
LMA
LA! 255

AHEAD2, CAL ECHO
LBlOOO
LAM

SUB12, SUI 012
JTS TOMUCH
LMA
lNB
JMP SUB12

TOMUCH, LAI 260
ADB

25356
25361
25362
25364
25367

106202003
307
004260
106202003
007

N ate open addresses.
This space available
for patching.

26000
26001

• •

• •

26117
26120

• •

• •

26143
26144

• •

• •

26175
26176
26177
26200
26201
26202
26203
26204
26205
26206
26207
26210
26211

• •

• •

26227
26230
26231

• •

• •

26237

000
XXX

•

•

XXX
000

•

•

000
000

•

•

000
000
000
000
000
000
000
000
000
000
000
000
XXX

•

•

XXX
000
XXX

•

•

XXX

CAL ECHO
LAM
ADI260
CAL ECHO
RET

NOTE: Pages 26 and 27 in memory are used for
temporary data registers, pointers, counters and
look-up tables. The following data should be
placed on those pages. An entry marked XXX
indicates the initial contents of the location are
irrelevant to the program's operation.

12-64

(cc) for INPUT LINE BUFF
These locations used as the
INPUT LINE BUFFER
storage
area
These locations used as the
SYMBOL BUFFER
storage
area
These locations used as the
AUXILIARY
SYMBOL BUFFER
storage area
TEMP SCAN storage register
TAB FLAG
EV AL CURRENT temp. reg.
SYNT AX LINE NUMBER
SCAN temporary register
ST ATEMENT TOKEN
Temporary working register
Temporary working register
ARRA Y pointer
ARRAY pointer
OPERATOR STACK pointer
These locations used as the
OPERATOR STACK
storage
area
FUN / ARRA Y STACK pointer
These locations used as the
FUNCTION/ARRAY STACK
storage
area

26240
26241
26242
26243
26244
26245
26246
26247
26250
26251
26252
26253
26254
26255
26256

26257
26260
26261
26262
26263
26264
26265
26266
26267
26270
26271
26272
26273
26274
26275

26276
26277

26300
26301
26302
26303
26304
26305
26306
26307

000
003
003
004
004
005
006
001
002
002
002
002
002
002
002

000
003
003
004
004
005
001
001
002
002
002
002
002
002
002

000
000

003
311
316
324
003
323
307
316

Heirarchy table (for out of stack ops).
Used by PARSER routine.

EOS
Plus sign
Minus sign
Multiplication sign
Division sign
Exponentiation sign
Left parenthesis
Right parenthesis
Not assigned
Less than sign
Equal sign
Greater than sign
Less than or equal combo
Equal to or greater than
Less than or greater than

Heirarchy table (for into stack ops).
Used by PARSER routine.

EOS
Plus sign
Minus sign
Multiplication sign
Division sign
Exponentiation sign
Left parenthesis
Right parenthesis
Not assigned
Less than sign
Equal sign
Greater than sign
Less than or equal combo
Equal to or greater than
Less than or greater than

EV AL (start) pointer
EV AL FINISH pointer

FUNCTION NAMES TABLE

(cc) for INT
I
N
T
(cc) for SGN
S
G
N

12-65

26310 003 (cc) for ABS
26311 301 A
26312 302 B
26313 323 S
26314 003 (cc) for SQR
26315 323 S
26316 321 Q
26317 322 R
26320 003 (cc) for TAB
26321 324 T
26322 301 A
26323 302 B
26324 003 (cc) for RND
26325 322 R
26326 316 N
26327 304 D
26330 003 (cc) for CHR
26331 303 C
26332 310 H
26333 322 R
26334 003 (cc) for UDF
26335 325 U
26336 304 D
26337 306 F

26340 000 These locations used as the
• • • LINE NUMBER BUFFER
• • • storage

26347 000 area
26350 000 These locations used as the

• • • AUX LINE NUMBER
• • • BUFFER

26357 000 storage area
26360 000 USER PGM LINE pointer (pg)
26361 000 USER PGM LINE pntr (low)
26362 000 AUX PGM LINE pointer (pg)
26363 000 AUX PGM LINE pntr (low)
26364 000 END of USER PGM BFR (pg)
26365 000 END of USER PGM BFR pntr
26366 000 Parenthesis counter
26367 000 QUOTE Indicator
26370 000 Table counter
26371 XXX Not assigned

• • •

•• •

26377 xxx Not assigned

End of page 26.

12 - 66

STATEMENT KEYWORD TABLE

27000 003 (cc) for REM
27001 322 R
27002 305 E
27003 315 M
27004 002 (cc) for IF
27005 311 I
27006 306 F
27007 003 (cc) for LET
27010 314 L
27011 305 E
27012 324 T
27013 004 (cc) for GOTO
27014 307 G
27015 317 0
27016 324 T
27017 317 0
27020 005 (cc) for PRINT
27021 320 P
27022 322 R
27023 311 I
27024 316 N
27025 324 T
27026 005 (cc) for INPUT
27027 311 I
27030 316 N
27031 320 P
27032 325 U
27033 324 T
27034 003 (cc) for FOR
27035 306 F
27036 317 0
27037 322 R
27040 004 (cc) for NEXT
27041 316 N
27042 305 E
27043 330 X
27044 324 T
27045 005 (cc) for GOSUB
27046 307 G
27047 317 0
27050 323 S
27051 325 U
27052 302 B
27053 006 (cc) for RETURN
27054 322 R
27055 305 E
27056 324 T
27057 325 U
27060 322 R

12 - 67

27 061
27 062
27 063
27 064
27 065
27 066
27 067
27 070
27 071
27 072

27 073
27 074
27 075
27 076
27077

27100
• •

• •

27117
27120

• •

• •

• •

27137
27140

•

• •

27177

27200
27201
27202
27203
27 204
27205

316
003
304
311
315
003
305
316
304
000

000
xxx
000
000
000

000
•

•

000
000

•

•

•

000
000

•

000

000
000
000
000
000
XXX

•• •

27207

27 210
27211
· ,

• •

27377

XXX

000
XXX

•

•

XXX

Note open addresses
at start of page 30.
These locations avail-
able for patching.

•

End of page 27.

12 - 68

N
(cc) for DIM
D
I
M
(cc) for END
E
N
D
End of Table

GOSUB STACK pointer
Not assigned
Number of arrays counter •
ARRAY pointer
V ARIABLES counter

These locations used as the
GOSUB STACK
storage
area
These locations used as the

ARRA Y VARIABLES
TABLE
storage area
These iocations used as the
FOR/NEXT STACK
storage
area

FOR/NEXT STACK pointer
ARRA Y /VARIABLE flag
STOSYM counter
FUN / ARRAY STACK pointer
ARRAY VALUES pointer
Not assigned

Not assigned

These locations
used as the
VARIABLES SYMBOL
TABLE
storage area

30013 066144 NEXT, LLI 144
30015 056026 ** LHI026
30017 076000 LMIOOO
30021 066202 LLI 202
30023 317 LBM
30024 010 INB
30025 066201 LLI 201
30027 371 LMB
30030 066201 NEXT1, LLI 201
30032 106240002 CAL GETCHR
30035 150045030 JTZ NEXT2
30040 066144 LL1144
30042 106 314002 CAL CONCT1
30045 066201 NEXT2, LLI 201
30047 106003003 CAL LOOP
30052 110030030 JFZ NEXT1
30055 066144 LLI144
30057 307 LAM
30060 074001 CPI001
30062 110071 030 JFZ NEXT3
30065 066146 LLI 146
30067 076000 LMIOOO
30071 066205 NEXT3, LLI 205
30073 056027 ** LHI027
30075 307 LAM
30076 002 RLC
30077 002 RLC
30100 004136 ADI136
30102 056027 ** LHI027
30104 360 LLA
30105 036026 ** LDI026
30107 046145 LEI 145
30111 016002 LBI002
30113 106370002 CAL STRCPC
30116 150 130030 JTZ NEXT4
30121 006306 FORNXT, LAI306
30123 026 316 LCI316
30125 104226002 JMP ERROR
30130 066360 NEXT4, LLI360
30132 056026 ** LHI026
30134 337 LDM
30135 060 INL
30136 347 LEM
30137 060 INL
30140 373 LMD
30141 060 INL
30142 374 LME
30 143 066205 LLI205
30145 056027 ** LHI027
30147 307 LAM
30150 002 RLC

12 - 69

02143
02146
02151
02153
02155
02156
02157
02160
02163
02164
02166

02171
02173
02175
02200
02203
02205
02207

02210
02212
02214

02215
02217
02221

02222
02224

02226
02231
02232
02235

02240
02241
02243
02246
02247
02251
02252
02254

02255
02257
02261
02263

02264

110 137002
106356022
066203
056026
317
010
371
106356022
301
074015
110124002

066202
056026
106003003
110067002
066203
076377
007

066203
076015
007

066203
076016
007

006302
026307

106202003
302
106202003
104322012

307
074120
120222002
360
056026
307
074240
007

066120
056026
076000
007

074301

**

**

**

**

12 - 7

JFZ SYNTXL
CAL SWITCH
LLI 203
LHI026
LBM
INB
LMB
CAL SWITCH
LAB
CPI015
JFZ SYNTX5

SYNTX6, LLI 202
LHI026
CAL LOOP
JFZ SYNTX4
LLI203
LMI377
RET

SYNTX7, LLI203
LMI015
RET

SYNTX8, LLI203
LMI016
RET

BIGERR, LAI 302
LCI307

ERROR, CAL ECHO
LAC

GETCHR,

CAL ECHO
JMP FINERR

LAM
CPI120
JFS BIGERR
LLA
LHI026
LAM
CPI240
RET

CLESYM, LLI120
LHI026
LMIOOO
RET

CONCTA, CPI301

30151
30152
30154
30155
30156
30157
30160
30162
30164
30165
30166
30167
30170
30171
30173
30175
30200
30202
30204
30207
30210
30211
30214
30216
30220
30222
30223
30225
30227
30232
30233
30234
30237
30241
30243
30246
30250
30253
30255
30257
30260
30262
30263
30266
30270
30272
30275

30300
30301
30303

002
004134
360
337
060
347
066360
056026
373
060
374
353
364
036026
046000
106046012
066325
056001
106012013
304
240
150121030
004002
066276
056026
370
066330
056001
106012013
304
240
110 300030
066004
056001
106244022
066304
106255022
066000
056026
317
066277
371
106224003
066310
056001
106255022
104351030

041
066277
056026

**

**

**

**

**

**

**

•

**

**

12 - 70

RLC
ADI134
LLA
LDM
INL
LEM
LLI 360
LHI026
LMD
INL
LME
LHD
LLE
LDI026
LEI 000
CAL MOVEC
LLI325
LHI001
CALINSTR
LAE
NDA
JTZ FORNXT
ADI002
LLI 276
LHI026
LMA
LLI330
LHIOO1
CALINSTR
LAE
NDA
JFZ NEXT5
LLI004
LHI001
CAL FLOAD
LLI 304
CAL FSTORE
LLIOOO
LHI026
LBM
LLI277
LMB
CAL EVAL
LLI 310
LHI001
CAL FSTORE
JMP NEXT6

NEXT5, DCE
LLI277
LHI026

30305
30306
30311
30313
30315
30320
30322
30324
30325
30327
30330
30331
30333
30334
30336
30337
30342
30344
30346

30351
30353
30355
30357
30361
30363
30366
30367
30370
30372
30374
30375
31000
31002
31004

31005
31007
31012
31015
31017
31022
31024

31027
31031
31034
31037

31042
31044

374
106224003
066310
056001
106255022
066277
056026
307
004005
061
370
066000
317
066277
371
106224003
066304
056001
106255022

066144
056026
076000
066034
056027
106012013
304
240
066202
056026
370
150121030
004003
066203
370

066203
106240002
150027031
074275
150042031
066144
106314002

066203
106003003
110005031
104121030

066202
056026

**

**

**

**

**

**

**

12 - 71

LME
CAL EVAL
LLI310
LHI001
CAL FSTORE
LLI277
LHI026
LAM
ADI005
DCL
LMA
LLIOOO
LBM
LLI277
LMB
CAL EVAL
LLI304
LHIOO1
CAL FSTORE

NEXT6, LLI144
LHI026
LMIOOO
LLI 034
LHI027
CAL INSTR
LAE
NDA
LLI202
LHI026
LMA
JTZ FORNXT
ADlO03
LLI203
LMA

NEXT7, LLI203
CAL GETCHR
JTZ NEXT8
CPI275
JTZ NEXT9
LLl144
CAL CONCT1

NEXT8, LLI 203
CAL LOOP
JFZ NEXT7
JMP FORNXT

NEXT9, LLI202
LHI026

31 046
31047
31051
31053
31054
31056
31057
31060
31062
31063
31066
31070
31072
31075
31100
31102
31104
31107
31111
31114
31 117
31121
31122
31123
31125
31126
31131
31134
31135
31140

31143
31145
31147
31150
31151
31152
31153
31154
31155
31156
31160
31162
31163
31 164
31165

31170
31171
31174

307
004003
066276
370
066203
317
011
066277
371
106 224003
066304
056001
106277 022
106211 020
066314
056001
106 255 022
066310
106277022
106032021
066306
307
240
066 126
307
150 121 030
160170031
240
160177 031
150177 031

066363
056026
347
061
337
061
374
061
373
066205
056027
317
011
371
104116013

240
120 177 031
104 143031

**

**

**

**

12 - 72

LAM
ADI003
LLI276
LMA
LLI203
LBM
DCB
LLI277
LMB
CAL EVAL
LLI304
LHI001
CAL FACXOP
CAL FPADD
LLI314
LHI001
CAL FSTORE
LLI310
CAL FACXOP
CAL FPSUB
LLI 306
LAM
NDA
LLI126
LAM
JTZ FORNXT
JTS NEXT11
NDA
JTS NEXT12
JTZ NEXT12

NEXT10, LLI363
LHI026
LEM
DCL
LDM
DCL
LME
DCL
LMD
LLI205
LHI027
LBM
DCB
LMB
JMP NXTLIN

NEXTll, NDA
JFS NEXT12
JMP NEXT10

31177 066314
31 201 056001
31203 106244022
31 206 106 252 010
31 211 106055010
31 214 104116013

31 217 006 215
31221 106 202003
31 224 106202003
31227 066043
31 231 056001
31233 076001
31235 066124
31 237 307
31240 240
31241 063
31 242 053
31243 104022010

31246 066205
31250 056027
31 252 307
31 253 002
31 254 002
31 255 004136
31257 340
31 260 335
31261 066145
31 263 056026
31265 016002
31267 106013021
31 272 106055010
31 275 104116013

31 300 066176
31 302 076000
31304 106324004
31307 066227
31311 056001
31 313 307
31 314 074230
31 316 053
31 317 104152011

N ate open addresses.
This space available
for patching.

**

**

**

**

**

12 - 73

NEXT12, LLI314
LHI001
CAL FLOAD
CAL RESTSY
CAL STOSYM
JMP NXTLIN

BACKSP, LAI215
CAL ECHO
CAL ECHO
LLI043
LHI001
LMI001
LLI124
LAM
NDA
RTS
RTZ
JMP TAB1

FOR5, LLI205
LHI027
LAM
RLC
RLC
ADI136
LEA
LDH
LLI145
LHI026
LEI 002
CAL MOVEIT
CAL STOSYM
JMP NXTLIN

PARSEP, LLI176
LMIOOO
CAL PARSER
LLI227
LHI001
LAM
CPI230
RTZ
JMP SYNERR

32000
32002
32004
32007
32011
32012
32013
32016
32021
32023
32024
32025
32030
32031
32032
32034
32035
32036

32041
32042
32043
32044
32045
32046
32047
32051
32052
32053
32056

32057
32060
32061

32062
32064
32065
32067
32071
32072
32074
32077
32102
32104

32107
32111
32114
32116
32121

066014
056001
106255022
066126
307
240
160217 032
150247006
066017
307
240
160041032
032
310
006000
022
370
104062032

310
250
221
240
032
310
006000
210
370
150057032
010

250
221
310

066013
371
066004
046034
335
016004
106013021
106247006
066044
106 255 022

066034
106244022
066014
106266022
106 322 021

**

12 - 74

SQRX, LLI014
LHI001
CAL FSTORE
LLI 126
LAM
NDA
JTS SQRERR
JTZ CFALSE
LLI017
LAM
NDA
JTSNEGEXP
RAR
LBA
LAIOOO
RAL
LMA
JMP SQREXP

NEGEXP, LBA
XRA
SUB
NDA
RAR
LBA
LAIOOO
ACA
LMA
JTZ NOREMD
INB

NOREMD, XRA
SUB
LBA

SQREXP, LLI 013
LMB
LLI004
LEI034
LDH
LBI004
CAL MOVEIT
CAL CFALSE
LLI044
CAL FSTORE

SQRLOP, LLI034
CAL FLOAD
LLI014
CAL OPLOAD
CAL FPDIV

32124
32126
32131
32134
32136
32137
32140
32141
32143
32146
32150
32153
32156
32160
32161
32163
32166
32170
32171
32173
32175
32200

32203
32205
32206
32210
32211
32212
32214

32217
32221
32223

066034
106266022
106 211 020
066127
317
011
371
066034
106255022
066044
106266022
106032021
066127
307
074367
160203032
066034
335
046044
016004
106013021
104107032

066013
307
066037
207
370
066034
104244022

006323
026321
104226002

Note open addresses.
This space available
for patching.

32240 066064
32242 056001
32244 106244022
32247 066050
32251 106266022
32254 106046021
32257 066060
32261 106266022
32264 106 2i1 020
32267 066064
32271 106255022
32274 066127

**

12 - 75

SQRCNV,

LLI034
CALOPLOAD
CAL FPADD
LLI127
LBM
DCB
LMB
LLI034
CAL FSTORE
LLI044
CAL OPLOAD
CAL FPSUB
LLI 127
LAM
CPI367
JTS SQRCNV
LLI034
LDH
LEI 044
LBI004
CAL MOVEIT
JMP SQRLOP

LLI013 .
LAM
LLI 037
ADM
LMA
LLI034
JMP FLOAD

SQRERR, LAI 323
LCI321
JMP ERROR

RNDX, LLI064
LHI001
CAL FLOAD
LLI050
CALOPLOAD
CAL FPMULT
LLI 060
CALOPLOAD
CAL FPADD
LLI064
CAL FSTORE
LLI127

32276 307
32277 024020
32301 370
32302 106000020
32305 066123
32307 076000
32311 066127
32313 076000
32315 106064020
32320 066127
32322 307
32323 004020
32325 370
32326 066064
32330 106266022
32333 106 032 021
32336 066064
32340 106 255 022
32343 066 127
32345 307
32346 024020
32350 370
32351 007

Note open addresses
to end of page 32.

Pages 33 to remainder
of memory (or start of
optional ARRAY
handling routines) used as
USER PROGRAM BUFFER.

Optional ARRAY routines
assembled for operation in
the upper three pages of a
12 K system are listed here.

55000 066126
55002 056001
55004 307
55005 240
55006 160 136 055
55011 106000020
55014 066124
55016 307
55017 024001
55021 002
55022 002
55023 320
55024 066203

LAM
SUI 020
LMA
CAL FPFIX
LLI123
LMIOOO
LLI 127
LMIOOO
CAL FPFLT
LLI127
LAM
ADI020
LMA
LLI064
CALOPLOAD
CAL FPSUB
LLI064
CAL FSTORE
LLI 127
LAM
SUI 020
LMA
RET

PRIGH1, LLI 126
** LHI001

LAM
NDA
JTSOUTRNG
CAL FPFIX
LLI124
LAM
SUI 001
RLC
RLC
LCA
LLI 203

12 - 76

55026
55030
55031
55033
55034
55035
55037
55041
55042
55043
55044
55045
55046
55047
55051

55054
55056
55060
55061
55062
55063
55065
55067
55071
55074
55076
55100
55103
55106
55110
55112
55113
55 115
55116
55121

55124
55126
55130
55131
55132
55133

55136
55140
55142

55145
55150

056027
307
054377
002
002
004120
056027
360
060
060
307
202
360
056057
104244022

066202
056027
317
010
371
026002
066114
056027
106230007
036026
046120
106332002
150 124055
066202
056027
307
066075
277
110054055
104172007

066 202
056027
250
237
370
104207007

006317
026322
104226002

106252010
104160055

**

**

tt

**

**

**

**

**

12 - 77

LHI027
LAM
XRI377
RLC
RLC
ADI120
LHI027
LLA
INL
INL
LAM
ADC
LLA
LHI057
JMP FLOAD

FUNAR2, LLI202
LHI027
LBM
INB
LMB
LCI002
LLI114
LHI027
CALTABADR
LDI026
LEI 120
CAL STRCP
JTZ FUNAR3
LLl 202
LHI027
LAM
LLI075
CPM
JFZ FUNAR2
JMP FAERR

FUNAR3, LLI202
LHI027
XRA
SBM
LMA
JMP FUNAR4

OUTRNG, LAI317
LCI322
JMP ERROR

ARRAY, CAL RESTSY
JMP ARRAY2

55153
55 155

55160

55162
55 164
55165
55166
55 170
55171
55 173

55 174
55176
55201
55203
55206
55210
55213
55216
55220
55222

55225
55227
55230
55231
55233
55234
55236

55240
5521:2
55244
55245
55246
55247
55251
55253
55255
55260
55262
55264
55267
55 272
55274
55276
55277
55301
55303

066202
104162055

066203

056026
317
010
066276
371
066206
371

066206
106240002
074 251
150 225055
066 206
106003003
110174055
006 301
026 306
104226002

066206
317
011
066 277
371
066207
076000

066207
056026
317
010
371
026002
066114
056 027
106230007
046120
036026
106332002
150 312 055
066207
056026
307
066075
056027
277

**

**

**

* • •

**

**

ARRAYl, LLI202
JMP ARRAY3

ARRAY2, LL1 203

ARRAY3, LHI026
LBM
1NB
LLI 276
LMB
LL1206
LMB

ARRAY4, LL1206
CAL GETCHR
CP1251
JTZ ARRAY5
LLI 206
CAL LOOP
JFZ ARRAY4
LA1301
LCI306
Jl\1P ERROR

ARRAY5, LLI206
LBM
DCB
LL1277
LMB
LL1207
LMIOOO

ARRAY6, LLI 207
LH1026
LBM
INB
LMB
LC1002
LLI114
LH1027
CALTABADR
LE1120
LD1026
CAL STRCP
JTZ ARRAY7
LLI 207
LH1026
LAM
LL1075
LHI027
CPM

12 - 78

55304
55307

55312
55315
55320
55322
55324
55325
55327
55331
55333
55336
55337
55340
55341
55343
55345
55346
55350
55351
55352
55353
55355
55357
55360
55362
55364

55365
55370
55372
55373
55374
55376

55377
56001
56004
56007
56011
56014

56017
56021
56024
56027

56032
56034

110240055
104 172 007

106224003
106000020
066207
056026
317
026002
066 114
056027
106230007
060
060
327
066124
056 001
307
024001
002
002
202
066204
056027
370
066201
076377
007

106255002
066202
317
010
066203
371

066203
106240002
150017056
074250
150032056
106310002

066203
106003003
110377 055
104337056

066206
076000

**

**

**

**

12 - 79

ARRAY7,

DIM,

JFZ ARRAY6
JMP FAERR

CAL EVAL
CAL FPFIX
LLI 207
LHI026
LBM
LCI002
LLI 114
LHI027
CALTABADR
INL
INL
LCM
LLI124
LHI001
LAM
8UI001
RLC
RLC
ADC
LLI204
LHI027
LMA
LLI 201
LMI377
RET

CAL CLESYM
LLI 202
LBM
INB
LLI 203
LMB

DIM1, LLI203
CALGETCHR
JTZ DIM2
CPI250
JTZ DIM3
CAL CONCTS

DIM2, LLI 203
CAL LOOP
JFZ DIM1
JMP DIMERR

DIM3, LLI206
LMIOOO

02266
02271
02273

02276
02300
02303
02305

02310
02312

02314
02315
02316
02317
02320
02323
02324
02326

02327

02332
02333
02336
02337
02340
02341

02344
02347
02350
02353

02356
02357
02360
02363
02364
02367

02370
02371
02374

02377
03000
03001
03002

160276002
074333
160 310002

074260
160 327002
074272
120 327002

066120
056026

327
020
372
310
106036023
371
006000
007

104152011

307
106356022
317
271
013
106356022

106377 002
307
106356022
106377 002

277
013
106356022
011
110 344002
007

307
106356022
104356002

060
013
050
007

**

12 - 8

JTS CONCTN
CPI333
JTS CONCTS

CONCTN, CPI260
JTS CONCTE
CPI272
JFS CONCTE

CONCTS, LLI 120
LHI026

CONCT1, LCM
INC
LMC
LBA
CALINDEXC
LMB
LAIOOO
RET

CONCTE, JMPSYNERR

STRCP, LAM
CAL SWITCH
LBM
CPB
RFZ
CAL SWITCH

STRCPL, CAL ADV
LAM
CAL SWITCH
CAL ADV

STRCPE, CPM
RFZ
CAL SWITCH
DCB
JFZ STRCPL
RET

STRCPC, LAM
CAL SWITCH
JMP STRCPE

ADV, INL
RFZ
INH
RET

56036 066206 DIM4, LLI206
56040 056026 ** LHI026
56042 307 LAM
56043 002 RLC
56044 002 RLC
56045 004114 ADI114
56047 056027 ** LHI027
56051 360 LLA
56052 046120 LEI 120
56054 036026 ** LDI026
56056 106332002 CAL STRCP
56061 150 301 056 JTZ DIM9
56064 066206 LLI206
56066 056026 ** LHI026
56070 317 LBM
56071 010 INB
56072 371 LMB
56073 066075 LLI075
56075 056027 ** LHI027
56077 307 LAM
56100 011 DCB
56101 271 CPB
56102 110036056 JFZ DIM4
56105 066075 LLI075
56107 056027 ** LHI027
56111 317 LBM
56112 010 INB
56113 371 LMB
56114 066076 LLI076
56116 371 LMB
56117 066206 LLI206
56121 056026 ** LHI026
56123 371 LMB
56124 307 LAM
56125 002 RLC
56126 002 RLC
56127 004114 ADIl14
56131 340 LEA
56132 036027 ** LDI027
56134 066120 LLI120
56136 056026 ** LHI026
56140 106046012 CAL MOVEC
56143 106255002 CAL CLESYM
56146 066203 LLI203
56150 056026 ** LHI026
56152 317 LBM
56153 010 INB
56154 066204 LLI204
56156 371 LMB

56157 066204 DIM5, LLI 204

12 - 80

56161
56164
56167
56171
56174
56176
56201
56203
56206

56211
56213
56216
56221

56224
56226
56230
56233
56236
56240
56241
56242
56243
56244
56246
56250
56251
56253
56254
56255
56257
56260
56262
56263
56265
56266
56267
56270

56271
56273
56275
56276
56300

56301
56303
56306
56310
56313

106240002
150 211 056
074251
150 224056
074260
160337 056
074272
120337056
106 310002

066204
106003003
110157056
104337056

066120
056026
106044023
106000020
066124
307
002
002
320
066076
056027
307
024001
002
002
004122
360
056027
317
004004
360
301
202
370

066204
056026
317
066203
371

066203
106240002
074254
150326056
066203

**

**

**

**

12 - Sl

CAL GETCHR
JTZ DIM6
CPI251
JTZ DIM7
CPI260
JTS DIMERR
CPI272
JFS DIMERR
CAL CONCTS

DIM6, LLI 204

DIM7,

CAL LOOP
JFZ DIM5
JMP DIMERR

LLI 120
LHI026
CAL DINPUT
CAL FPFIX
LLI124
LAM
RLC
RLC
LCA
LLI076
LHI027
LAM
SUI 001
RLC
RLC
ADI122
LLA
LHI027
LBM
ADI004
LLA
LAB
ADC
LMA

DIMS, LLI 204
LHI026
LBM
LLI 203
LMB

DIM9, LLI 203
CAL GETCHR
CPI254
JTZ DIM10
LLI203

56315
56320
56323

56326
56330
56331
56333
56334

56337
56341
56343

106003003
110301 056
104116013

066203
317
066202
371
104365055

006304
026305
104226002

Note open addresses
to end of page 56.

Page 57 reserved
for use bv the •
ARRAY VALUES TABLE.

12 - 82

CAL LOOP
JFZ DIM9
JMP NXTLIN

DIM10, LLI203
LBM
LLl202
LMB
JMP DIM

DIMERR, LAI304
LCI305
JMP ERROR

03003
03004
03005
03006
03010
03011
03012
03013

03014

03016
03021
03023
03026
03030
03033
03034
03037
03042

03045
03047
03052
03054
03057
03061
03064
03067
03070
03071
03072
03074
03077

03102
03103
03106
03107
03112

03113
03114
03115
03116
03117
03120

03121
03122
03123

317
010
371
066000
307
011
271
007

026000

106221003
074377
110045003
006334
106202003
021
160014003
106164003
104016003

074203
150 313012
074215
150102003
074212
150016003
106377 002
020
370
302
074120
120222002
104016003

312
106113003
372
106141003
007

306
221
360
003
051
007

327
307
240

12 - 9

LOOP, LBM
INB
LMB
LLIOOO
LAM
DCB
CPB
RET

STRIN, LCIOOO

STRIN1, CAL CINPUT
CPI377

NOTDEL,

JFZ NOTDEL
LAI334
CAL ECHO
DCC
JTS STRIN
CAL DEC
JMP STRIN1

CPI203
JTZ CTRLC
CPI215
JTZ STRINF
CPI212
JTZ STRIN1
CAL ADV
INC
LMA
LAC
CPI120
JFS BIGERR
JMP STRIN1

STRINF, LBC

SUBHL,

CAL SUBHL
LMC
CAL CRLF
RET

LAL
SUB
LLA
RFC
DCH
RET

TEXTC, LCM
LAM
NDA

SCELBAL ASSEMBLED FOR OPERATION IN AN 8080 BASED SYSTEM

This chapter presents an assembled version
of SCELBAL for operation in an 8080 based
microcomputer. This version may be loaded
into a system along with the user provided
1/0 subroutines to provide the user with
SCELBAL capability.

The user may elect, by choosing the proper
machine codes at key locations, to load the
program as an 8 K version that does not have
the optional DIM statement capability. This
version of the program will leave room for
about 1,250 bytes in the user program buffer.
Or, the user may load the program as a 12 K
version with DIM capability. (Leaving about
4,500 bytes for program storage.) Alternately,
by changing a few specially marked locations,
the user may elect to have the program oper-
ate in 8 K of memory with DIM capability.
However, this version is not recommended
because it will leave only about 500 bytes for
storage of a high level language user program.
(It is mentioned as an option because some
prospective users may desire to run small pro-
grams that require the DIM capability.)
Finally, the user may opt to place the DIM
routines (by changing the associated pointers,
etc.) in the upper pages of available RAM
memory in any system having more than 8 K
of memory (such as a 10 K, 16 K, 32 K sys-
tem) and using the area between the locations
used by the main SCELBAL routines and the
optional DIM routines as a user program buf-
fer.

The reader who has studied this book to
this point should have no difficulty under-
standing what is involved in selecting the
options just mentioned. Many readers may
well elect to make other alterations and may,
of course, do so at their own discretion. Let
it be said, that the version presented is just
one way in which the program may be as-
sembled for operation!

The reader should pay careful attention
in the following object code listing to all
locations marked by a double asterisk (**),

13 - 1

double at sign (@(Ql), or double cross (tt).
The convention established in the earlier
chapters for those special indicators will be
reviewed here.

A double asterisk (* *) is of importance
only to those readers who might elect to
change the memory pages used for the storage
of pointers, counters, temporary buffers and
look-up tables. The pages used for these pur-
poses in the version of SCELBAL presented
are pages 01, 26 and 27. Readers who take
on the task of re-assigning these pages will
probably have elected to completely re-
assemble SCELBAL and should be equipped
(mentally and with suitable hardware!) to
take on such a task.

A double cross (tt) denotes an elective
value on the part of the user. These locations
generally refer to the starting addresses of
user provided routines (such as 1/0 drivers),
or the assignment of the starting and ending
address of the user program buffer area. (For
the version presented the user program buffer
is assumed to start on page 33 and end on
page 54. The ending address would be
changed to page 37 if an 8 K system was be-
ing used and the DIM capability left out. Or,
page 34 for an 8 K system with DIM capa-
bility provided, etc.)

Locations marked with a @@ should be re-
placed with the machine code for a no-opera-
tion instruction, such as LAA, if the user will
not be using the optional DIM statement
capability. Alternately, some of these loca-
tions relating to addressing values would be
altered if the user elected to change the
storage areas for the DIM and associated
array handling subroutines.

It is suggested that user 1/0 subroutines
be placed on page 00 if possible. Alternately,
they may be placed in the upper regions of
available memory. If this is done, the ending
address of the user program buffer should be
altered accordingly.

03124

03125
03130
03131
03134
03135
03140

03141
03143
03146
03150
03153
03155
03157
03161
03162
03163

03164
03165
03166
03171

03172
03173

03174
03175
03176
03177
03200
03201

03202
03203
03204
03206
03210
03211
03212
03213
03216
03217
03220

03221

03224
03226

310

315377 002
176
315202003
015
302125003
311

076215
315202003
076212
315202003
056043
046001
066001
142
153
311

055
054
302172003
045

055
311

175
200
157
320
044
311

124
135
056043
046001
106
004
160
315 ttt ttt
142
153
311

303 ttt ttt
056227
046001

**

**

tt

tt

**

13 - 10

RTZ

TEXTCL, CAL ADV
LAM

CRLF,

CAL ECHO
DCC
JFZ TEXTCL
RET

LAI215
CAL ECHO
LAI212
CAL ECHO
LLI043
LHI001
LMI001
LHD
LLE
RET

DEC, DCL
INL
JFZ DECNO
DCH

DECNO, DCL
RET

INDEXB, LAL
ADB
LLA
RFC
INH
RET

ECHO, LDH
LEL
LLI 043
LHI001
LBM
INB
LMB
CAL ttt ttt
LHD
LLE
RET

CINPUT, JMP ttt ttt
EV AL, LLI 227

LHI001

03230
03232
•

03233
03235
03237
03242
03244
03246
03250
03251
03253

03254
03256
03261
03264
03266
03271
03273
03275

03300
03302
03305
03307
03310
03311
03314
03316
03317
03321
03324
03326
03331
03333
03336
03340
03342

•

03343

03345
03347

03351
03354

03357
03361
03364
03366
03370

066224
054
046026
066000
315 255 002
056210
066000
056276
106
056200
160

056200
315 240 002
312301 004
376 253
302300003
056176
066001
303351 003

376 255
302357003
056120
176
247
302345003
056 176
176
376007
312345003
376003
312152011
376005
312152011
056120
066001
054
066260

056 176
066002

315324004
303301004

376 252
302 373003
056176
066003
303351 003

**

13 -11

LMI224
INL
LHI026
LMIOOO
CAL CLESYM
L11 210
LMIOOO
LLI276
LBM
LLI200
LMB

SCAN1, L11 200
CAL GETCHR
JTZ SCAN10
CPI253
JFZ SCAN2
LLI176
LMI001
JMP SCANFN

SCAN2, CPI255
JFZ SCAN4
L11 120
LAM
NDA
JFZ SCAN3
LLI176
LAM
CPI007
JTZ SCAN3
CPI003
JTZ 8YNERR
('PI 005
JTZ SYNERR
LLI120
LMI001
INL
LMI260

SCAN3, L11 176
LMI002

SCANFN, CAL PARSER
JMP SCAN10

SCAN4, CPI252
JFZ SCAN5
L11 176
LMI003
JMP SCANFN

•

03373
03375
04000
04002
04004

04007
04011
04014
04016
04017
04020
04021
04024
04026
04030

04033
04035
04040
04042
04044
04047
04052
04054
04056
04057
04060
04061

04064
04066
04071
04073
04075

04100
04102
04105
04107
04110
04111
04112
04115
04117
04122
04124
04127
04131
04132
04133

376257
302007004
056 176
066004
303 351 003

376 250
302033004
056230
106
004
160
315100007
056176
066006
303 351 003

376 251
302064004
056 176
066007
315324004
315003007
056230
046026
106
005
160
303301004

376336
302100004
056176
066005
303351003

376274
302143004
056200
106
004
160
315240002
376275
312 251 004
376276
312267004
056200
106
005
160

**

13 - 12

SCAN5, CPI257

SCAN6,

SCAN7,

JFZ SCAN6
LLI176
LMI004
JMP SCANFN

CPI250
JFZ SCAN7
LLI230
LBM
INB
LMB
CAL FUNARR
LLI176
LMI006
JMP SCANFN

('PI 251
JFZ SCANS
LLI176
LMI007
CAL PARSER
CAL PRIGHT
LLI 230
LHI026
LBM
DCB
LMB
JMP SCAN10

SCANS, CPI 336
JFZ eCAN9
LLI 176
LMI005
JMP SCANFN

SCAN9, CPI 274
JFZ SCAN11
LLI 200
LBM
INB
LMB
CAL GETCHR
('PI 275
JTZ SCAN13
('PI 276
JTZ SCAN15
LLI 200
LBM
DCB
LMB

04134
04136
04140

04143
04145
04150
04152
04153
04154
04155
04 160
04162
04165
04167
04172
04174
04175
04176
04177
04201
04208

04206
04210
04213
04215
04216
04217
04220
04223
04225
04230
04232
04235
04237
04240
04241
04242
04244
04246

04251
04253
04255

04260
04262
04264

04 267

056 176
066011
303 351 003

376 275
302206004
056200
106
004
160
315 240 002
376 274
312251 004
376276
312260004
056 200
106
005
160
056 176
066012
303 351 003

376 276
302276004
056200
106
004
160
315 240002
376274
312 267 004
376 275
312260004
056200
106
005
160
056176
066013
303 351 003

056 176
066014
303 351 003

056176
066015
303 351 003

056176

13 - 13

SCAN11,

SCAK12,

LLI 176
Ll\JI 011
JMP SCANFN

cpr 275
JFZ SCAK12
LLI200
LBM
INB
LMB
CAL GETCHR
CPI274
,]TZ SCAN13
CPI276
JTZ SCAN14
LLI200
LBM
DCB
LMB
LLl176
LMI012
JMP SCAKFN

CPI276
JFZ SCAN16
LLI 200
LBM
INB
LMB
CAL GETCHR
('PI 274
JTZ SCAN15
CPI 275
JTZ SCAN14
LLI 200
LBM
DCB
LMB
LLI176
LMI013
JMP SCANFN

SCAN13, LLl176
LMI014
JMP SCANFN

SCAN14, LLI176
LMI015
JMP SCANFN

SCAN15, LLl176

04271
04273

04276

04301
04303
04305
04306
04307
04310
04312
04313
04314
04315
04320
04323

04324
04326
04330
04331
04332
04335
04336
04337
04341
04344
04346
04351
04353

04356
04357
04360
04362
04365
04366
04367
04370
04372
04375
04377
05002

05005
05007
05011
05012
05014
05015

066016
303351 003

315310002

056200
046026
106
004
160
056277
176
005
270
302254003
303300031
166

056120
046026
176
247
312231005
054
176
376256
312356004
376260
372033005
376272
362033005

055
176
376001
312005005
205
157
176
376305
302005005
056200
315 240 002
303310002

056227
046001
176
306004
167
157

**

**

**

13 - 14

LMI016
JMP SCANFN

SCAN16, CAL CONCTS

SCAN10, LLI 200
LHI026
LBM
INB
LMB
LLI277
LAM
DCB
CPB
JFZ SCAN1
JMP PARSEP
HLT

PARSER, LLI 120
LHI026
LAM
NDA
JTZ PARSE
INL
LAM
CPI256
JTZPARNUM
CPI260
JTS LOOKUP
CPI272
JFS LOOKUP

PARNUM, DCL
LAM
CPIOO1
JTZ NOEXPO
ADL
LLA
LAM
CPI305
JFZ NOEXPO
LLI 200
CAL GETCHR
JMP CONCTS

NOEXPO, LLI 227
LHI001
LAM
ADI004
LMA
LLA

05016
05021
05023
05025
05030

05033
05035
05037
05041
05043
05045
05047
05050
05052
05055
05057

05061
05063
05065
05070
05071
05072
05073
05074
05077
05100
05103
05104
05105
05106

05111
05114
05116
05120
05121
05122
05123
05125
05127
05130
05131
05134
05136
05140
05141
05142
05143
05144

315 255 022
056120
046026
315044023
303231005

056370
046026
066000
056120
026027
036210
176
376001
302061005
056 122
066000

056121
046026
315 356022
176
054
106
054
315356022
276
302111005
054
170
276
312201 005

315256006
056370
046026
106
004
160
056077
046027
170
276
302061005
056077
046027
106
004
160
170
376025

**

**

**

**

**

**

**

13-15

LOOKUP,

LOOKU1,

LOOKU2,

CAL FSTORE
LLI120
LHI026
CAL DINPUT
JMP PARSE

LLI 370
LHI026
LMIOOO
LLI120
LDI027
LEI 210
LAM
CPI001
JFZ LOOKU1
LLI122
LMIOOO

LLI 121
LHI026
CAL SWITCH
LAM
INL
LBM
INL
CAL SWITCH
('PM
JFZ LOOKU2
INL
LAB
CPM
JTZ LOOKU4

CAL AD4DE
LLI370
LHI026
LBM
INB
LMB
LLI 077
LHI027
LAB
CPM
JFZ LOOKU1
LLI 077
LHI027
LBM
INB
LMB
LAB
CPI025

05146 362222002 JFS BIGERR
05 151 056121 LLI121
05153 046026 ** LHI026
05155 006002 LBI002
05157 315013021 CAL MOVEIT
05162 153 LLE
05163 142 LHD
05164 257 XRA
05165 167 LMA
05166 054 INL
05167 167 LMA
05170 054 INL
05171 167 LMA
05172 054 INL
05173 167 LMA
05174 175 LAL
05175 326004 SUI 004
05177 137 LEA
05200 124 LDH

05201 315 317 022 LOOKU4, CAL SAVEHL
05204 056227 LLI 227
05206 046 001 ** LHI001
05210 176 LAM
05211 306 004 ADlO04
05213 167 LMA
05214 157 LLA
05215 315 255022 CAL FSTORE
05220 315 337 022 CAL RESTHL
05223 315 356 022 CAL SWITCH
05226 315244022 CAL FLOAD

05231 315255002 PARSE, CAL CLESYM
05234 056176 LLI176
05236 176 LAM
05237 376 007 CPI007
05241 312332005 JTZ PARSE2
05244 306240 ADI240
05246 157 LLA
05247 106 LBM
05250 056210 LLI210
05252 116 LCM
05253 315036023 CALINDEXC
05256 176 LAM
05257 306257 ADI257
05261 01 LLA
05262 170 LAB
05263 276 CPM
05264 312307005 JTZ PARSE1
05267 372 307 005 JTS PARSE1
05272 056 176 LLI176

13 - 16

05274 106 LBM
05275 056210 LLI 210
05277 116 LCM
05300 014 INC
05301 161 LMC
05302 315 036 023 ('ALINDEXC
05305 160 LMB
05306 311 RET

05307 056 210 PARSEl, LLI 210
05311 176 LAM
05312 205 ADL
05313 157 LLA
05314 176 LAM
05315 247 NDA
05316 310 RTZ
05317 056 210 LLI 210
05321 116 LCl\I
05322 015 DCC
05323 161 LMC
05324 315364 005 CAL FPOPER
05327 303231 005 JMP PARSE

05332 056 210 PARSE2, LLI210
05334 046 026 ** LHI026
05336 176 LAM
05337 205 ADL
05340 157 LLA
05341 176 LAM
05342 247 NDA
05343 312 104 006 JTZ PARNER
05346 056210 LLI 210
05350 116 LCM
05351 015 DCC
05352 161 LMC
05353 376006 ('PI 006
05355 310 RTZ
05356 315 364 005 CAL FPOPER
05361 303332 005 Jl\,fP PAR SE2

05364 056 371 FPOPER, LLI 371
05366 046 026 ** LHI026
05370 167 LMA
05371 056227 LLI227
05373 046 001 ** LHIOOI
05375 176 LAM
05376 157 LLA
05377 315 266022 CAL OPLOAD
06002 056227 LLI227
06004 176 LAM
06 005 326 004 SUI 004

13 - 17

06007
06010
06012
06014
06015
06017
06022
06024
06027
06031
06034
06036
06041
06 043
06 046
06050
06053
06055
06060
06062
06065
06067
06072
06074
06077
06101
06104
06106
06110
06112
06114
06116

06121
06124
06126
06127
06130
06133

06136
06141
06143
06144
06145
06150

06153
06156
06160
06161

167
056 371
046026
176
376001
312211 020
376002
312032021
376003
312046021
376004
312 322 021
376005
312263006
376011
312 121 006
376 012
312 136 006
376013
312153 006
376014
312173 006
376015
312 213006
376 016
312230 006
056230
046026
066 000
076311
016250
303226002

315032 021
056126
176
247
372242006
303247006

315 032 021
056126
176
247
312242 006
303247 006

315032 021
056126
176
247

**

**

13 - 18

LMA
LLI371
LHI026
LAM
CPI001
JTZ FPADD
CPI002
JTZ FPSUB
CPI003
JTZ FPMULT
CPI004
JTZ FPDIV
CPI005
JTZ INTEXP
CPI011
JTZ LT
CPI012
JTZ EQ
CPI013
JTZGT
CPI014
JTZ LE
CPI015
JTZ GE
CPI016
JTZ NE

PARNER, LLI 230
LHI026
LMIOOO
LAI311
LCI250
JMP ERROR

LT , CAL FPSUB
LLI126
LAM
NDA
JTS CTRUE
JMP CFALSE

EQ, CAL FPSUB
LLI 126
LAM
]\TDA
JTZ CTRUE
JMP CFALSE

GT, CAL FPSUB
LLI126
LAM
NDA

06162
06165
06170

06173
06176
06200
06201
06202
06205
06210

06213
06216
06220
06221
06222
06225

06230
06233
06235
06236
06237

06242
06244

06247
06251
06253

06256
06257
06261
06262

06263
06265
06267
06270
06272
06273
06274
06277
06302
06305
06307
06310
06312
06313

312247006
362242006
303247006

315032021
056126
176
247
312242006
372242006
303247 006

315 032 021
056 126
176
247
362242006
303247006

315 032 021
056126
176
247
312 247 006

056004
303244022

056 127
066000
303051020

173
306004
137
311

056126
046001
176
056003
167
247
312242006
374202020
315000020
056124
106
056013
160
056134

**

LE,

GE,

JTZ CFALSE
JFS CTRUE
JMP CFALSE

CAL FPSUB
LLI126
LAM
i'TDA
JTZ CTRUE
JTS CTRUE
JMP CFALSE

CAL FPSUB
LLI 126
LAM
NDA
JFS CTRUE
J1VTP CF ALSE

NE, CAL FPSUB
LLI 126
LAM
NDA
JTZ CFALSE

CTRUE, FPONE, LLI004
JMP FLOAD

13 - 19

CF ALSE, LLI 127
LMIOOO
JMP FPZERO

AD4DE, LAE

INTEXP,

ADI004
LEA
RET

LLI126
LHI001
LAM
LLI003
LMA
NDA
JTZ FPONE
CTS FPCOMP
CAL FPFIX
LLI 124
LBM
LLI 013
LMB
LLI134

The 8080 object code presented in this
chapter was derived from the source listings
presented in detail in earlier chapters with one
small exception. Since the 8080 CPU requires
an area in memory to be set aside as a stack,
the stan of the EXECutive routine (refer to
the appropriate chapter as required) has been
altered to include a stack initializing instruc-
tion. For the version presented herein, the
8080 stack is initialized to the address:
PAGE 32 LOCATION 000, so that the top
region of page 31 is used as the stack area.
In order to compensate for the insertion of
the stack initializing command at the start of
the EXECutive routine, and still maintain the
same address references for labels between the
two versions of the program presented herein
(8008 and 8080), a small subroutine was add-
ed (at PAGE 31 LOCATION 330). This sub-
routine simply contains a pointer initializing

01000 XXX
01 001 XXX
01002 XXX
01 003 XXX
01 004 000
01005 000
01 006 100
01007 001
01010 XXX
01 all XXX
01012 XXX
01013 000
01014 000
01 015 000
01 016 000
01017 000
01 020 XXX
01021 XXX
01022 XXX
01023 XXX
01 024 000
01 025 000
01 026 300
01027 001
01030 000
•• •

•• •

01 047 000

13 - 2

command and call to the subroutine TEXTC.
This subroutine has been labeled EXECSP in
the following listing.

One final word before presenting the ob-
ject code is in order. Do not attemp to skip
over the machine code listings provided for
the special pages 01, 26, and 27. The values
in the look-up tables must be in memory
along with the initial values of many of the
locations on those pages when the program
is first started. (Those locations where the
initial values are irrelevant are denoted by
XXX.) The format of the object code listing
for these special pages will be slightly diffe-
rent than the rest of the listing in that the
mnemonics column will contain comments
relating to the use of the locations (since the
locations will contain "data" versus actual
instructions).

Not Assigned
Not Assigned
Not Assigned
Not Assigned
Stores floating
point
constant
value +1.0
Not Assigned
Not Assigned
Not Assigned
Exponent Counter
Stores floating
point
number
temporarily
Not Assigned
Not Assigned
Not Assigned
Not Assigned
Stores floating
point
constant
value - 1.0
Scratch Pad Area

Scratch Pad Area

06315
06317
06 321
06322
06324
06327
06332
06334
06335
06336

06341
06343
06346
06351
06353
06354
06355
06356
06361

06362
06364
06367
06372
06374
06375
06376
06377
07002

07003
0"/ 005
07007
07010
07011
07012
07013
07015
07017
07021
07022
07023
07024
07027
07031
07034
07036
07041
07043
07046

036014
046001
124
006004
315013021
315242006
056003
176
247
372 362006

056014
315277 022
315046021
056013
106
005
160
302341 006
311

056014
315277 022
315322021
056013
106
005
160
302362006
311

056230
046026
176
205
157
176
066000
056203
046027
167
247
310
372 000 055
376001
312243007
376002
312360007
376003
312346007
376004

**

**

**

@@

13 - 20

LEI014
LHI001
LDH
LBI004
CAL MOVEIT
CAL FPONE
LLI 003
LAM
NDA
JTS DVLOOP

l\ITULOOP, LLI 014
CAL FACXOP
CAL FPMULT
LLI 013
LBM
DCB
LMB
JFZ MULOOP
RET

DVLOOP, LLI 014

PRIGHT,

CAL FACXOP
CAL FPDIV
LLI 013
LBM
DCB
LMB
JFZ DVLOOP
RET

LLI230
LHI026
LAM
ADL
LLA
LAM
LMIOOO
LLI 203
LHI027
LMA
t-TDA
RTZ
JTS PRIGH1
CPI001
JTZ INTX
CPI002
JTZ SGNX
CPI003
JTZ ABSX
CPI004

07050 312000032 JTZ SQRX
07053 376005 CPI005
07055 312 017 010 JTZ TABX
07060 376006 CPI006
07062 312 240 032 JTZ RNDX
07065 376007 CPI007
07067 312 377 007 JTZ CHRX
07072 376 010 CPI010
07074 312 ttt ttt tt JTZ ttt ttt
07077 166 HLT

07100 056120 FUNARR, LLl120
07102 046026 ** LHI026
07104 176 LAM
07105 247 NDA
07106 310 RTZ
07107 056202 LLI 202
07111 046027 ** LHI027
07113 066000 LMI000

07 115 056202 FUNARI, LLI 202
07117 046027 ** LHI027
07121 106 LBM
07122 004 INB
07123 160 LMB
07124 016002 LCI002
07126 056274 LLl274
07130 046026 ** LHI026
07132 315230007 CALTABADR
07135 026026 ** LDI026
07137 036120 LEI 120
07141 315 332 002 CAL STRCP
07144 312207007 JTZ FUNAR4
07147 056202 LLI 202
07151 046027 ** LHI 027
07153 176 LAM
07 154 376010 CPI010
07 156 302115007 JFZ FUNARI
07161 056202 LLI202
07163 046027 ** LHI027
07165 066000 LMIOOO
07167 303054055 @@ Jf,1p FUNAR2

07 172 056230 FAERR, LL1230
07174 046026 ** LHI026
07176 066000 LMIOOO
07200 076306 LAI306
07 202 016 301 LCI301
07204 303226002 Jl\1P ERROR

07 207 056202 FUNAR4, LLI202

13 - 21

07211
07 213
07214
07216
07220
07221
07224
07225

07230
07231
07 232
07233
07236
07237
07240
07241
07 242

07 243
07245
07247
07 250
07251
07254
07256
07261
07264
07266
07270
07 273
07275
07300
07303
07305
07306
07307
07312
07314
07317
07321
07324

07327
07332
07334
07 336

07 341
07343

046027
106
056230
046026
116
315036023
160
303255002

170
007
015
302231007
205
157
320
044
311

056126
046001
176
247
362327007
056014
315 255 022
315000020
056123
066000
315064020
056014
315266022
315 032 021
056126
176
247
312341007
056014
315244022
056024
315277 022
315211 020

315000020
056123
066000
303064020

056014
303244022

**

**

**

13 - 22

LHI027
LBM
LLI230
LHI026
LCM
CALINDEXC
LMB
JlV[P CLESYM

TABADR, LAB
TABAD1, RLC

DCC

INTX,

JFZ TABAD1
ADL
LLA
RFC
INH
RET

LLI 126
LHI001
LAM
NDA
JFS INT1
LLI014
CAL FSTORE
CAL FPFIX
LLI 123
LMIOOO
CAL FPFLT
LLI014
CAL OPLOAD
CAL FPSUB
LLI126
LAM
NDA
JTZ INT2
LLI014
CAL FLOAD
LLI024
CAL FACXOP
CAL FPADD

INT1, CAL FPFIX
LLI 123
LMIOOO
JMP FPFLT

INT2, LLI014
JMP FLOAD

07346 056126 ABSX, LLI126
07350 046001 ** LHI001
07352 176 LAM
07353 247 NDA
07354 372202020 JTS FPCOMP
07357 311 RET

07360 056126 SGNX, LLI126
07362 046001 ** LHI001
07364 176 LAM
07365 247 NDA
07366 310 RTZ
07367 362242006 JFS FPONE
07 372 056024 LLI 024
07374 303244022 JMP FLOAD

07377 315000020 CHRX, CAL FPFIX
10002 056124 LLI124
10004 176 LAM
10005 315202003 CAL ECHO
10010 056177 LLIl77
10012 046026 ** LHI026
10014 066377 LMI377
10016 311 RET

10017 315000020 TABX, CAL FPFIX
10022 056124 TAB1, LLI 124
10024 176 LAM
10025 056043 LLI043
10027 226 SUM
10030 056177 LLI 177
10032 046026 ** LHI026
10034 066377 LMI377
10036 372 217 031 JTS BACKSP
10041 310 RTZ

10042 117 TABC, LCA
10043 076240 LAI240
10045 315 202003 TABLOP, CAL ECHO
10050 015 DCC
10051 302045010 JFZ TABLOP
10054 311 RET

10055 056201 STOSYM, LLI201
10057 046027 ** LHI027
10061 176 LAM
10062 247 NDA
10063 312 100 010 JTZ STOSY1
10066 066000 LMIOOO
10070 056204 LLI 204
10072 156 LLM

13 - 23

10073
10075

10100
10102
10104
10106
10110
10112
10114
10115
10117
10122
10124

10126
10130
10132
10135
10136
10137
10140
10141
10144
10145
10150
10151
10152
10153

10156
10161
10163
10165
10166
10167
10170
10172
10174
10175
10176
10201
10203
10205
10206
10207
10210
10211
10213
10216
10220

046057
303255022

056 370
046026
066000
056 120
026027
036210
176
376001
302126010
056 122
066000

056 121
046026
315356022
176
054
106
054
315 356022
276
302156010
054
170
276
312227010

315256006
056370
046026
106
004
160
056077
046027
170
276
302 126010
056077
046027
106
004
160
170
376025
362222002
056 121
046026

tt

**

**

**

**

**

**

**

LHI057
Jl\tfP F STO R E

STOSY1, LLI 370
LHI026
LMIOOO
LLI120
LDI027
LEI 210
LAM
('PI 001
JFZ ITOSY2
LLI 122
LMIOOO

STOSY2, LLI 121
LHI026
CAL SWITCH
LAM
INL
LBM
INL
CAL SWITCH
('PM
JFZ STOSY3
INL
LAB
CPM
JTZ STOSY5

STOSY3, CAL AD4DE
LLI 370
LHI026
LBM
INB
LMB
LLI077
LHI027
LAB
CPM
JFZ STOSY2
LLI077
LHI027
LBM
INB
LMB
LAB
CPI025
JFS BIGERR
LLI 121
LHI026

13 - 24

10222
10224

10227
10232
10235

10240
10242
10244
10245
10247

10252
10254
10256
10257

10261
10262
10263

10266
10271
10274

10275
10277
10301
10304
10305
10306
10311
10313
10315
10317
10321
10324
10327
10331

10333
10334
10335
10340
10343
10346
10351

10354
10356

006002
315013021

315 356022
315 255 022
303255002

056120
046026
124
036144
303261010

056144
046026
124
036120

106
004
303 013 021

061000032
315 330 031
000

056000
046026
315014003
176
247
312 275 010
056 335
046001
026026
036000
315332002
302354010
056000
046033

176
247
312266010
315 121 003
315377 002
315 141 003
303 333 010

056 342
046001

**

**

**

**
**

tt

**

13 - 25

LBI002
CAL MOVEIT

STOSY5, CAL SWITCH
CAL FSTORE
JMP CLESYM

SAVESY, LLI 120
LHI026
LDH
LEI 144
JMP MOVECP

RESTSY, LLI144
LHI026
LDH
LEI 120

MOVECP, LBM
INB
JMP MOVEIT

EXEC, LXS 000 032
CAL EXECSP
NOP

EXEC1, LLIOOO
LHI026
CAL STRIN
LAM
NDA
JTZ EXEC1
LLI 335
LHI001
LDI026
LEI 000
CAL STRCP
JFZ NOLIST
LLI 000
LHI033

LIST, LAM
NDA
JTZ EXEC
CALTEXTC
CAL ADV
CAL CRLF
JMP LIST

NOLIST, LLI 342
LHI001

10 360
10 362
10 364
10 366
10 371
10 374
10 376
11000
11 002
11 004
11 007
11 012
11 014
11 016
11 020
11 021
11 023
11 025
11 027
11 031
11 033
11 035
11 037
11041
11 043
11 045
11 046
11 050
11052
11 054
11 056

11 060
11 062
11063
11 066

11071
11 073
11 075
11077
11101
11104
11107
11111
11113
11115
11117
11122
11125
11127

036 000
026 026
036 000
315332 002
312 070 013
026 026
036 000
056346
046 001
315332 002
302 071 all
046 026
056364
066 033
054
066 000
056 077
046 027
066 001
056 075
066 000
056120
066 000
056210
066 000
054
066 000
046 033
056 000
066 000
046 057

066 000
054
302 060 all
303266 010

036272
026 001
046 026
056 000
315332 002
312 ttt ttt
056277
046 001
026 026
036 000
315332 002
312 ttt tH
056360
046 026

**

**

**

**

tt

**

@@
@@
@@

tt

@@

@@
@@
@@

**
**

tt
**
**

tt
**

13 - 26

LEI 000
LDI026
LEI 000
CAL STRCP
JTZ RUN
LDI026
LEI 000
LLI 346
LHI001
CAL STRCP
JFZ NOSCR
LHI026
LLI364
LMI033
INL
LMIOOO
LLI077
LHI027
LMI001
LLI 075
LMIOOO
LLI 120
LMIOOO
LLI 210
LMIOOO
INL
LMIOOO
LHI033
LLIOOO
LMIOOO
LHI057

SCRLOP, LMI 000
INL

I'TOSCR,

JFZ SCRLOP
JMP EXEC

LEI 272
LDI001
LHI026
LLI 000
CAL STRCP
JTZ SAVE
LLI277
LHI001
LDI026
LEI 000
CAL STRCP
JTZ LOAD
LLI 360
LHI026

11131
11133
11134
11136
11141
11143
11145
11146
11147

11152
11154
11156

11161
11163
11164
11165
11170
11172
11174
11175

11177
11 201
11 203
11 205
11 207

11211
11 213
11 216
11 221
11 223
11 226
11 230
11233
11 235
11 237

11 242
11244
11 246
11 247
11 250
11 251
11 253
11 255
11 256
11 257
11 260

066033
054
066 000
315 000 002
056203
046026
176
247
362161 011

076 323
016 331
303226002

056340
176
247
312 211 013
056360
066033
054
066000

056201
046026
066001
056350
066000

056201
315 123012
312242011
376260
372 267 011
376 272
362267 011
056350
046026
315 314002

056201
046026
106
004
160
056 360
046026
116
054
156
141

tt

**

tt

**

**

**

**

13 - 27

LMI033
INL
LMIOOO
CAL SYNTAX
LLI 203
LHI026
LAM
NDA
JFS SYNTOK

SYNERR, LAI 323
LCI331
JMP ERROR

SYNTOK, LLI 340
LAM
NDA
JTZ DIRECT
LLI 360
LMI033
INL
LMIOOO

GETAUX, LLI201
LHI026
LMI001
LLI350
LMIOOO

GETAUO, LLI 201

GETAU1,

CAL GETCHP
JTZ GETAU1
CPI260
JTS GETAU2
CPI272
JFS GETAU2
LLI 350
LHI026
CAL CONCT1

LLI 201
LHI026
LBM
INB
LMB
LLI 360
LHI026
LCM
INL
LLM
LHC

11 261
11 262
11 263
11 264

11 267
11 271
11 273
11 274
11 275
11 276
11277
11 300
11 301
11 304

176
005
270
302211 011

056360
046026
126
054
156
142
176
247
302336011
303005012

Note open addresses.
This space available
for patching.

11 336 056 350
11 340 046026
11 342 026026
11 344 036340
11 346 315332002
11 351 372073012
11 354 302005012
11 357 056360
11 361 046026
11 363 116
11 364 054
11 365 156
1136C 141
1·· ." 1 .", I 106
11 370 004
11371 315144012
11 374 056203
11 376 046026
12000 176
12001 247
12002 312 266010

12005 056360
12007 046026
12011 126
12012 054
12013 136
12014 056000
12016 046026
12020 106
12021 004

**

**
**

**

**

**

**

GETAU2,

NOTEND,

NOSAME,

13 - 28

LAM
DCB
CPB
JFZ GETAUO

LLI360
LHI026
LDM
INL
LLM
LHD
LAM
NDA
JFZ l'TOTEND
JMP l'TO SAM E

LLI350
LHI026
LDI026
LEI 340
CAL STRCP
JTS CONTIN
JFZ NOSAME
LLI360
LHI026
LCM
INL
LLM
LHC
LBM
INB
CAL REMOVE
LLI 203
LHI026
LAM
NDA
JTZ EXEC

LLI360
LHI026
LDM
INL
LEM
LLIOOO
LHI026
LBM
INB

12022
12025
12027
12031
12032
12033
12034
12036
12040
12043

12046
12047

12050
12051
12054
12057
12060
12063
12066
12067
12072

12073
12075
12077
12100
12101
12102
12103
12104
12105
12106
12111
12113
12115
12116
12117
12120

12123
12125
12126
12130
12131
12 132
12133
12136
12137
12140

315 205 012
056 360
046026
126
054
136
056000
046026
315 046012
303275010

106
004

176
315377002
315 356 022
167
315 377 002
315 356022
005
302050012
311

056360
046026
126
054
136
142
153
106
004
315 305 012
056360
046026
162
054
163
303177 011

046026
106
056360
126
054
136
315 305 012
142
153
176

**

**

**

**

.j-.. ','

13 - 29

CAL INSERT
LLI 360
LHI026
LDM
TNL
LEM
LLI000
LHI026
CAL MOVEC
JMP EXEC1

l\10VEC, LBM
INB

l\IOVEPG, LAM
CAL ADV
CAL SWITCH
LMA
CAL ADV
CAL SWITCH
DCB
JFZ MOVEPG
RET

CONTI.!'.' , LL1360
un 026
LDM
lNL
LEM
LHD
LLE
LBM
INB
CAL ADBDE
LLI 360
LHT 026
LMD
INL
LME
JMP GETAUX

GETCHP, LHI 026
LBM
LL1360
LDl\T
INL
LEM
CAL ADBDE
LHD
LLE
LAM

01 050 001 Stores random
01051 120 number generator
01052 162 constant
01053 002 value
01054 XXX Not Assigned
01055 XXX Not Assigned
01056 XXX Not Assigned
01057 XXX Not Assigned
01060 003 Stores random
01061 150 number generator
01 062 157 constant
01063 014 value
01064 000 Scratch Pad Area
•• •
01077 000 Scratch Pad Area

01100 000 Sign Indicator
01101 000 Sign Indicator
01102 000 Bits Counter
01103 000 Sign Indicator
01104 000 Sign Indicator
01105 000 Input Digit Counter
01106 000 Temp Storage
01107 000 Output Digit Counter
01110 000 FP Mode Indicator
01111 XXX Not Assigned

• • •

01117 XXX Not Assigned
01120 000 FPACC Extension
01121 000 FPACC Extension
01122 000 FPACC Extension
01123 000 FPACC Extension
01124 000 FPACC LSW
01125 000 FPACC NSW
01126 000 FPACC MSW
01127 000 FPACC Exponent
01130 000 FPOP Extension
01131 000 FPOP Extension
01132 000 FPOP Extension
01133 000 FPOP Extension
01134 000 FPOP LSW
01135 000 FPOP NSW
01136 000 FPOP MSW
01137 000 FPOP Exponent
01140 000 Floating point working area
• • •

01167 000 Floating point working area
01170 XXX Not Assigned

• • •

01177 XXX Not Assigned
01 200 000 Temporary

13 - 3

12141
12143

12144
12147
12150
12153
12154
12155
12156
12161
12164

12167
12171
12173
12174
12175
12176
12177
12200
12201
12202
12203
12204

12205
12207
12211
12212
12213
12214
12215
12220
12221
12223
12226

12231
12232
12235
12236
12241
12244
12247
12252

12255
12257
12261
12262

376240
311

315174003
116
315113003
161
171
247
312 167 012
315377002
303144012

056364
046026
126
054
176
220
167
320
055
025
162
311

056364
046026
176
054
156
147
315174003
174
376054
362222002
315113003

116
315174003
161
315 113003
315 277012
312255012
315164003
303 231 012

056000
046026
106
004

**

**

tt

**

CPI240
RET

REMOVE, CALINDEXB

REMOV1,

INSERT,

LCM
CAL SUBHL
LMC
LAC
NDA
JTZ REMOV1
CAL ADV
JMP REMOVE

LLI364
LHI026
LDM
INL
LAM
SUB
LMA
RFC
DCL
DCD
LMD
RET

LLI364
LHI026
LAM
INL
LLM
LHA
CALINDEXB
LAH
CPI054
JFS BIGERR
CAL SUBHL

INSERl, LCM
CALINDEXB
LMC
CAL SUBHL
CAL CPHLDE
JTZ INSER3
CAL DEC
JMPINSER1

INSER3, INCLIN, LLI 000
LHI026
LBM
INB

13 - 30

12263
12265
12266
12267
12270
12273
12274
12275
12276

12277
12300
12301
12302
12303
12304

12305
12306
12307
12310
12311
12312

12313
12315
12317

12322
12324
12326
12327
12330
12333
12335
12337
12342
12344
12346

12351
12354

12357
12361
12363

12366
12370
12372

056 364
126
054
136
315 305 012
163
055
162
311

174
272
300
175
273
311

173
200
137
320
024
311

076336
016303
303226002

056340
046026
176
247
312 351 012
056366
046001
315121 003
056340
046026
315 121 003

315141 003
303266010

076304
016332
303226002

076306
016330
303226002

**

**

**

13 - 31

LLI364
LDM
INL
LEM
CAL ADBDE
LME
DCL
LMD
RET

CPHLDE, LAH
CPD
RFZ
LAL
CPE
RET

ADBDE, LAE
ADB
LEA
RFC
IND
RET

CTRLC, LAI336
LCI303
JMP ERROR

FINERR, LLI340
LHI026
LAM
NDA
JTZ FINER1
LLI366
LHIOO1
CALTEXTC
LLI 340
LHI026
CALTEXTC

FINER1, CAL CRLF
JMP EXEC

DVERR, LAI 304
LCI332
JMP ERROR

FIXERR, LAI 306
LCI330
JlVIP ERROR

12375
12377
13001
13003
13005
13007

13012
13014

13016
13021
13024
13025
13030
13033
13036
13041
13043
13045
13046
13047
13052
13055
13060

13061
13063

13064
13065
13066
13067

13070
13072
13074
13076
13100
13102
13104
13106
13110
13111
13113

13116
13120
13122
13123
13124

076311
016316
056220
046001
066000
303226002

026026
036000

315064013
315 317 022
106
315 377 002
315370002
312337022
315 337 022
056000
046026
176
273
312061 013
315 337 022
303016013
166

036000
311

034
300
024
311

056073
046027
066000
056205
066000
056360
046026
066033
054
066000
303 156013

056360
046026
126
054
136

**

**

**

**

**
tt

**

13 - 32

NUMERR, LAI311
LCl316
LLI220
LHI001
LMIOOO
JMP ERROR

INSTR, LDI 026
LEI 000

INSTRl, CAL ADVDE
CAL SAVEHL
LBM
CAL ADV
CAL STRCPC
JTZ RESTHL
CAL RESTHL
LLIOOO
un 026
LAM
CPE
JTZ INSTR2
CAL RESTHL
JMP INSTR1
HLT

INSTR2, LEI 000
RET

ADVDE, INE

RUN,

NXTLIN,

RFZ
IND
RET

LLI 073
LHI027
LMIOOO
LLI 205
Ll\H 000
LLI 360
LHI026
LMI033
INL
LMIOOO
Jl\TP

LLI 360
un 026
LDM
INL
LEM

13125 142 LHD
13126 153 LLE
13127 106 LBM
13130 004 INB
13131 315 305012 CAL ADBDE
13134 056360 LLI360
13136 046026 ** LHI026
13140 162 LMD
13141 054 INL
13142 163 LME
13143 056340 LLI 340
13145 046026 ** LHI026
13147 176 LAM
13150 247 NDA
13151 312266010 JTZ EXEC
13154 000 NOP
13155 000 NOP

13156 056360 8AMLIN, LLI360
13160 046026 ** LHI026
13162 116 LCM
13163 054 INL
13164 156 LLM
13165 141 LHC
13166 026026 ** LDI026
13170 036000 LEI 000
13172 315 046012 CAL MOVEC
13175 056000 LLIOOO
13177 046026 ** LHI026
13201 176 LAM
13202 247 NDA
13203 312 266010 JTZ EXEC
13206 315000002 CAL SYNTAX

13211 056203 DIRECT, LLI 203
13213 046026 ** LHI026
13215 176 LAM
13216 376001 CPIOOI
13220 312 116013 JTZ NXTLIN
13223 376002 CPI002
13225 312027016 JTZ IF
13230 376 003 CPI003
13232 312 031 015 JTZ LET
13235 376004 CPI004
13237 312 174015 JTZ GOTO
13242 376005 CPI005
13244 312 345013 JTZ PRINT
13247 376006 CPI006
13251 312 365016 JTZ INPUT
13254 376007 cpr 007
13256 312 164017 JTZ FOR

13 - 33

13261
13263
13266
13270
13273
13275
13300
13302
13305
13307
13312
13314
13317
13321
13324
13327
13331
13333
13334
13336
13337
13342

13345
13347
13351
13352
13354
13355
13360
13363

13366
13371
13373
13375
13376
13377
14001

14002
14004
14007
14011
14014
14016
14021
14023
14026
14030
14033

376010
312013030
376011
312236016
376012
312304016
376013
312 365 055
376014
312 266010
376015
312013 015
376016
302 152011
315 153055
056206
046026
106
056202
160
315 240 010
303042015

056202
046026
176
056000
276
372 366013
315 141 003
303116013

315 255002
056202
046026
106
004
056203
160

056203
315240002
376 247
312 203014
376242
312 203014
376 254
312043014
376 273
312043014
056203

@@

@@

@@
@@
@@**
@@
@(iil
@@
@@
@@

**

**

13 - 34

CPI010
JTZ !'-TEXT
CPI011
JTZ GOSUB
CPI012
JTZ RETURN
CPI013
JTZ DIM
CPI014
JTZ EXEC
CPI015
JTZ LETO
CPI016
JFZ SYNERR
CAL ARRAY1
LLI 206
LHI026
LBM
LLI202
LMB
CAL SAVESY
JMP LET 1

PRINT, LLI202
LHI026
LAM
LLIOOO
CPM
JTS PRINT1
CAL CRLF
JMP NXTLIN

PRINT1, CAL CLESYM
LLI 202
LHI026
LBM
INB
LLI 203
LMB

PRINT2, LLI 203
CAL GETCHR
CPI247
JTZ QUOTE
CPI242
JTZ QUOTE
CPI254
JTZ PRINT3
CPI273
JTZ PRINT3
LLI 203

14035
14040

14043
14045
14046
14047
14051
14052
14054
14055
14056
14060
14061
14063
14064
14065
14070
14072

14075
14100
14102
14104
14105
14106
14110
14112

14114
14117
14121
14123

14125
14127
14132
14134
14137
14141
14143
14144
14146
14147
14151
14152
14153
14156
14160
14163
14165

315003003
302002014

056202
106
004
056276
160
056203
106
005
056 277
160
056367
176
247
312075014
066000
303125014

315224003
056 177
046026
176
247
056110
046001
066377

314314014
056177
046026
066000

056203
315240002
376254
314357014
056203
046026
106
056202
160
056000
170
276
372 366013
056000
315240002
376254
312 116013

**

**

**

**

13 - 35

PRINT3,

PRINT4,

CAL LOOP
JFZ PRINT2

LLI202
LBM
INB
LLI 276
LMB
LLI203
LBM
DCB
LLI277
LMB
LLI367
LAM
NDA
JTZ PRINT4
LMIOOO
JMP PRINT6

CAL EVAL
LLI177
LHI026
LAM
NDA
LLI 110
LHI001
LMI377

PRINT5, CTZ PFPOUT
LLI177
LHI026
LMIOOO

PRINT6, LLI 203
CAL GETCHR
CPI254
CTZ PCOMlVTA
LLI203
LHI026
LBM
LLI 202
LMB
LLIOOO
LAB
CPM
JTS PRINT1
LLIOOO
CAL GETCHR
CPI254
JTZ NXTLIN

14170
14172
14175
14200

14203
14205
14206
14211
14213
14214
14215
14217

14220
14222
14225
14227
14230
14233
14236
14240
14243

14246
14250
14252
14254
14256
14260

14263
14265
14266
14270
14271
14272
14274
14275
14300
14303
14305
14307
14311

14314
14316
14320
14321
14322
14325

376273
312116013
315141 003
303116013

056367
167
315 255 002
056203
106
004
056204
160

056204
315240002
056367
276
312263014
315202003
056204
315003003
302220014

076311
016321
056367
046026
066000
303226002

056204
106
056202
160
170
056000
276
302366013
315 141 003
056367
046026
066000
303116013

056126
046001
176
247
312336014
054

**

**

**

13 - 36

QUOTE,

CPI273
JTZ l'TXTLIN
CAL CRLF
JMP NXTLIN

LLI367
LMA
CAL CLESYM
LLI 203
LBM
INB
LLI204
LMB

QUOTE1, LLI 204

QUOTER,

QUOTE2,

PFPOUT,

CAL GETCHR
LLI 367
CPM
JTZ QUOTE2
CAL FCHO
LLI 204
CAL LOOP
JFZ QUOTE 1

LAI311
LCI321
LLI 367
LHI026
LMIOOO
JMP ERROR

LLI204
LBM
LLI 202
LMB
LAB
LLI 000
CPM
JFZ PRINT1
CAL CRLF
LLI 367
LHI026
LMIOOO
JMP NXTLIN

LLI126
LHI001
LAM
NDA
JTZ ZERO
INL

14326
14327
14330
14333

14336
14340
14343
14345

14350
14352
14354

14357
14361
14362
14364
14365
14366
14370
14372
14373
14375
14377
15000
15001

15003
15006
15007
15012

15013
15016
15020
15022
15023
15025
15026

15031
15034
15036
15040

15042
15044
15046
15047
15050

176
247
312 350014
303165024

076240
315 202 003
076260
303202003

056 110
066000
303165024

056000
176
056 203
226
370
056043
046001
176
346360
306020
226
117
076240

315202003
015
302003015
311

315 240010
056202
046026
106
056203
160
303141015

315 255002
056144
046026
066000

056202
046026
106
004
056203

**

**

**

13 - 37

LAM
NDA
JTZ FRAC
JMP FPOUT

ZERO, LAI240
CAL ECHO
LAI260
JMP ECHO

FRAC, LLI110

PCOMMA,

LMIOOO
JMP FPOUT

LLI 000
LAM
LLI203
SUM
RTS
LLI043
LHI001
LAM
NDI360
ADI020
SUM
LCA
LAI240

PCOM1, CAL ECHO
DCC

LETa,

JFZ PCOM1
RET

CAL SAVSYM
LLI 202
LHI026
LBM
LLI203
LMB
JMP LET5

LET, CAL CLESYM
LLI144
LHI026
LMIOOO

LET1, LLI 202
LHI026
LBM
INB
LLI203

15052

15053
15055
15060
15063
15065
15070
15072
15075
15100
15102
15104
15105
15107
15110

15113
15115
15117

15122
15124
15127

15132
15134
15136

15141
15143
15145
15146
15147
15151
15152
15154
15155
15157
15160
15163
15166
15171

15174
15176
15200
15202
15204
15205
15206

160

056203
315240002
312 122015
376275
312141 015
376250
302113015
315 145055
056206
046026
106
056203
160
303122 015

056144
046026
315314002

056203
315003003
302053015

076314
016305
303226002

056203
046026
106
004
056276
160
056000
106
056277
160
315224003
315252010
315 055 010
303116013

056350
046026
066000
056202
106
004
056203

@@

@@
@@
@@**
@@
@@
@@
@@

**

**

**

13 - 38

LMB

LET2, LLI203
CAL GETCHR
JTZ LET4
CPI275
JTZ LET5
CPI250
JFZ LET3
CAL ARRAY
LLI 206
LHI026
LBM
LLI203
LMB
JMP LET4

LET3, LLI 144
LHI026
CAL CONCT1

LET4, LLI 203
CAL LOOP
JFZ LET2

LETERR, LAI314
LCI305
JMP ERROR

LET5, LLI203
LHI026
LBM
INB
LLI276
LMB
LLIOOO
LBM
LLI277
LMB
CAL EVAL
CAL RESTSY
CAL STOSYM
JMP NXTLIN

GOTO, LLI350
LHI026
LMIOOO
LLI202
LBM
INB
LLI 203

15210

15211
15213
15216
15221
15223
15226
15230
15233
15235

15240
15242
15245

15250
15252
15254
15256
15257

15261
15264
15266

15270
15272
15275
15300
15302
15305
15307
15312

15315
15317
15 321
15322
15323
15324
15326
15327
15330
15331
15332
15333
15334
15335

15340

160

056203
315240002
312240015
376260
372250015
376272
362250015
056350
315 314002

056203
315003003
302211 015

056360
046026
066033
054
066000

315255002
056 204
066001

056 204
315 123012
312 315015
376260
372340015
376 272
362340015
315 310002

056204
046026
106
004
160
056 360
116
054
156
141
176
005
270
302 270 015

056120

**
tt

**

13 - 39

LMB

GOT01, LLI 203
CAL GETCHR
JTZ GOT02
CPI260
JTS GOT03
CPI272
JFS GOT03
LLI350
CAL CONCT1

GOT02, LLI 203
CAL LOOP
JFZ GOT01

GOT03, LLI 360
LHI026
LMI033
INL
LMIOOO

GOT04, CAL CLESYM
LLI 204
LMI001

GOT05, LLI 204

GOT06,

CAL GETCHP
JTZ GOT06
CPI260
JTS GOT07
CPI272
JFS GOT07
CAL CONCTS

LLI204
LHI026
LBM
INB
LMB
LLI360
LCM
INL
LLM
LHC
LAM
DCB
CPB
JFZ GOT05

GOT07, LLI 120

01 201 000
01 202 000
01203 000
01204 XXX
01205 XXX
01 206 XXX
01207 XXX
01 210 000
01 211 000
01 212 120
01213 004
01 214 147
01215 146
01 216 146
01217 375
01220 000
01 221 XXX
01222 XXX
01 223 XXX
01 224 XXX
01 225 XXX
01 226 XXX
01 227 000
01 230 000

" .
• •

01277
01 300
01 301
01 302
01 303
01 304
01 305
01 30G
01 307
01 310
01 311
01 312
01 313
01 314
01 315
01 316
01317

01320
01 321

•

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

004
324

register
storage
area (D, E, H & L)
Not Assigned
Not Assigned
Not Assigned
Not Assigned
Stores floating
point
constant
value +10.0
Stores floating
point
constant
value +0.1
GETINP Counter
Not Assigned
Not Assigned
Not Assigned
Not Assigned
Not Assigned
Not Assigned
Arithmetic Stack Pointer
Arithmetic Stack

Arithmetic Stack
FPACC
temporary
storage
location
STEP value
temporary
storage
location
FOR/NEXT Limit
temporary
storage
location
Array pointer
temporary
storage
location

Executive & special messages
look-up table and storage area.

13 - 4

(cc) for THEN
T

15342
15344
15346
15350
15353
15356
15360
15362
15363
15364
15365
15366
15367
15370
15371
15374
15376
16000
16001
16002
16003
16005
16006
16007
16012
16013
16014
16015

16020
16022
16024

16027
16031
16033
16034
16035
16037
16040
16043
16045
16047
16052
16053
16054
16057
16061
16063
16066
16067

046026
026026
036350
315 332 002
312156013
056360
046026
126
054
136
142
153
106
004
315 305012
056360
046026
162
054
163
056364
172
276
302261 015
054
173
276
302 261 015

076325
016 316
303226002

056202
046026
106
004
056276
160
315255002
056320
046001
315012013
173
247
302102016
056013
046027
315012013
173
247

**
**

**

**

**

**

**

LHI026
LDI026
LEI 350
CAL STRCP
JTZ SAMLIN
LLl360
LHI026
LDM
INL
LEM
LHD
LLE
LBM
INB
CAL ADBDE
LLI360
LHI026
LMD
INL
LME
LLI364
LAD
rPM
JFZ GOT04
INL
LAE
('PM
JFZ GOT04

GOTOER, LAI325
LCI316
JMP ERROR

IF, LLI202
LHI026
LBM
INB
LLI276
LMB
CAL CLESYM
LLI320
LHI001
CAL INSTR
LAE
NDA
JFZ IF1
LLI013
LHI027
CAL INSTR
LAE
NDA

13 - 40

16070

16073
16075
16077

16102
16104
16106
16107
16110
16113
16115
16117
16120
16121
16 124
16126
16130
16131
16133
16135
16136
16137
16140
16142

16143
16145
16150
16153
16155
16160
16163

16166
16170
16173
16175

16200
16202
16203
16205
16206
16207
16210
16211
16213
16214
16215

302 102 016

076311
016306
303226002

056277
046026
035
163
315224003
056126
046001
176
247
312 116013
056277
046026
176
306005
056202
167
107
004
056 204
160

056204
315 240 002
302166016
056204
315003003
302143016
303073016

376260
372200016
376 272
372174015

056000
176
056204
226
107
004
116
056000
160
151
026026

**

**

**

**

13 - 41

JFZ IF1

IFERR, LAI 311
LCI306
JMP ERROR

IF1, LLI277
LHI026
DCE
LME
CAL EVAL
LLI126
LHI001
LAM
NDA
JTZ NXTLIN
LLI277
LHI026
LAM
ADI005
L1I 202
LMA
LBA
INB
L1I 204
LMB

IF2, L1I 204
CAL GETCHR
JFZ IF3
L1I 204
CAL LOOP
JFZ IF2
JMP IFERR

IF3, CPI260

IF4,

JTS IF4
CPI272
JTS GOTO

L1I 000
LAM
L1I 204
SUM
LBA
INB
LCM
L1I 000
LMB
LLC
LDI026

16217
16221
16224
16226
16230
16233

16236
16240
16242
16243
16244
16245
16250
16252
16253
16254

16255
16257
16261
16262
16264
16266
16271
16272
16274
16275
16276
16277
16300
16301

16304
16306
16310
16311
16313
16316
16317
16321
16323
16324
16325
16326
16327
16330
16333
16334
16335
16337

036001
315013021
056202
066001
315067002
303211 013

056340
046026
126
024
025
312255016
056360
126
054
136

056073
046027
176
306002
376021
362347 016
167
056076
205
157
162
054
163
303174015

056073
046027
176
326002
372356016
167
306002
056076
205
157
126
024
025
312266010
054
136
056360
046026

GOSUB,
**

GOSUB1,
**

RETURN,
**

**

13 - 42

LEI 001
CAL MOVEIT
LLI 202
LMI001
CAL SYNTX4
JMP DIRECT

LLI340
LHI026
LDM
IND
DCD
JTZ GOSUB1
LLI360
LDM
INL
LEM

LLI 073
LHI027
LAM
ADI002
CPI021
JFS GOSERR
LMA
LLI 076
ADL
LLA
LMD
INL
LME
JMP GOTO

LLI 073
LHI027
LAM
SUI 002
JTS RETERR
LMA
ADI002
LLI076
ADL
LLA
LDM
IND
DCD
JTZ EXEC
INL
LEM
LLI 360
LHI026

16341
16342
16343
16344

16347
16351
16353

16356
16360
16362

16365
16370
16372
16373
16374
16376

16377
17001
17004
17007
17011
17014
17016
17021
17024
17026
17030
17031
17033
17034

17037

17042
17044
17047
17052
17055
17060

17063
17066
17071
17073
17075
17076
17100

162
054
163
303116013

076307
016323
303226002

076322
016324
303226002

315 255002
056202
106
004
056203
160

056203
315 240 002
312042017
376 254
312063 017
376250
302037 017
315 160055
056206
046026
106
056203
160
303042017

315 310002

056203
315003003
302 377016
315104017
315 055010
303116013

315 104017
315055010
046026
056203
106
056 202
160

@@
@@
@@**
@@
@@
@@
@@

**

13 - 43

LMD
INL
LME
JMP NXTLIN

GOSERR, LAI307
LCI323
JMP ERROR

RET ERR, LAI 322
LCI324
JlVIP ERROR

INPUT, CAL CLESYM
LLI 202
LBM
INB
LLI 203
LMB

INPUT1, LLI203
CAL GETCHR
JTZINPUT3
CPI254
JTZ INPUT4
CPI250
JFZ INPUT2
CAL ARRAY2
LLI 206
LHI026
LBM
LLI203
LMB
J],IfP INPUT 3

INPUT2, CAL CONCTS

INPUT3, LLI 203

INPUT4,

CAL LOOP
JFZ INPUT1
CAL INPUTX
CAL STOSYlVI
J]\IfP r-TXTLIN

CALINPUTX
CAL STOSYM
LHI026
LLI 203
LBM
LL1202
LMB

17 101

17104
17106
17 107
17 110
17111
17112
17114
17117
17121
17 122
17123
17124
17127
17132
17134
17135

17 140
17142
17144
17146
17151
17154

17157
17161

17164
17166
17 170
17172
17174
17176
17200
17202
17203
17204
17 205
17207
17 211
17 212
17213
17214
17 215
17216
17217
17221
17 222
17224

303365016

056 120
176
205
157
176
376244
302140017
056120
106
005
160
315157017
315 221 003
056124
167
303064020

056144
046026
076277
315202003
315014003
303044023

046001
303247006

056144
046026
066000
056146
066000
056205
046027
106
004
160
056360
046026
126
054
136
170
007
007
306134
157
046027
162

**

**

**

**

**

**

13 - 44

JMPINPUT

INPUTX, LLI 120
LAM
ADL
LLA
LAM
CPI244

INPUTN,

JFZ INPUTN
LLI120
LBM
DCB
LMB
CAL FPO
CAL CINPUT
LLI 124
LMA
JMP FPFLT

LLI144
LHI026
LAI277
CAL ECHO
CAL STRIN
JIvrp DINPUT

FPO, LHI001
JMP CFALSE

FOR, LLI 144
LHI026
LMIOOO
LLI146
LMIOOO
LLI205
LHI027
LBM
INB
LMB
LLI360
LHI026
LDM
INL
LEM
LAB
RLC
RLC
ADI134
LLA
LHI027
LMD

17 225
17226
17 227
17 231
17233
17236
17 237
17240
17 243
17 245
17 247
17 252
17254
17 256
17 257
17260
17262
17 263
17 265

17 266
17270
17273
17276
17 300
17 303
17305

17 310
17312
17 315
17 320

17 323
17325
17 326
17327
17331
17332
17334
17335
17336
17340
17 341
17344
17347
17 351
17 353
17 354
17 356
17361

054
163
056 325
046001
315012013
173
247
302 252 017
076306
016305
303226002
056202
046026
106
004
056204
160
056203
163

056204
315240002
312 310017
376 275
312 323017
056144
315314002

056204
315003003
302 266017
303243017

056204
106
004
056276
160
056203
106
005
056277
160
315224003
315252010
056 144
046026
176
376001
302 246031
056 146

**

**

**

13 - 45

INL
LME
LLI 325
LHI001
CAL INSTR
LAE
NDA
JFZ FORI

FORERR, LAI306
LCI305
Jl\1P ERROR

FORI, LLI202
LHI026
LBM
INB
LLI 204
LMB
LLI 203
LME

FOR2, LLI 204
CAL GETCHR
JTZ FOR3
CPI 275
JTZ FOR4
LLI 144
CAL CONCT1

FOR3, LLI 204

FOR4,

CAL LOOP
JFZ FOR2
JMP FORERR

LLI 204
LBM
INB
LLI 276
LMB
LLI203
LBM
DCB
LLI277
L:vIB
CAL EVAL
CAL RESTSY
LLI144
LHI026
LAM
CPI001
JFZ FOR5
LLI 146

17 363
17365

066 000
303246 031

Note open addresses.
This space available
for patching.

20 000 056126
20 002 046 001
20 004 176
20 005 056100
20 007 167
20 010 247
20011 374202020
20014 056127
20016 076027
20020 106
20021 004
20 022 005
20023 372 051 020
20026 220
20027 372366012
20032 117
20033 056126
20035 006003
20037 315211 022
20042 015
20043 302033020
20046 303175020
20051 056126
20053 257
20054 167
20055 055
20056 167
20057 055
20 060 167
20061 055
20 062 167
20063 311

20064 006027

20 066 170
20067 046001
20071 056127
20073 247
20074 312100020
20077 160
20100 055
20101 176
20102 056100

**

**

13 - 46

FPFIX,

FPFIXL,

FPZERO,

LMIOOO
JMP FOR5

LLI 126
LHI001
LAM
LLI100
LMA
NDA
CTS FPCOMP
LLI127
LAI027
LBM
INB
DCB
JTS FPZERO
SUB
JTS FIXERR
LCA
LLI126
LBI003
CAL ROTATR
DCC
JFZ FPFIXL
JMP RESIGN
LLI 126
XRA
LMA
DCL
LMA
DCL
LMA
DCL
LMA
RET

FPFLT, LEI 027

FPNORM, LAB
LHI001
LLI127
NDA
JTZ NOEXCO
LMB

NOEXCO, DCL
LAM
LLI 100

20104 167 LMA
20105 247 NDA
20106 362120020 JFS ACZERT
20111 006004 LBI004
20113 056123 LLI123
20115 315150022 CAL COMPLM
20120 056126 ACZERT, LLI 126
20122 006004 LBI004
20124 176 LOOKO, LAM
20125 247 NDA
20126 302143020 JFZ ACNONZ
20131 055 DCL
20132 005 DCB
20133 302124020 JFZ LOOKO
20136 056127 LLI127
20140 257 XRA
20141 167 LMA
20142 311 RET
20143 056123 ACNONZ, LLI123
20145 006004 LBI004
20147 315177 022 CAL ROTATL
20152 176 LAM
20153 247 NDA
20154 372166020 JTS ACCSET
20157 054 INL
20160 106 LBM
20161 005 DCB
20162 160 LMB
20163 303143020 JMP ACNONZ
20166 056126 ACCSET, LLI 126
20170 006003 LBI003
20172 315211 022 CAL ROTATR
20175 056100 RESIGN, LLI100
20177 176 LAM
20200 247 NDA
20201 360 RFS
20202 056124 FPCOMP, LLI 124
20204 006003 LBI003
20206 303150022 JMP COMPLM

20211 056126 FPADD, LLI126
20213 046001 ** LHI001
20215 176 LAM
20216 247 NDA
20217 302235 020 JFZ NONZAC
20222 056124 MOVOP, LLI124
20224 124 LDH
20225 135 LEL
20226 056134 LLI134
20230 006004 LBI004
20232 303013021 JMP MOVEIT

13 - 47

20235 056136 NONZAC, LLI136
20237 176 LAM
20240 247 NDA
20241 310 RTZ
20242 056 127 CKEQEX, LLI 127
20244 176 LAM
20245 056 137 LLI137
20247 276 CPM
20250 312341020 JTZ SHACOP
20253 107 LBA
20254 176 LAM
20255 230 SBB
20256 362264020 JFS SKPNEG
20261 107 LBA
20262 257 XRA
20263 230 SBB
20264 376030 SKPNEG, CPI030
20266 372303020 JTS LINEUP
20271 176 LAM
20272 056127 LLI 127
20274 226 SUM
20275 370 RTS
20276 056124 LLI124
20300 303222020 JMP MOVOP
20303 176 LINEUP, LAM
20304 056127 LLI127
20306 226 SUM
20307 372327020 JTS SHIFTO
20312 117 LCA
20313 056127 MORACC, LLI 127
20315 315374020 CAL SHLOOP
20320 015 DCC
20321 302313020 JFZ MORACC
20324 303341 020 Jl\ITP SHACOP
20327 117 SHIFTO, LCA
20330 056137 MOROP, LLI 137
20332 315374020 CAL SHLOOP
20335 014 INC
20336 302330020 JFZ MOROP
20341 056123 SHACOP, LLI123
20343 066000 LMIOOO
20 345 056127 LLI127
20347 315374020 CAL SHLOOP
20352 056 137 LLI 137
20354 315374020 CAL SHLOOP
20357 124 LDH
20360 036 123 LEI 123
20362 006004 LBI004
20364 315 127 022 CAL ADDER
20367 006000 LBIOOO
20371 303066020 JMP FPNORM

13 - 48

20374
20375
20376
20377
21000
21 002
21 003
21004
21007
21010
21013
21014
21 015
21020
21021
21022
21025
21026
21027

21 032
21 034
21 036
21040
21043

21046
21051
21053
21054
21 056
21057
21061
21062
21064
21066
21070
21072
21075
21100
21102
21104
21107
21111
21112
21113
21114
21117
21121
21123
21126

106
004
160
055
006004
176
247
362211 022
027
303 212 022
176
054
315356022
167
054
315 356022
005
310
303013021

056124
046001
006003
315150022
303211 020

315166021
056137
176
056 127
206
306001
167
056102
066027
056126
006003
315211 022
334270021
056 146
006006
315211 022
056102
116
015
161
302066021
056146
006006
315211 022
056143

**

13 - 49

SHLOOP, LBM
INB
LMB
DCL
LBI004

FSHIFT, LAM
NDA
JFS ROTATR

BRING1, RAL
JMP ROTR

JVfOVEIT, LAM
INL
CAL SWITCH
LMA
INL
CAL SWITCH
DCB
RTZ
JMP MOVEIT

FSUB, LLI124

FPMULT,
ADDEXP,

SETMCT,

MULTIP,

LHI001
LBI003
CAL COMPLM
JMP FPADD

CAL CKSIGN
LLI137
LAM
LLI127
ADM
ADI001
LMA
LLI 102
LMI027
LLI 126
LBI003
CAL ROTATR
eTC ADOPPP
LLI146
LBI006
CAL ROTATR
LLI102
LCM
DCC
LMC
JFZ MULTIP
LLI 146
LBI006
CAL ROTATR
LLI 143

01 322 310 H
01 323 305 E
01 324 316 N
01 325 002 (cc) for TO
01 326 324 T
01 327 317 0
01 330 004 (ce) for STEP
01331 323 S
01 332 324 T
01 333 305 E
01 334 320 P
01335 004 (cc) for LIST
01 336 314 L
01 337 311 I
01 340 323 S
01 341 324 T
01 342 003 (cc) for RUN
01 343 322 R
01 344 325 U
01 345 316 N
01 346 003 (cc) for SCl{
01 347 323 S
01 350 303 C
01 351 322 R
01352 013 (cc) for READY message
01 353 224 Ctrl T
01 354 215 Carriage-return
01 355 212 Line-feed
01356 322 R
01357 305 E
01 360 301 A
01 361 304 D
01362 331 Y
01363 215 Carriage-return
01 364 212 Line-feed
01 365 212 Line-feed
01 366 011 (cc) for AT LINE message
01 367 240 Space
01 370 301 A
01371 324 T
01372 240 Space
01373 314 L
01374 311 I
01375 316 N
01 376 305 E
01 377 240 Space

End of page 01.

13 - 5

21130
21131
21132
21133
21136
21140
21141
21142
21144

21146
21151
21153
21156
21160
21161
21162
21163
21166
21170
21172
21174
21175
21176
21177
21 200
21 203
21 205
21207
21 210
21 211
21212
21 215
21 217
21 221
21 223
21 224
21 225
21 230
21232
21 233
21 234
21 235
21 237
21240
21241
21 242
21 244
21 246

21 251

176
027
247
374302021
056123
135
124
056143
006004

315 013 021
006000
315066020
056101
176
247
300
303202020
056140
046001
006010
257
167
054
005
302175021
006004
056130
167
054
005
302207021
056101
066001
056 126
176
247
372 251 021
056136
176
247
360
056101
116
015
161
056134
006003
303150022

056101

**

13 - 50

EXMLDV,

CKSIGN,

CLRNEX,

CLROPL,

CLRNX1,

OPSGNT,

LAM
RAL
NDA
CTSMROUND
LLI 123
LEL
LDH
LLI143
LEI 004

CAL MOVEIT
LBIOOO
CAL FPNORM
LLI 101
LAM
NDA
RFZ
JMP FPCOMP
LLI140
LHI001
LBI010
XRA
LMA
INL
DCB
JFZ CLRNEX
LBI004
LLI 130
LMA
INL
DCB
JFZ CLRNX1
LLI101
LMI001
LLI126
LAM
NDA
JTS NEGFPA
LLI 136
LAM
NDA
RFS
LLI 101
LCM
DCC
LMC
LLI134
LEI 003
JMP COMPLM

NEGFPA, LLI101

21 253 116 LCM
21 254 015 DCC
21255 161 LMC
21 256 056124 LLI124
21 260 006003 LBI003
21 262 315150022 CAL COMPLM
21 265 303230021 JMP OPSGNT
21 270 036 141 ADOPPP, LEI 141
21272 124 LDH
21273 056 131 LLI 131
21275 006006 LBI006
21 277 303127022 JMP ADDER
21 302 006003 MROUND, LBI003
21 304 076100 LAI100
21 306 206 ADM
21 307 167 CROUND, LMA
21 310 054 INL
21 311 076000 LAIOOO
21 313 216 ACM
21 314 005 DCB
21 315 302307021 JFZ CROUND
21 320 167 LMA
21 321 311 RET

21 322 315 166021 FPDIV, CAL CKSIGN
21 325 056126 LLI126
21 327 176 LAM
21 330 247 NDA
21 331 312 357012 JTZ DVERR
21 334 056137 SUBEXP, LLI137
21 336 176 LAM
21 337 056127 LLI 127
21 341 226 SUM
21 342 306001 ADI001
21 344 167 LMA
21 345 056 102 SETDCT, LLI 102
21 347 066027 LMI027
21 351 315101 022 DIVIDE, CAL SET SUB
21 354 372376021 JTS NOGO
21 357 036134 LEI 134
21 361 056131 LLI 131
21 363 006003 LBI 003
21 365 315013021 CAL MOVEIT
21 370 076001 LAI001
21 372 037 RAR
21 373 303377021 JMP QUO ROT
21 376 257 NOGO, XRA
21 377 056144 QUO ROT, LLI 144
22001 006003 LBI003
22003 315 200022 CAL ROTL
22006 056134 LLI134

13 - 51

22010
22012
22015
22017
22 020
22021
22022
22025
22030
22033
22035
22036
22040
22041
22043
22044
22045
22046
22050
22051
22052
22053
22 056
22060
22063
22 065
22 066
22067
22070
22072
22 074
22076
22101
22103
22104
22106
22110
22113
22115
22117
22121
22124
22125
22126

22127
22130
22131
22134
22135
22136

006 003
315177022
056102
116
015
161
302351 021
315101 022
372 070 022
056144
176
306001
167
076000
054
216
167
076000
054
216
167
362 070022
006 003
315211 022
056127
106
004
160
056144
036124
006003
303146021
036131
124
056124
006003
315013021
036131
056134
006003
315223022
176
247
311

247
176
315356022
216
167
005

13 - 52

LBI003
CAL ROTATL
LLI 102
LCM
DCC
LMC
JFZ DIVIDE
CAL SETSUB
JTS DVEXIT
LLI 144
LAM
ADI001
LMA
LAIOOO
INL
ACM
LMA
LAIOOO
INL
ACM
LMA
JFS DVEXIT
LEI 003
CAL ROTATR
LLI127
LBM
INB
LMB

DVEXIT, LLI 144
LEI 124
LEI 003
JMP EXMLDV

SETSUB, LEI 131
LDH
LLI124
LEI 003
CAL MOVEIT
LEI 131
LLI 134
LBI003
CAL SUBBER
LAM
NDA
RET

ADDER, NDA
ADDMOR, LAM

CAL SWITCH
ACM
LMA
DCB

22137
22140
22141
22144
22145

22150
22151
22153
22155
22156
22157
22160
22161
22162
22163
22164
22166
22167
22170
22171
22173
22174

22177
22200
22201
22202
22203
22204
22205
22206

22211
22212
22213
22214
22215
22216
22217
22220

22223
22224
22225
22230
22231
22232
22233
22234
22235

310
054
315 356 022
054
303130022

176
356 377
306001
167
037
127
005
310
054
176
356377
137
172
027
076000
213
303155022

247
176
027
167
005
310
054
303200022

247
176
037
167
005
310
055
303212022

247
176
315 356022
236
167
005
310
054
315356022

COMPLM,

MORCOM,

ROTATL,
ROTL,

ROTATR,
RO'T"{ . .I. 1 ,

SUBBER,
SUBTRA,

13 - 53

RTZ
INL
CAL SWITCH
INL
J]\IIP ADDMOR

LAM
XRI377
ADI001
LMA
RAR
LDA
DCB
RTZ
INL
LAM
XRI377
LEA
LAD
RAL
LAIOOO
ACE
JMP MORCOM

NDA
LAM
RAL
LMA
DCB
RTZ
INL
JMP ROTL

NDA
LAM
RAR
LMA
DCB
RTZ
DCL
JMP ROTR

NDA
LAM
CAL SWITCH
SBM
LMA
DCB
RTZ
INL
CAL SWITCH

22240
22241

22244
22246
22250
22252

22255
22256
22257
22261
22263

22266
22270
22272
22274

22277
22302
22304
22306
22311
22314

22317
22320
22321
22323
22325
22326
22327
22330
22331
22332
22333
22334
22335
22336

22337
22341
22343
22344
22345
22346
22347
22350
22351
22352

054
303224022

026001
036124
006004
303013021

135
124
056124
046001
303272022

026001
036134
006004
303013021

315 317 022
056124
046001
315266022
315337022
303244022

174
105
056200
046001
167
054
160
054
162
054
163
147
150
311

056200
046001
176
054
106
054
126
054
136
147

**

**

**

**

**

**

13 - 54

INL
JMP SUBTRA

FLOAD, LDI001
LEI 124
LEI 004
JMP MOVEIT

FSTORE, LEL
LDH
LLI 124
LHI001
JMP SETIT

OPLOAD, LDI 001
LEI 134

SETIT, LEI 004
JMP MOVEIT

FACXOP, CAL SAVEHL
LLI124
LHI001
CALOPLOAD
CAL RESTHL
JMP FLOAD

SAVEHL, LAH
LBL
LLI200
LHI001
LMA
INL
LMB
INL
LMD
INL
LME
LHA
LLB
RET

RESTHL, LLI 200
LHI001
LAM
INL
LBM
INL
LDM
INL
LEM
LHA

22353
22354
22355

22356
22357
22360
22361
22362
22363
22364

22365
22367
22371
22372
22373
22374
22377
23000
23001
23002
23003
23006

23010
23012
23014
23015
23016
23017
23020
23021
23024
23025
23026
23030
23031
23033
23035

23036
23037
23040
23041
23042
23043

23044
23045
23046

150
176
311

114
142
121
115
153
131
311

046001
056220
116
014
015
302010023
153
142
116
014
315036023
066000

056220
046001
116
014
161
153
142
315036023
176
247
046001
300
056220
066000
311

175
201
157
320
044
311

135
124
046001

**

**

**

**

13 - 55

SWITCH,

GETINP,

NOTO,

INDEXC,

LLB
LAM
RET

LCH
LHD
LDC
LCL
LLE
LEC
RET

LHI001
LLI 220
LCM
INC
DCC
JFZ NOTO
LLE
LHD
LCM
INC
CALINDEXC
LMIOOO

LLI 220
LHI001
LCM
INC
LMC
LLE
LHD
CALINDEXC
LAM
NDA
LHI001
RFZ
LLI 220
LMIOOO
RET

LAL
ADC
LLA
RFC
INH
RET

DINPUT, LEL
LDH
LHI001

23050
23052
23053
23055
23056
23057
23060
23063
23065
23067
23070
23071
23072
23075
23100
23102
23105
23107
23112
23114

23115

23120
23122
23125
23127
23132
23134
23137
23140
23143
23145
23150
23152
23155
23157
23160
23162
23163
23166
23170
23171
23172
23173
23176

23201
23202
23204
23205

056150
257
006010
167
054
005
302055023
056103
006004
167
054
005
302067 023
315365022
376253
312115023
376 255
302120023
056 103
167

315 365022

376256
312201 023
376305
312221 023
376240
312115023
247
312311 023
376260
372 375 012
376272
362 375012
056156
117
076370
246
302115023
056105
106
004
160
315056024
303115023

107
056106
176
247

13 - 56

LLI150
XRA
LBI 010

CLRNX2, LMA
INL
DCB
JFZ CLRNX2
LLI103
LBI004

CLRNX3, LMA
INL
DCB
JFZ CLRNX3
CAL GETINP
CPI253
JTZ NINPUT
CPI255
JFZ NOTPLM
LLl103
LMA

NINPUT, CAL GETINP

NOTPLM, CPI256
JTZ PERIOD
CPI305
JTZ FNDEXP
CPI240
,JTZ NINPUT
NDA
JTZ ENDINP
CPI260
JTS NUMERR
CPI272
JFS NUMERR
LLI156
LCA
LAI370
NDM
JFZ NINPUT
LLl105
LBM
INB
LMB
CALDECBIN
Jl\IfP NINPUT

PERIOD, LBA
LLl106
LAM
NDA

23206
23211
23213
23214
23215
23216

23221
23224
23226
23231
23233
23236
23240

23241

23244
23245
23250
23252
23255
23257
23262
23264
23265
23267
23271
23272
23275
23276
23277
23300
23301
23302
23303
23304
23305
23306

23311
23313
23314
23315
23320
23322
23324

23327
23331
23332

302 375012
056105
167
054
160
303115023

315 365022
376253
312241 023
376255
302244023
056104
167

315 365 022

247
312311 023
376260
372 375012
376 272
362 375012
346017
107
056157
076003
276
372375012
116
176
247
027
027
201
027
200
167
303241023

056103
176
247
312327023
056154
006003
315150022

056 153
257
167

13 - 57

JFZ NUMERR
LLI 105
LMA
INL
LMB
JMP NINPUT

FNDEXP, CAL GETINP
CPI253
JTZ EXPINP
CPI255
JFZ NOEXPS
LLI 104
LMA

EXPINP, CAL GETINP

NOEXPS, I\TDA
JTZ ENDINP
CPI260
JTS NUMERR
CPI272
JF S NUl\IIERR
NDI017
LBA
LLI157
LAI003
CPM
JTS NUMERR
LCM
LAM
NDA
RAL
RAL
ADC
RAL
ADB
LMA
JMP EXPINP

ENDINP, LLI103
LAM
NDA
JTZ FININP
LLI154
LEI 003
CAL COMPLM

FININP, LLI153
XRA
LMA

23333
23334
23336
23340
23343
23346
23350
23351
23352
23354
23357
23360
23362
23364

23365
23367
23370
23371
23374
23376
23377

24000
24002
24003
24004
24007

24010
24012
24014
24017
24022
24024
24025
24026
24027
24032

24033
24035
24037
24042
24045
24047
24050
24051
24052
24055

124
036123
006004
315013021
315064020
056104
176
247
056 157
312365023
176
356377
306001
167

056106
176
247
312000024
056105
257
226

056157
206
167
372033024
310

056210
046001
315277 022
315046021
056 157
116
015
161
302010024
311

056214
046001
315277 022
315046021
056157
106
004
160
302033024
311

**

**

LDH
LEI 123
LBI004
CAL MOVEIT
CAL FPFLT
LLI 104
LAM
NDA
LLI 157
JTZ POSEXP
LAM
XRI377
ADI001
LMA

POSEXP, LLI106
LAM
NDA
JTZ EXPOK
LLI 105
XRA
SUM

EXPOK, LLI 157
ADM
LMA

FPX10,

JTS MINEXP
RTZ

LLI 210
LHI001
CAL FACXOP
CAL FPMULT
LLI157
LCM
DCC
LMC
JFZ FPX10
RET

MINEXP, FPD10, LLI214
LHI001

13 - 58

CAL FACXOP
CAL FPMULT
LLI157
LBM
INB
LMB
JFZ FPDIO
RET

24056
24061
24063
24064
24066
24067
24071
24073
24074
24076
24101
24103
24105
24110
24112
24114
24117
24121
24123
24125
24130
24132
24134
24137
24141
24142
24143
24144
24145
24 147
24150
24152
24153
24155
24157
24162

24165
24167
24171
24173
24175
24176
24177
24202
24204

24207
24211
24213
24216

315317 022
056 153
171
346017
167
036150
056154
124
006003
315 013 021
056154
006003
315 177 022
056154
006003
315177 022
036154
056150
006003
315 127 022
056 154
006003
315177 022
056 152
257
167
055
167
056153
176
056 150
167
036154
006003
315127022
303337022

046001
056 157
066000
056126
176
247
372207024
076240
303220024

056 124
006003
315 150 022
076 255

**

13 - 59

DECEIN, CAL SAVEHL
LLI 153
LAC
ND1017
LMA
LEI 150
LLI154
LDH
LEI 003
CAL MOVEIT
LLI 154
LEI 003
CAL ROTATL
LLI 154
LEI 003
CAL ROTATL
LEI 154
LLI150
LEI 003
CAL ADDER
LLI 154
LBI003
CAL ROTATL
LL1152
XRA
LMA
DCL
LMA
LLI 153
LAM
LLI 150
LMA
LEI 154
LEI 003
CAL ADDER
JMP RESTHL

FPOUT, LHIOOI
LLI 157
LMIOOO
LLI126
LAM
NDA
JTSOUTNEG
LA1240
JMP AHEADI

OUTNEG, LL1124
LBI003
CAL COMPLM
LAI255

02000
02003
02005
02007
02011
02013

02015
02017
02022
02025
02027
02032
02034
02037
02041

02044
02046
02051
02054
02056
02060

02061
02063
02064
02066

02067
02071
02074
02077
02101
02104
02106
02111
02114
02116
02120
02122

02124
02126
02130
02133
02134

02137
02140
02141

315255002
056340
046026
066000
056201
066001

056201
315240002
312044002
376260
372061002
376272
362061002
056340
315314002

056201
315003003
302015002
056203
066000
311

056201
106
056202
160

056202
315240002
312171 002
376275
312210002
376250
312215002
315 310 002
056203
066001
046027
056000

026026
036120
315332002
310
315356022

054
176
346300

**

**
•

**

13 - 6

SYNTAX, CAL CLESYM
LLI 340
LHI026
LMIOOO
LLI 201
LMI001

SYNTX1, LLI201
CALGETCHR
JTZ SYNTX2
CPI260
JTS SYNTX3
CPI272
JFS SYNTX3
LLI 340
CAL CONCT1

SYNTX2, LLI 201
CAL LOOP
JFZ SYNTX1
LLI203
LMIOOO
RET

SYNTX3, LLI201

SYNTX4,

SYNTX5,

LBM
LLI 202
LMB

LLI202
CAL GETCHR
JTZ SYNTX6
CPI275
JTZ SYNTX7
CPI250
JTZ SYNTX8
CAL CONCTS
LLI 203
LMI001
LHI027
LLI 000

LDI026
LEI 120
CAL STRCP
RTZ
CAL SWITCH

SYNTXL, INL
LAM
NDI300

24220
24223
24225
24226
24227
24232
24234
24236
24237
24240
24241
24244
24245
24250

24253
24255
24257
24261
24264
24266

24271
24273
24275
24276

24277
24302
24304
24305
24310
24312
24314
24317
24322
24324
24325
24326

24327
24331
24332
24333

24336
24340
24342
24345
24350
24352

315202003
056110
176
247
312253024
056127
076027
106
004
005
372253024
220
372 253024
303271 024

056110
066000
076260
315202003
076256
315202003

056127
076377
206
167

362336024
076004
206
362360024
056210
046001
315277 022
315046021
056157
116
015
161

056127
176
247
303277 024

056214
046001
315277022
315046021
056157
106

**

**

13 - 60

AHEAD1, CAL ECHO
LLI 110
LAM

OUTFLT,

NDA
JTZ OUTFLT
LLI 127
LAI027
LBM
INB
DCB
JTSOUTFLT
SUB
JTSOUTFLT
JMP OUTFIX

LLI 110
LMIOOO
LAI260
CAL ECHO
LAI256
CAL ECHO

o UTF IX, LLI 127
LAI377
ADM
LMA

DECEXT, JFSDECEXD
LAI004
ADM
JFSDECOUT
LLI 210
LHI001
CAL FACXOP
CAL FPMULT
LLI157
LCM
DCC
LMC

DECREP, LLI 127
LAM
NDA
JMP DECEXT

DECEXD, LLI 214
LHI001
CAL FACXOP
CAL FPMULT
LLI 157
LBM

24353
24354
24355

24360
24362
24363
24365
24367
24372
24374
24376
25000
25002
25005

25010
25012
25013
25014
25015
25020
25022
25024
25027
25032
25034
25036
25040
25041
25042

25045
25047
25050
25051
25054
25056
25057
25060
25063
25065
25066
25067
25070
25073
25075
25076
25100
25103

004
160
303327024

036164
124
056124
006003
315013021
056167
066000
056164
006003
315177022
315223025

056127
106
004
160
312032025
056167
006004
315211 022
303010025
056107
066007
056167
176
247
312165025

056167
176
247
302105025
056110
176
247
312104025
056157
116
015
014
362104025
056166
176
346340
302104025
311

13 - 61

INB
LMB
JMP DECREP

DECOUT, LEI 164
LDH
LLI124
LEI 003

COMPEN,

OUTDIG,

CAL MOVEIT
LLI 167
LMIOOO
LLI 164
LBI003
CAL ROTATL
CALOUTX10

LLI 127
LBM
INB
LMB
JTZ OUTDIG
LLI 167
LBI004
CAL ROTATR
JMP COMPEN
LLI107
LMI007
LLI 167
LAM
NDA
JTZ ZERODG

OUTDGS, LLI 167
LAM
NDA
JFZ OUTDGX
LLIll0
LAM
NDA
JTZ OUTZER
LLI157
LCM
DCC
INC
JFSOUTZER
LLI 166
LAM
NDI340
JFZ OUTZER
RET

25104

25105
25107

25112
25114
25115
25116

25121
25123
25124
25125
25126
25131
25134

25137
25141
25142
25143
25144
25147
25151
25154
25156
25157
25160
25161
25162

25165
25167
25170
25171
25172
25174
25175
25176
25201
25202
25203
25204
25207
25210
25211
25212
25215
25217
25220

257

306260
315 202003

056110
176
247
302137025

056 107
116
015
161
312 300 025
315223025
303045025

056 157
116
015
161
302154025
076256
315202003
056107
116
015
161
310
303131 025

056157
116
015
161
056166
176
247
302112025
055
176
247
302112025
055
176
247
302112025
056 157
167
303112025

13 - 62

OUTZER, XRA

OUTDGX, ADI 260
CAL ECHO

DECRDG, LLI 110
LAM
NDA
JFZ CKDECP

LLI107
LCM
DCC
LMC
JTZ EXPOUT

PUSHIT, CAL OUTX10
JMP OUTDGS

CKDECP, LLI 157
LCM
DCC
LMC
JFZ NODECP
LAI256
CAL ECHO

NODECP, LLI107
LCM
DCC
LMC
RTZ
JlVTP PUSHIT

ZERODG, LLI157
LCM
DCC
LMC
LLI166
LAM
NDA
JFZ DECRDG
DCL
LAM
NDA
JFZ DECRDG
DCL
LAM
NDA
JFZ DECRDG
LLI157
LMA
JMP DECRDG

25223
25225
25227
25231
25232
25234
25236
25241
25243
25245
25250
25252
25254
25257
25261
25263
25265
25270
25272
25274
25277

25300
25302
25303
25304
25305
25307
25312
25313
25314
25317
25321

25324
25326
25330
25331

25333
25336
25340

25341
25343
25346
25347
25350

25353
25355

056 167
066000
056164
124
036160
006004
315013021
056164
006004
315177022
056 164
006004
315 177 022
056 160
036164
006004
315127022
056164
006004
315177022
311

056 157
176
247
310
076305
315202003
176
247
372324025
076253
303333025

356377
306001
167
076255

315202003
006000
176

326012
372353025
167
004
303341 025

076260
200

13 - 63

OUTX10, LLI 167
LMIOOO
LLI 164
LDH
LEI 160
LBI004

EXPOUT,

CAL MOVEIT
LLI164
LBI004
CAL ROTATL
LLI 164
LEI 004
CAL ROTATL
LLI160
LEI 164
LBI004
CAL ADDER
LLI 164
LBI004
CAL ROTATL
RET

LLI 157
LAM
NDA
RTZ
LAI305
CAL ECHO
LAM
NDA
JTS EXOUTN
LAI253
JMP AHEAD2

EXOUTN, XRI 377
ADI001
LMA
LAI255

AHEAD2, CAL ECHO
LBIOOO
LAM

SUB12, SUI 012
JTSTOMUCH
LMA
INB
JMP SUB12

TOMUCH, LAI260
ADB

25356
25361
25362
25364
25367

315202003
176
306260
315202003
311

Note open addresses.
This space available
for patching.

26000 000
26 001 XXX

• • •

• • •

26117 XXX
26120 000

• • •

• • •

26143 000
26144 000

• • •

• • •

26175 000
26176 000
26177 000
26200 000
26201 000
26202 000
26203 000
26204 000
26205 000
26206 000
26207 000
26210 000
26211 XXX

• • •

• ... •

26217 XXX
26230 000
26231 XXX

• • •

• • •

26237 XXX

CAL ECHO
LAM
ADI260
CAL ECHO
RET

NOTE: Pages 26 and 27 in memory are used for
temporary data registers, pointers, counters and
look-up tables. The following data should be
placed on those pages. An entry marked XXX
indicates the initial contents of the location are
irrelevant to the program's operation.

(cc) for INPUT LINE BUFF
These locations used as the
INPUT LINE BUFFER
storage
area
These locations used as the
SYMBOL BUFFER
storage
area
These locations used as the
AUXILIARY
SYMBOL BUFFER
storage area
TEMP SCAN storage register
TAB FLAG
EV AL CURRENT temp. reg.
SYNT AX LINE NUMBER
SCAN temporary register
ST A TEMENT TOKEN
Temporary working register
Temporary working register
ARRAY pointer
ARRAY pointer
OPERATOR STACK pointer
These locations used as the
OPERATOR STACK
storage
area
FUN/ARRAY STACK pointer
These locations used as the
FUNCTION/ARRAY STACK
storage
area

13 - 64

26240
26241
26242
26243
26244
26245
26246
26247
26250
26251
26252
26253
26254
26255
26256

26257
26260
26261
26262
26263
26264
26265
26266
26267
26270
26271
26272
26273
26274
26275

26276
26277

26300
26301
26302
26303
26304
26305
26306
26307

000
003
003
004
004
005
006
001
002
002
002
002
002
002
002

000
003
003
004
004
005
001
001
002
002
002
002
002
002
002

000
000

003
311
316
324
003
323
307
316

Heirarchy table (for out of stack ops).
Used by PARSER routine.

EOS
Plus sign
Minus sign
Multiplication sign
Division sign
Exponentiation sign
Left parenthesis
Right parenthesis
Not assigned
Less than sign
Equal sign
Greater than sign
Less than or equal combo
Equal to or greater than
Less than or greater than

Heirarchy table (for into stack ops).
Used by PARSER routine.

EOS
Plus sign
Minus sign
Multiplication sign
Division sign
Exponentiation sign
Left parenthesis
Right parenthesis
Not assigned
Less than sign
Equal sign
Greater than sign
Less than or equal combo
Equal to or greater than
Less than or greater than

EV AL (start) pointer
EV AL FINISH pointer

FUNCTION NAMES TABLE

(cc) for INT
I
N
T
(cc) for SGN
S
G
N

13 - 65

26310 003 (cc) for ABS
26311 301 A
26312 302 B
26313 323 S
26314 003 (cc) for SQR
26315 323 S
26316 321 Q
26317 322 R
26320 003 (cc) for TAB
26321 324 T
26322 301 A
26323 302 B
26324 003 (cc) for RND
26325 322 R
26326 316 N
26327 304 D
26330 003 (cc) for f'HR
26331 303 C
26332 310 H
26333 322 R
26334 003 (cc) for UDF
26335 325 U
26336 304 D
26337 306 F

26340 000 These locations used as the
• • • LINE NUMBER BUFFER
• • • storage
26347 000 area
26350 000 These locations used as the

• • • AUX LINE NUMBER
• • • BUFFER

26357 000 storage area
26360 000 USER PGM LINE pointer (pg)
26361 000 USER PGM LINE pntr (low)
26362 000 AUX PGM LINE pointer (pg)
26363 000 AUX PGM LINE pntr (low)
26364 000 END of USER PGM BFR (pg)
26365 000 END of USER PGM BFR pntr
26366 000 Parenthesis counter
26367 000 QUOTE Indicator
26370 000 Table counter
26371 XXX N at assigned

• • •

•• •

26377 XXX N at assigned

End of page 26.

13 - 66

STATEMENT KEYWORD TABLE

27000 003 (cc) for REM
27001 322 R
27002 305 E
27003 315 M
27004 002 (cc) for IF
27005 311 I
27006 306 F
27007 003 (cc) for LET
27010 314 L
27011 305 E
27012 324 T
27013 004 (cc) for GOTO
27014 307 G
27015 317 0
27016 324 T
27017 317 0
27020 005 (cc) for PRINT
27021 320 P
27022 322 R
27023 311 I
27024 316 N
27025 324 T
27026 005 (cc) for INPUT
27027 311 I
27030 316 N
27031 320 P
27032 325 U
27033 324 T
27034 003 (cc) for FOR
27035 306 F
27036 317 0
27037 322 R
27040 004 (cc) for NEXT
27041 316 N
27042 305 E
27043 330 X
27044 324 T
27045 005 (cc) for GOSUB
27046 307 G
27047 317 0
27050 323 S
27051 325 U
27052 302 B
27053 006 (cc) for RETURN
27054 322 R
27055 305 E
27056 324 T
27057 325 U
27060 322 R

13 - 67

27 061
27 062
27 063
27 064
27 065
27 066
27 067
27 070
27 071
27 072

27 073
27 074
27 075
27 076
27 077

27100
• •

• •

27117
27120

• •

• •

27137
27140

• •

• •

27177

27200
27201
27202
27203
27204
27205

316
003
304
311
315
003
305
316
304
000

000
XXX
000
000
000

000
•

•

000
000

•

•

000
000

•

•

000

000
000
000
000
000
XXX

" .
27 207 XXX

27210 000
27211 XXX

• • •

• • •

27377 XXX

Note open addresses
at start of page 30.
These locations avail-
able for patching.

End of page 27.

13 - 68

N
(cc) for DIM
D
I
M
(cc) for END
E
N
D
F.nd of Table

GOSUB STACK pointer
Not assigned
Number of arrays counter
ARRAY pointer
VARIABLES counter

These locations used as the
GOSUB STACK
storage
area
These locations used as the
ARRA Y VARIABLES
TABLE
storage area
These locations used as the
FOR/NEXT STACK
storage
area

FOR/NEXT ST ACK pointer
ARRAY /V ARIABLE flag
STOSYM counter
FUN/ARRAY STACK pointer
ARRAY VALUES pointer
Not assigned

Not assigned

These locations
used as the
V ARIABLES SYMBOL
TABLE
storage area

30013 056144 NEXT, LLI 144
30015 046026 ** LHI026
30017 066000 LMIOOO
30021 056202 LLI202
30023 106 LBM
30024 004 INB
30025 056201 LLI201
30027 160 LMB
30030 056201 NEXT1, LLI201
30032 315240002 CAL GETCHR
30035 312045030 JTZ NEXT2
30040 056144 LLI 144
30042 315314002 CAL CONCT1
30045 056201 NEXT2, LLI201
30047 315003003 CAL LOOP
30052 302030030 JFZ NEXT1
30055 056144 LLI144
30057 176 LAM
30060 376001 CPI001
30062 302071 030 • JFZ NEXT3
30065 056146 LLI146
30067 066000 LMIOOO
30071 056205 NEXT3, LLI205
30073 046027 ** LHI 027
30075 176 LAM
30076 007 RLC
30077 007 RLC
30100 306136 ADI136
30102 046027 ** LHI027
30104 157 LLA
30105 026026 ** LDI026
30107 036145 LEI 145
30111 006002 LBI002
30113 315370002 CAL 8TRCPC
30116 312130030 JTZ NEXT4
30121 076306 FORNXT, LAI306
30123 016316 LCI316
30125 303226002 JMP ERROR
30130 056360 NEXT4, LLI 360
30132 046026 ** LHI026
30134 126 LDM
30135 054 INL
30136 136 LEM
30137 054 INL
30140 162 LMD
30141 054 INL
30142 163 LME
30143 056205 LLI205
30145 046027 ** LHI027
30147 176 LAM
30150 007 RLC

13 - 69

02143
02146
02151
02153
02155
02156
02157
02160
02163
02164
02166

02171
02173
02175
02200
02203
02205
02207

02210
02212
02214

02215
02217
02221

02222
02224

02226
02231
02232
02235

02240
02241
02243
02246
02247
02251
02252
02254

02255
02257
02261
02263

02264

302137002
315356022
056 203
046026
106
004
160
315356022
170
376015
302124002

056202
046026
315003003
302067002
056203
066377
311

056203
066015
311

056203
066016
311

076302
016307

315202003
171
315202003
303322012

176
376120
362222002
157
046026
176
376240
311

056120
046026
066000
311

376301

**

**

**

**

13-7

JFZ SYNTXL
CAL SWITCH
LLI203
LHI026
LBM
INB
LMB
CAL SWITCH
LAB
CPI015
JFZ SYNTX5

SYNTX6, LLI202
LHI026
CAL LOOP
JFZ SYNTX4
LLI203
LMI377
RET

SYNTX7, LLI203
LMI015
RET

SYNTX8, LLI203
LMI016
RET

BIGERR, LAI302
LCI307

ERROR, CAL ECHO
LAC

GETCHR,

CAL ECHO
JMP FINERR

LAM
CPI120
JFS BIGERR
LLA
LHI026
LAM
CPI240
RET

CLESYM, LLI120
LHI026
LMIOOO
RET

CONCT A, CPI 301

30151
30152
30154
30155
30156
30157
30160
30162
30164
30165
30166
30167
30170
30171
30173
30175
30200
30202
30204
30207
30210
30211
30214
30216
30220
30222
30223
30225
30227
30232
30233
30234
30237
30241
30243
30246
30250
30253
30255
30257
30260
30262
30263
30266
30270
30272
30275

30300
30301
30303

007
306134
157
126
054
136
056360
046026
162
054
163
142
153
026026
036000
315046012
056325
046001
315012013
173
247
312 121 030
306002
056276
046026
167
056330
046001
315012013
173
247
302300030
056004
046001
315244022
056304
315255022
056000
046026
106
056277
160
315224003
056310
046001
315255022
303351 030

035
056277
046026

**

**

**

**

**

**

**

**

**

13 - 70

RLC
ADI134
LLA
LDM
INL
LEM
LLI 360
LHI026
LMD
INL
LME
LHD
LLE
LDI026
LEI 000
CAL MOVEC
LLI 325
LHI001
CAL INSTR
LAE
NDA
JTZ FORNXT
ADI002
LLI 276
LHI026
LMA
LLI 330
LHI001
CAL INSTR
LAE
NDA
JFZ l'TEXT5
LLI 004
LHI001
CAL FLOAD
LLI 304
CAL FSTORE
LLIOOO
LHI026
LBM
LLI277
LMB
CAL EVAL
LLI 310
LHI001
CAL FSTORE
JMP NEXT6

NEXT5, DCE
LLI277
LHI026

30305
30306
30311
30313
30315
30320
30322
30324
30325
30327
30330
30331
30333
30334
30 336
30 337
30342
30 344
30 346

30351
30 353
30355
30357
30361
30363
30366
30367
30370
30372
30374
30375
31 000
31002
31004

31005
31007
31012
31015
31017
31022
31024

31027
31031
31034
31037

31042
31044

163
315 224003
056310
046001
315 255 022
056277
046026
176
306005
055
167
056000
106
056277
160
315224003
056304
046001
315 255022

056144
046026
066000
056034
046027
315012013
173
247
056202
046026
167
312 121 030
306003
056203
167

056203
315240002
312027031
376 275
312042031
056144
315 314002

056 203
315003003
302005031
303121 030

056202
046026

**

**

**

**

**

**

**

13 - 71

LME
CAL EVAL
LLI 310
LHI001
CAL FSTORE
LLI 277
LHI026
LAM
ADI005
DCL
LMA
LLI 000
LBM
LLI 277
LMB
CAL EVAL
LLI304
LHI001
CAL FSTORE

NEXT6, LLI144
LHI 026
LMIOOO
LLI 034
LHI 027
CAL INSTR
LAE
NDA
LLI 202
LHI 026
LMA
JTZ FORNXT
ADI003
LLI 203
LMA

NEXT7, LLI 203
CAL GETCHR
JTZ l'TEXTS
CPI275
JTZ NEXT9
LLI144
CAL CONCT1

NEXTS, LLI 203
CAL LOOP
JFZ NEXT7
JMP FORNXT

NEXT9, LLI 202
LHI026

31046
31047
31051
31053
31054
31056
31057
31060
31062
31063
31066
31070
31072
31075
31100
31102
31104
31107
31111
31114
31117
31121
31122
31123
31125
31126
31131
31134
31135
31140

31143
31145
31147
31150
31151
31152
31153
31154
31155
31156
31160
31162
31163
31164
31165

31170
31171
31174

176
306003
056276
167
056203
106
005
056277
160
315224003
056304
046001
315 277 022
315211 020
056314
046001
315255022
056 310
315277 022
315032021
056306
176
247
056126
176
312121 030
372170 031
247
372177 031
312177 031

056363
046026
136
055
126
055
163
055
162
056205
046027
106
005
160
303 116013

247
302177031
303143031

**

**

**

**

13 - 72

LAM
ADI003
LLI 276
LMA
LLI203
LBM
DCB
LLI 277
LMB
CAL EVAL
LLI 304
LHI001
CAL FACXOP
CAL FPADD
LLI 314
LHI001
CAL FSTORE
LLI 310
CAL FACXOP
CAL FPSUB
LLI 306
LAM
NDA
LLI 126
LAM
JTZ FORNXT
JTS NEXT11
NDA
JTS NEXT12
JTZ NEXT12

NEXT10, LLI363
LHI026
LEM
DCL
LDM
DCL
LME
DCL
LMD
LLI 205
LHI027
LBM
DCB
LMB
JMP NXTLIN

NEXT11 , NDA
JFZ NEXT12
JlVlP NEXT10

31177 056314
31201 046001
31 203 315244022
31206 315252010
31211 315055010
31214 303116013

31217 076215
31221 315202003
31224 315202003
31227 056043
31231 046001
31233 066001
31235 056124
31237 176
31 240 247
31 241 370
31242 310
31243 303022010

31246 056205
31250 046027
31252 176
31253 007
31254 007
31255 306136
31 257 137
31260 124
31261 056145
31 263 046026
31265 006002
31267 315013021
31 272 315055010
31275 303116013
31 300 056176
31 302 066000
31304 315324004
31 307 056227
31311 046001
31313 176
31 314 376230
31 316 310
31 317 303 152 011

Note open addresses.
This space available
for patching.

31330
31 333
31 336

041 352001
315121 003
311

**

**

**

**

**

**

13-73

NEXT12, LLI314
LHI001
CAL FLOAD
CAL RESTSY
CAL STOSYM
JMP NXTLIN

BACKSP, LAI215
CAL ECHO
CAL ECHO
LLI043
LHI001
LMI001
LLI124
LAM
NDA
RTS
RTZ
JMP TAB1

FOR5, LLI 205
LHI027
LAM
RLC
RLC
ADI136
LEA
LDH
LLI145
LHI026
LBI002
CAL MOVEIT
CAL STOSYM
JMP NXTLIN

PARSEP, LLI176
LMIOOO
CAL PARSER
LLI227
LHI001
LAM
CPI230
RTZ
JMP SYNERR

EXECSP, LXH 352 001
CALTEXTC
RET

32000
32002
32004
32007
32011
32012
32013
32016
32021
32023
32024
32025
32030
32031
32032
32034
32035
32036

32041
32042
32043
32044
32045
32046
32047
32051
32052
32053
32056

32057
32060
32061

32062
32064
32065
32067
32071
32072
32074
32077
32102
32104

32107
32111
32114
32116
32121

056014
046001
315255022
056126
176
247
372217 032
312247 006
056017
176
247
372041032
037
107
076000
027
167
303062032

107
257
220
247
037
107
076000
217
167
312057032
004

257
220
107

056013
160
056004
036034
124
006004
315013021
315247 006
056044
315255022

056034
315244022
056014
315266022
315 322 021

**

13 - 74

SQRX, LLI 014
LHI001
CAL FSTORE
LLI126
LAM
NDA
JTS SQRERR
JTZ CFALSE
LLI017
LAM
NDA
JTS NEGEXP
RAR
LBA
LAIOOO
RAL
LMA
JMP SQREXP

NEGEXP, LBA
XRA
SUB
NDA
RAR
LBA
LAIOOO
ACA
LMA
JTZ NOREMD
INB

NOREMD, XRA
SUB
LBA

8QREXP, LLI 013
LMB
LLI004
LEI 034
LDH
LBI 004
CAL MOVEIT
CAL CFALSE
LLI044
CAL FSTORE

SQRLOP, LLI034
CAL FLOAD
LLI014
CALOPLOAD
CAL FPDIV

32124
32126
32131
32134
32136
32137
32140
32141
32143
32146
32150
32153
32156
32160
32161
32163
32166
32170
32171
32173
32175
32200

32203
32205
32206
32210
32211
32212
32214

32217
32221
32223

056034
315266022
315211 020
056 127
106
005
160
056034
315255022
056044
315266022
315032021
056127
176
376367
372203032
056034
124
036044
006004
315013021
303107 032

056013
176
056037
206
167
056034
303244022

076323
016 321
303226002

Note open addresses.
This space available
for patching.

32240 056064
32242 046001
32244 315244022
32247 056050
32251 315266022
32254 315046021
32257 056060
32261 315266022
32264 315211 020
32267 056064
32271 315255 022
32274 056127

**

13 - 75

LLI 034
CALOPLOAD
CAL FPADD
LLI127
LBM
DCB
LMB
LLI034
CAL FSTORE
LLI 044
CALOPLOAD
CAL FPSUB
LLI 127
LAM
CPI367
JTS SQRCNV
LLI034
LDH
LEI 044
LEI 004
CAL MOVEIT
JMP SQRLOP

SQRCNV, LLI 013
LAM
LLI 037
ADM
LMA
LLI034
JMP FLOAD

SQRERR, LAI 323
LCI321
JMP ERROR

RNDX, LLI064
LHI001
CAL FLOAD
LLI 050
CAL OPLOAD
CAL FPMULT
LLI 060
CALOPLOAD
CAL FPADD
LLI064
CAL FSTORE
LLI 127

32276
32277
32301
32302
32305
32307
32311
32313
32315
32320
32322
32323
32325
32326
32330
32333
32336
32340
32343
32345
32346
32350
32351

167
326 020
167
315 000 020
056123
066 000
056 127
066000
315064020
056127
176
306 020
167
056064
315266022
315 032 021
056064
315255022
056 127
176
326 020
167
311

Note open addresses
to end of page 32.

Pages 33 to remainder
of memory (or start of
optional ARRAY
handling routines) used as
USER PROGRAM BUFFER.

Optional ARRAY routines
assembled for operation in
the upper three pages of a
12 K system are listed here.

55000 056126
55002 046 001
55004 176
55005 247
55006 372136055
55 all 315 000 020
55 014 056124
55016 176
55017 326 001
55 021 007
55022 007
55023 117
55024 056203

PRIGHl,
**

13 - 76

LMA
SUI 020
LMA
CAL FPFIX
LLI123
LMIOOO
LLI 127
LMIOOO
CAL FPFLT
LLI127
LAM
ADI020
LMA
LLI 064
CALOPLOAD
CAL FPSUB
LLI064
CAL FSTORE
LLI127
LAM
SUI 020
LMA
RET

LLI 126
LHIOOI
LAM
NDA
JTSOUTRNG
CAL FPFIX
LLI 124
LAM
SUI 001
RLC
RLC
LCA
LLI 203

55026
55030
55031
55033
55034
55035
55037
55041
55042
55043
55044
55045
55046
55047
55051

55054
55056
55060
55061
55062
55063
55065
55067
55071
55074
55076
55100
55103
55106
55110
55112
55 ll3
55115
55116
55121

55124
55126
55130
55131
55132
55133

55136
55140
55142

55145
55150

046027
176
356377
007
007
306120
046027
157
054
054
176
201
157
046057
303244022

056202
046027
106
004
160
016002
056114
046027
315230007
026026
036120
315332002
312124055
056202
046027
176
056075
276
302054055
303172007

056202
046027
257
236
167
303207007

076317
016322
303226002

315252010
303160055

**

**

tt

**

**

**

**

**

13-77

LHI027
LAM
XRI377
RLC
RLC
ADI120
LHI027
LLA
INL
INL
LAM
ADC
LLA
LHI057
JMP FLOAD

FUNAR2, LLI202
LHI027
LBM
INB
LMB
LCI002
LLI ll4
LHI027
CALTABADR
LDI026
LEI 120
CAL STRCP
JTZ FUNAR3
LLI 202
LHI027
LAM
LLI 075
CPM
JFZ FUNAR2
JMP FAERR

FUNAR3, LLI202
LHI027
XRA
SBM
LMA
JMP FUNAR4

OUTRNG, LAI317
LCI322
JMP ERROR

ARRAY, CAL RESTSY
JMP ARRAY2

55153
55155

55160

55162
55164
55165
55166
55170
55171
55173

55174
55176
55201
55203
55206
55210
55213
55216
55220
55222

55225
55227
55230
55231
55233
55234
55236

55240
55242
55244
55245
55246
55247
55251
55253
55255
55260
55262
55264
55267
55272
55274
55276
55277
55301
55303

056202
303162055

056203

046026
106
004
056276
160
056206
160

056206
315240002
376 251
312225055
056206
315003003
302174055
076301
016306
303226002

056206
106
005
056277
160
056207
066000

056207
046026
106
004
160
016002
056 114
046027
315230007
036120
026026
315332002
312 312 055
056 207
046026
176
056075
046027
276

**

**

**

**

**

**

13-78

ARRA Y1, LLI 202
JMP ARRAY3

ARRA Y2, LLI 203

ARRAY3, LHI026
LBM
INB
LLI276
LMB
LLI 206
LMB

ARRA Y 4, LLI 206
CALGETCHR
CPI251

ARRAY5,

ARRAY6,

JTZ ARRAY5
LLI206
CAL LOOP
JFZ ARRAY4
LAI301
LCI306
JMP ERROR

LLI 206
LBM
DCB
LLI 277
LMB
LLI 207
LMIOOO

LLI 207
LHI026
LBM
INB
LMB
LCI002
LLI114
LHI027
CALTABADR
LEI 120
LDI026
CAL STRCP
JTZ ARRAY7
LLI 207
LHI026
LAM
LLI 075
LHI027
CPM

55304
55307

55312
55315
55320
55322
55324
55325
55327
55331
55333
55336
55337
55340
55341
55343
55345
55346
55350
55351
55352
55353
55355
55357
55360
55362
55364

55365
55370
55372
55373
55374
55376

55377
56001
56004
56007
56011
56014

56017
56021
56024
56027

56032
56034

302240055
303172007

315224003
315000020
056207
046026
106
016002
056114
046027
315230007
054
054
116
056124
046001
176
326001
007
007
201
056204
046027
167
056201
066377
311

315255002
056202
106
004
056203
160

056203
315 240002
312017056
376250
312032056
315310002

056203
315003003
302 377 055
303337056

056206
066000

**

**

**

**

13 - 79

ARRAY7,

DIM,

DIM1,

JFZ ARRAY6
JlVTP FAERR

CAL EVAL
CAL FPFIX
LLI207
LHI026
LBM
LCI002
LLI114
LHI027
CALTABADR
INL
INL
LCM
LLI124
LHI001
LAM
SUI 001
RLC
RLC
ADC
LLI 204
LHI027
LMA
LLI201
LMI377
RET

CAL CLESYM
LLI202
LBM
IKB
LLI203
LMB

LLI 203
CAL GETCHR
JTZ DIM2
CPI250
JTZ DIM3
CAL CONCTS

DIM2, LLI 203
CAL LOOP
JFZ DIM1
JMP DIMERR

DIM3, LLI 206
LMIOOO

02266
02271
02273

02276
02300
02303
02305

02310
02312

02314
02315
02316
02317
02320
02323
02324
02326

02327

02332
02333
02336
02337
02340
02341

02344
02347
02350
02353

02356
02357
02360
02363
02364
02367

02370
02371
02374

02377
03000
03001
03002

372 276002
376 333
372310002

376260
372 327002
376 272
362327002

056 120
046026

116
014
161
107
315036023
160
076000
311

303152011

176
315 356022
106
270
300
315 356 022

315377 002
176
315 356 022
315 377 002

276
300
315356022
005
302344002
311

176
315 356022
303356002

054
300
044
311

**

13 - 8

JTS COKCTN
CPI333
JTS CONCTS

CONCTN, cpr 260
JTS CONCTE
cpr 272
JFS CONCTE

CONCTS, LLI 120
LHI026

CONCT1, LCM
INC
LMC
LBA
CALINDEXC
LMB
LAIOOO
RET

CONCTE, JMP SYKERR

STRCP, LAM
CAL SWITCH
LBM
CPB
RFZ
CAL SWITCH

STRCPL, CAL ADV
LAM
CAL SWITCH
CALADV

STRCPE, CPM
RFZ
CAL SWITCH
DCB
JFZ STRCPL
RET

STRCPC, LAM
CAL SWITCH
J]VTP STRCPE

ADV, INL
RFZ
INH
RET

56036 056206 DIM4, LLI206
56040 046026 ** LHI026
56042 176 LAM
56043 007 RLC
56044 007 RLC
56045 306 114 ADI114
56047 046027 ** LHI027
56051 157 LLA
56052 036120 LEI 120
56054 026026 ** LDI026
56056 315332002 CAL STRCP
56061 312301 056 JTZ DIM9
56064 056206 LLI 206
56066 046026 ** LHI026
56070 106 LBM
56071 004 INB
56072 160 LMB
56073 056075 LLI 075
56075 046027 ** LHI027
56077 176 LAM
56100 005 DCB
56101 270 CPB
56102 302036056 JFZ DIM4
56105 056075 LLI 075
56107 046027 ** LHI027
56111 106 LBM
56112 004 INB
56113 160 LMB
56114 056076 LLI076
56116 160 LMB
56117 056206 LLI206
56121 046026 ** LHI026
56123 160 LMB
56124 176 LAM
56125 007 RLC
56126 007 RLC
56127 306114 ADI114
56131 137 LEA
56132 026027 ** LDI027
56134 056120 LLI120
56136 046026 ** LHI026
56140 315046012 CAL MOVEC
56143 315255002 CAL CLESYM
56146 056203 LLI203
56150 046026 ** LHI026
56152 106 LBM
56153 004 INB
56154 056204 LLI204
56156 160 LMB

56157 056204 DIM5, LLI 204

13 - 80

56161
56164
56167
56171
56174
56176
56201
56203
56206

56211
56213
56216
56221

56224
56226
56230
56233
56236
56240
56241
56242
56243
56244
56246
56250
56251
56253
56254
56255
56257
56260
56262
56263
56265
56266
56267
56270

56271
56273
56275
56276
56300

56301
56303
56306
56310
56313

315240002
312211 056
376 251
312224056
376260
372337056
376272
362337056
315310002

056204
315003003
302157056
303337056

056 120
046026
315044023
315000020
056124
176
007
007
117
056076
046027
176
326001
007
007
306122
157
046027
106
306004
157
170
201
167

056 204
046026
106
056203
160

056203
315240 002
376254
312326056
056203

**

**

**

**

13 - Sl

CAL GETCHR
JTZ DIM6
CPI251
JTZ DIM7
CPI260
JTS DIMERR
CPI272
JFSDIMERR
CAL CONCTS

DIM6, LLI 204

DIM7,

CAL LOOP
JFZ DIM5
JMP DIMERR

LLI 120
LHI026
CAL DINPUT
CAL FPFIX
LLI124
LAM
RLC
RLC
LCA
LLI 076
LHI027
LAM
E'UIOOl
RLC
RLC
ADI122
LLA
LHI027
LBM
ADI004
LLA
LAB
ADC
LMA

DIMS, LLI204
LHI026
LBM
LLI203
LMB

DIM9, LLI 203
CALGETCHR
CPI254
JTZ DIMI0
LLI 203

56315
56320
56323

56326
56330
56331
56333
56334

56337
56341
56343

315003003
302301056
303116013

056203
106
056202
160
303365055

076304
016305
303226002

Note open addresses
to end of page 56.

Page 57 reserved
for use by the
ARRAY VALUES TABLE.

13 - 82

CAL LOOP
JFZ DIM9
JMP NXTLIN

DIM10, LLI 203
LBM
LLI 202
LMB
JMP DIM

DIMERR, LAI 304
LCI305
JMP ERROR

03003
03004
03005
03006
03010
03011
03012
03013

03014

03016
03021
03023
03026
03030
03033
03034
03037
03042

03045
03047
03052
03054
03057
03061
03064
03067
03070
03071
03072
03074
03077

03102
03103
03106
03107
03112

03113
03114
03115
03116
03117
03120

03121
03122
03123

106
004
160
056000
176
005
270
311

016000

315 221 003
376377
302045003
076334
315202003
015
372 014003
315 164003
303016003

376 203
312 313012
376215
312 102 003
376 212
312016003
315377 002
014
167
171
376 120
362222002
303016003

101
315 113003
161
315 141 003
311

175
220
157
320
045
311

116
176
247

13-9

LOOP, LBM
INB
LMB
LLIOOO
LAM
DCB
CPB
RET

STRIN, LeI 000

STRIN1, CAL CINPUT
CPI377
JFZNOTDEL
LAI334
CAL ECHO
Dec
JTS STRH-T
CAL DEC
JMP STRINI

NOTDEL, ('PI 203
JTZ CTRLC
CPI215
JTZ STRINF
CPI212
JTZ STRINI
CALADV
INC
LMA
LAC
CPI120
JFS BIGERR
JMP STRIN1

STRINF, LBC

SUBHL,

CAL SUBHL
LMC
CAL CRLF
RET

LAL
SUB
LLA
RFC
DCH
RET

TEXTC, LCM
LAM
NDA

OPERATING SCELBAL

This chapter will present detailed infor-
mation on the use of SCELBAL as a higher
level language. Examples of the usage of the
various types of commands, statements, and
functions will be presented.

It is assumed in the following discussion
that the reader has loaded an appropriate
version of the program (either for an 8008
or 8080 system) along with the appropriate
user provided I/O routines for whatever I/O
devices will be used in the user's system.
(Information on this subject is presented in
a chapter titled "I/O Routines.") For the
sake of discussion it will be assumed that an
ASCII encoded keyboard is being utilized as
the operator's input device and some sort of
printing device is being used as the display
mechanism.

ST AR TING SCELBAL

The SCELBAL program as presented in
the assembled object code listings in this
pUblication has a starting address of 10 266.
Some users may wish to place a vector to
this starting location in one of the RESTART
locations available in 8008 or 8080 systems.

When the program is first started, the
message:

READY

will be displayed on the output device to
notify the operator that the program is in
the EXECUTIVE COMMAND mode.

The SCRatch Command

There are five EXECUTIVE COMMANDS.
All commands and other entries by the
operator are terminated by entering a car-
riage return. Perhaps the first command the
user should utilize when the program is first
started is the SCRatch command. This com-

14 - 1

mand is issued by typing in the mnemonic:

SCR

following by a carriage return.

The program will acknowledge receipt
of the SCRatch command by displaying the
message READY. The SCRatch command
effectively clears the USER PROGRAM
BUFFER and VARIABLES LOOK-UP table.
It should thus be used whenever the opera-
tor desires to start entering a new higher
level language program into the USER PRO-
GRAM BUFFER.

CALCULATOR Mode of Operation

SCELBAL is able to operate in two basic
modes. The first type of mode will be re-
ferred to as the "calculator" mode. This
mode is available at any time that the pro-
gram is not actually performing operations
in the second mode which is the stored pro-
gram mode.

The "calculator" mode will be used to
introduce some of the uses of the SCELBAL
statement directives. The calculator mode is
automatically assumed by the program if a
statement is entered without being preceeded
by a line number.

The PRINT Statement

Perhaps the first type of statement to con-
sider is the PRINT statement since this direc-
tive must be used whenever an operator de-
sires to obtain some information from the
program!

The next several paragraphs will discuss
the use of the PRINT statement when the
user does not preceed the statement by a
line number. The program will then be opera-
ting in the calculator mode and will immed-

to whatever quantity is specified to the right
of the equal sign.

Because the LET statement is used so fre-
quently in programs, it is the one statement
type in SCELBAL that can be interpreted
without actually giving the LET keyword at
the start of a statement line. Thus, when no
keyword is found at the start of a statement
line, the program assumes that an IMPLIED
LET statement is being processed. The LET
statements given as examples previously
could have been directed by simply stating:

x = 100
X = Y

X = 100 * Y

The IF Statement

The IF statement allows the programmer
to have the program make a logical decision
based on the value of an expression at the
time the statement is encountered.

The IF statement has two basic formats:

IF X = Y GOTO LL

or,

IF X - Y THEN [NEW STATEMENT]

That is, a test may be made to see if
the value of an expression has reached a
certain point (or is within a selected range),
and, if so, the program may be directed to
jump to a specific statement line number
in the program being executed. (This is
indicated bv the format that has the GOTO •
directive.) Or, by using the THEN directive,
one may have the program proceed to execute
a different statement. (That is, execute the
statement that immediately follows the
THEN directive on the same line.) If the
conditional test made in the IF statement
should fail (i.e., in the two examples just
given the value of X was not equal to Y), then
the program does not perform the GOTO or
THEN directive and instead proceeds to the

14 - 10

next statement line in the program.

Now, remember this: The test specified in
the IF statement does not have to be restric-
ted to just testing for simple equality! Any
of the following test conditions may be
specified in place of the equal sign:

>
< <=
=>

<>
Remember too, that both sides of the

conditional sign(s) may contain mathemati-
cal expressions. They need not be just simple
variable names as used in the format exam-
ples.

Some typical examples of the IF statement
in use are shown next.

IF X < > 50 THEN GOSUB 120

(If X is not equal to 50 then perform the sub-
routine that starts at line number 120 in the
program. Else, continue with the next line in
the program.)

IF X = (A*B*C) GOTO 90

(If X is equal to the value of another mathe-
matical expression, go directly to program
line number 90. Else, continue with the next
line in the program.)

IF X + 5 > Y - 10 THEN LET X = 1

(If the quantity (X + 5) is greater than the
quantity (Y - 10) then reset X back to 1 by
executing the LET statement on the same
line. If the condition is not met, then the LET
statement on the same line is not executed.)

The IF statement is a powerful statement
that has many applications in higher level
programming. One particularly effective appli-
cation for this type of statement is to use it to
create an effective conditional CALL instruc-
tion as shown in one of the examples above.

The GO TO Statement

The GOTO statement directive is simply
used to direct the program to jump to a speci-
fied line number in a program. Its format is:

GOTO LL

where LL stands for any line number assigned
•
In a program.

The GOTO statement is typically used to
direct a program around a portion of a pro-
gram (that might, for instance, contain a sub-
routine). It is also frequently used to direct a
program back to a particular starting point in
a program requiring multiple execution of the
same series of instructions.

The GOSUB Statement

The GOSUB statement is similar to the
GO TO statement just presented. It will cause
the program to jump to a specified line num-
ber. However, before doing so, it will effec-
tively save the value of the next line number
in the program. (That is, the line number of
the line that follows the line on which the
GOSUB statement is found.) The line number
it saves is placed on the top of a software
last-in first-out stack. This process will enable
the program to return to the line number
following the GOSUB statement when the
SUBROUTINE it is directed to has been
executed. The GOSUB statement should only
be used to cause a jump to another section in
a program when that section has been organ-
ized as a subroutine (as will be explained in
the next statement type to be discussed).

SCELBAL as presented in this publication
has enough stack memory allocated to allow
the program to nest up to eight subroutines
at one time.

The format for the GOSUB statement is ex-
actly the same as the GOTO statement. The
statement keyword is given, followed by the
line number to which the program is to jump
to in order to start the execution of the de-

14 - 11

sired subroutine.

The RETURN Statement

The RETURN statement line is used to
indicate the end of a group of statements
that form a subroutine. When a RETURN
statement is encountered, the program will
return to the program line number found
at the top of the last-in first-out GOSUB
software stack. It will then remove that line
number from the stack.

The INPUT Statement

The INPUT statement is used when a pro-
grammer wants to have a program stop and
accept data from an operator. The format for
the INPUT statement is:

INPUT A

where A is the name of a variable used in the
program. Inputting of data for more than one
variable may be specified using a single
INPUT directive by separating the names of
variables bv a comma: •

INPUT A, B, C, D, E, .,

When the INPUT statement is encountered
during the operation of a program, a question
mark ("?") will be displayed and the program
will wait for the operator to enter the value of
the variable. When the operator has com-
pleted the input operation (signified by
entering a carriage-return) the program con-
tinues operation.

The INPUT statement may be used to have
an operator enter a value for a regular variable
as well as an array variable (if the optional
DIM capabilities are included in the program
being operated). Arl.d it io nally, the INPUT
statement is able to perform a special func-
tion related to the inputting of alphabetical
characters which will be explained in a later
section. (See the section on the CHR function
further on in this chapter.)

The FOR /NEXT Statements

The FOR and NEXT statements allow the
programmer to form iteration loops in a pro-
gram with ease.

Essentially, the FOR statement is used to
specify a range of values over which a para-
meter is to be varied in specific increments.
Statements following the initial FOR direc-
tive may then be used to perform whatever
calculations are desired as the specified vari-
able is varied. The program statement lines
that are a part of the program loop are de-
limited from other lines in a program by use
of the NEXT statement.

Suppose, for instance, that a programmer
wanted to solve a simple formula when a par-
ticular variable value was varied in unit incre-
ments from 1 to 10. The following program
loop using the FOR/NEXT statements could
be used:

100 FOR X = 1 TO 10
110 LET Z = X*X + 2X + 5
120 PRINT X,Z
130 NEXT X

Note that the FOR statement in line num-
ber 100 specifies the name of the variable that
is to be (X), and the range over
which it is to be '/aried (1 TO 10). Also note,
that when not otherwise indicated, the incre-
ment or STEP size bv which the variable value -will be changed each time the FOR/NEXT
loop is traversed, will be ONE. That is, the
IMPLIED STEP size in a FOR statement is
the value 1.0!

Lines number 110 and 120 contain direc-
tives to evaluate and display the results of a
calculation involving the variable that will be
varied by the FOR/NEXT loop.

Line 130 contains the NEXT statement
that concludes the FOR/NEXT loop. Note
that the NEXT statement must be followed
by the name of the variable that is incre-
mented and referred to in the initiating FOR
statement!

14-12

The format of the FOR directive may be
altered to allow the programmer to change
the STEP size from the IMPLIED value of 1.0
to any desired value. This is accomplished
by adding the STEP directive to the FOR
statement line. Thus, if one desired to modify
the example program just illustrated so that it
evaluated the formula in line number 110 for
every odd value of X in the specified range,
one would simply make line number 100
appear as:

100 FOR X = 1 TO 10 STEP 2

The reader may take note of the fact that
the range specified in the FOR statement may
cover both positive and negative numbers.
Furthermore, the STEP size may be made a
negative number so that the value of a para-
meter is decremented over a designated range!

FOR/NEXT loops, like subroutines (using
GOSUB statements), may be nested one in-
side another up to a maximum of eight levels
in the version of SCELBAL presented. (This
nesting of FOR/NEXT loops is indepen-
dent of subroutine nesting.) However, the or-
der in which nesting occurs if important. The
nesting rule is: Last-in, first-out. For instance,
the following order of nesting is valid:

200 FOR X = 1 TO 10
•

•

250 FOR Z = 1 TO 5
•

•

290 NEXT Z
300 NEXT X

The nesting order below would be invalid:

200 FOR X = 1 TO 10
•

•

250 FOR Z = 1 TO 5
•

•

290 NEXT X
300 NEXT Z

The reader should study the two examples
and make sure the difference between the two
types of nesting is understood. Stated in diffe-
rent terminology, the rule says that a FOR/
NEXT loop inside a FOR/NEXT loop must be
COMPLETED before the outer (first) loop is
referred to by its delimiting NEXT statement.

The REMarks Statement

The REMarks statement is used to inform
the interpreter that the information on the
line is not connected with program execution.
The REM directive should be used whenever
the programmer wants to make notes that
may be of interest to programmers. The infor-
mation on lines containing the REM state-
ment thus serves to document a program but
has no other capability as far as program
operation is concerned. During program
execution the interpreter will ignore the con-
tents of a line prefaced (after the line num-
ber) by the REM keyword.

The END Statement

The END statement may be used to signify
the end of a high level program. When the in-
terpreter encounters an END statement it will
return control to the EXECutive portion of
the program. (Control will also return to the
EXECutive when the interpreter reaches the
last line in the USER PROGRAM BUFFER.
However, there are many cases in higher level
programming, such as when subroutines are
used, where the last line in the program may
not be the point where program operation is
to be halted!)

The Optional DIM Statement

If the system owner has elected to operate
the version of SCELBAL that includes the op-
tional capability of defining and manipulating
single dimension arrays, then the DIM state-
ment must be used to reserve space in the
ARRA Y VALUES TABLE for the variable
values that will be associated with an array

14 - 13

variable name.

The DIMension statement is simply used
to specify how many locations are to be re-
served for variable values associated with a
particular array variable name.

The basic format of the DIMension state-
ment is shown below.

DIM A(tt)

where A may be any array variable name
(remember, array variable names may on-
ly consist of one letter), and "tt" repre-
sents an integer value in the range of 1 to
64 indicating the number of elements in
the array.

Now, when the optional array handling
capability is installed in SCELBAL as dis-
cussed in this publication, a special page in
memory is set aside for holding the values
of array elements. This page can hold the
values for up to 64 elements. These 64 ele-
ments may all be referenced by one array
name, or, they may be DISTRIBUTED
amongst up to four array variable names.
Thus, one may assign 32 elements to two
array variable names (or split it 63 to 1).
Or, assign 16 elements to four array vari-
able names (or split it 56, 4, 2 and 2 if de-
sired). It makes no difference as long as
the maximum value of four array variable
names, and a total of 64 elements distri-
buted amongst all the variable names is
not exceeded!

Since up to four array variable names may
be assigned and DIMensioned in a program,
the programmer may specify the number of
elements in several arrays using a single DIM
statement. This is done by separating the
array defining terms in a DIM statement
line by a comma as illustrated here:

DIM A(tt),B(tt),C(tt),D(tt)

Once an array variable name has been de-
fined and space for elements reserved for it by
using the DIM statement, one may refer to in-

dividual elements of the array by using the
array name followed by the element number
enclosed in parenthesis. An element number
may be expressed as an integer digit or digits,
a variable name (the variable value should
represent an integer number), or a mathe-
matical expression as long as the expression
does not contain parenthesis. Thus, the for-
mat for specifying a particular element in an
array might appear as:

A(5)
A(X)

A(X + 5)

Notice that while an element of an array may
be referenced using a variable name, the ac-
tual process of defining how many elements
are to be assigned to an array using the DIM
statement must be accomplished using an ac-
tual integer number and not a variable name
or mathematical expression!

Note too, that all arrays in SCELBAL are
single dimension. (However, it is possible to
perform calculations involving two dimen-
sional matrices using the single dimension
array capability of the language.)

FUNCTIONS

The power of SCELBAL provided by the
high level statement types just discussed is
further enhanced by the availability of seven
special functions that may be used in various
types of statements. Additionally, SCELBAL
has been provided with capability to recog-
nize an additional function name. When this
special function name is recognized by the
program, it will direct program operation to
an address specified by the system manager.
That address would indicate the starting
point of a user defined function that the
reader may create using machine language
programming methods.

The various types of functions provided
in SCELBAL are discussed next.

14 - 14

The INTeger Function

The string of characters INT immediately
followed by a parenthesis containing a num-
ber (or expression) indicates the program is to
calculate the INTeger value of the number or
expression. The INTeger value is defined here
as the greatest integer number less than or
equal to the number specified. For example,
the directives (remember, functions must al-
ways be part of a valid statement line):

INT(l.OOOOl)
or

INT(1.5)
or

INT(1.99999)

would all result in the answer:

1.0

being displayed as the number 1 is the largest
INTeger number that can be contained in any
of the numbers expressed as the argument
portion of the directives illustrated.

Remember, when dealing with negative
numbers, that if the order of numbers is
viewed on a scale that goes from left to right
such as:

-5 -4 -3 -2 -1 0 +1 +2 +3 +4 +5

that the number minus four (-4) is greater
than minus five (-5), thus the directive:

INT(-1.999)
or

INT(-1.001)

will result in the answer:

-2.0

being displayed in accordance with the defi-
nition given above for the INTeger value of a
number!

The SiGN Function

The mnemonic SGN signifies a function
that will check the sign (positive or negative)
of a number, variable or expression and return
a simple value of +1.0 if the sign of the value
is positive. It will return -1.0 if the sign of
the value is negative. Zero will be returned
if the value is zero.

The value to be tested (typically a vari-
able or expression) must be enclosed in a
pair of parenthesis immediately following the
SGN mnemonic as illustrated in the following
examples:

SGN(Rl)
or

SGN(X*2 + 4*X - 16)

The ABSolute Function

The ABSolute function simply returns the
magnitude of the number, variable or expres-
sion that is enclosed in parenthesis immediat-
ely following the mnemonic, without regard
to the sign of the value. Thus, the directives:

ABS(+8423)
and

ABS(-8423)

would result in the value:

8423

being returned when the function was exe-
cuted.

The SQuare Root Function

This function simply returns the square
root of the value that follows the SQR mne-
monic. As with the other functions, the value
or argument portion of the function must be
enclosed in parenthesis. The argument of the
function may be a number, a variable, or an
expression. However, it must be greater than

14 - 15

or equal to zero. Attempting to obtain the
square root of a value less than zero will re-
sult in an error message being displayed.
(A good way to avoid such error messages,
suitable in a good many applications, is to
take the SQuare Root of an ABSolute value!)
Remember, the value from which the square
root will be extracted must be enclosed in
parenthesis immediately following the func-
tion mnemonic as in the example:

SQR(49)

The result returned for the example would,
of course, be the number 7.

The RaNDom Number Function

The following directive:

RND(O)

will result in a semi-psuedo-random number
being generated in the range from zero to one.
The random number obtained may be further
manipulated to place it in a range suitable to
the user. For instance, if the user desired to
generate an integer value in the range 0 to 9
using the random number function, the ex-

• pressIon:

INT(RND(O)*lO)

could be used.

NOTE: All functions defined for the high
level language SCELBAL require that the
function mnemonic be followed by an argu-
ment enclosed in parenthesis. Following the
RND mnemonic by "(0)" serves merely to
satisfy this requirement and has no other sig-
nificance.

The RaNDom function provided in the
language has many applications in programs
involving games and in simple statistical ana-
lysis. However, the version provided in this
pUblication should not be considered as com-
pletely unbiased nor used in applications re-
quiring strict scientific randomness.

The CHaRacter Function

The mnemonic CHR followed by a num-
ber, variable, or expression enclosed in paren-
thesis, when the value is within the range of
those used in the ASCII code set, may be used
to display the alphanumeric character that
corresponds to the value. Thus, for instance,
the directive:

CHR(193)

contained within a PRINT statement line, or
the directive:

CHR(X)

in such a statement line, when X was equal
in value to 193, would result in the charac-
ter:

A

being displayed on the system's output de-
• VIce.

NOTE that the CHR function is intended
only for use within a PRINT statement line!

A list of the decimal values that corres-
pond to a subset of ASCII characters that
SCELBAL is designed to operate with may
be obtained by running a sample illustrative
program provided later in this chapter.

The CHR function, as just described, al-
lows the programmer to present numerical
values as alphanumeric characters. There is
a reverse function available in SCELBAL
that allows the programmer to have alpha-
numeric characters which are being input-
ted using an INPUT statement converted to
decimal numeric values corresponding to
their ASCII code! The reverse function is
specified by following a variable name in an
INPUT statement by a dollar ("$") sign.
Thus, the following directive in an INPUT
statement:

X$

14 - 16

would indicate that the variable value as-
signed to X would be the decimal ASCII
value for whatever character was entered
by the operator when the directive was
executed. Thus, if the operator entered
the letter:

A

when the INPUT statement was executed
and the program paused for the operator's
response, then the value:

193

would be assigned to the variable name X
as that is the decimal representation for
the ASCII code that represents the letter A!

\Vhen the dollar sign follows the name of
a variable in an INPUT statement, meaning
that the special conversion function is to be
performed upon whatever character is en-
tered, the program will not print a question
mark ("?") as it does for a regular variable
entry. Instead, the program will simply wait
for the operator to enter a character. Further-
more, once a character has been entered, the
program will automatically continue opera-
tion. It is not necessary to enter a carriage
return following the alphanumeric entry as
is the case when one desires to terminate a
purely numeric entry. This operation, the
reader will discover, makes it possible to de-
velop programs whereby the operator may
respond with alphanumeric strings as will be
illustrated in one of the sample programs in
this chapter.

The TAB Function

The TAB function is also restricted to use
only within a PRINT statement. The purpose
of this function is quite simple. It permits the
programmer to direct that the output device
move over (tab) to a specified column num-
ber. The column number to which the dis-
play device is to move is simply the num-
ber that is enclosed in parenthesis immed-
iately following the TAB mnemonic. For in-

stance, if a PRINT statement line contained
the directive:

TAB(40)

then the display device would tab over to the
fortieth position in the line it was currently
on.

There are several powerful features that
the programmer will want to remember re-
garding the TAB function. First, the argu-
ment of the function may be specified as a
variable value or expression involving vari-
able values. Second, the TAB function can
effectively simulate backspacing in the event
the column specified has already been passed
by the display device. These features make
the TAB function valuable for displaying
data using graphic techniques. A sample pro-
gram in this chapter will illustrate the use of
the TAB function for such purposes.

The User DeFined Function

The use of the mnemonic UDF followed
by an argument enclosed in parenthesis will
cause the program to go to an address speci-
fied by the system programmer. That ad-
dress should be the starting location for a
user defined function which has been imple-
mented on the system using machine lan-
guage programming techniques. If the user
does not elect to provide such a function,
the use of the mnemonic UDF should be
avoided by the high level language pro-
grammer. (Users who desire to implement
a user defined function should refer to the
appropriate chapter which presents the source
listing for the FUNCTION subroutines.)

MORE EXECUTIVE COMMANDS

At the beginning of this chapter, the reader
was introduced to the executive SCRatch
command which is used to clear out the user
program buffer and effectively initialize
SCELBAL in preparation for creating a new
stored program.

14 -17

A program may be built up and stored in
the user program buffer by simply preceeding
statement lines with a line number. Remem-
ber, if a statement does not have a line num-
ber, it will be immediately executed. Line
numbers may be any whole number from
1 to 999999.

Lines preceeded by a line number are
placed in the area in memory designated as
the user program buffer area according to
the value of their line number. If a line num-
ber is less than any previous line numbers
stored in the program buffer, then the line
will be placed as the first entry in the buffer.
If it is greater than any already present in the
buffer, the line will be appended as the last
entry in the buffer. If it is between line num-
bers already in the storage area, then the line
will be inserted in the proper position within
the buffer. If the same line number is used
again, and the line contains a statement key-
word, then the new line will replace the pre-
vious line having that number in the buffer.

To remove a line from the user program
buffer, simply type the line number by it-
self! The program will acknowledge the ef-
fective delete command by responding with
the message:

READY

At any time that the operator is entering
information when SCELBAL is in the EXEC-
utive mode, a typographical error may be de-
leted by depressing the RUBOUT key. Each
time the RUBOUT key is depressed, a back-
slash character will be displayed and the last
character entered will be effectively erased.
Striking the rubout key several times will ef-
fectively erase several characters. Thus, the
entry:

100 LET X = 12345\\\

(with the backslash (" \") signs indicating the
repeated use of the rubout key), would result
in the program accepting the statement:

100 LET X = 12

as the digits 3, 4 and 5 would have been effec-
tively deleted by the three rubout characters.

The LIST Command

Whenever the operator desires to review the
contents of the user program buffer (when
the program is in the executive command
mode) the word LIST followed by a carriage
return should be entered. The LIST command
will cause all the lines in the user program
buffer to be listed for review purposes.

The RUN Command

When it is desired to execute a program
that has been created and stored in the user
program buffer, the executive command RUN
must be issued.

When the RUN command is recognized
SCELBAL will proceed to the first line in the
user program buffer and commence interpre-
ting the program. SCELBAL will remain in
the stored program operating mode until one
of the following occurs:

1. An END statement is encountered.

2. SCELBAL runs out of program lines
while executing a program (such as
may occur if a programmer fails to
terminate a program with an END
statement).

3. A program error condition is detected.

When any of the above conditions occur, the
interpreter ceases operation and control is re-
turned to the executive control routine.

The SAVE Command

The executive SAVE command is used to
transfer the contents of the user program buf-
fer to a bulk storage device such as a magnetic
tape system. Thus, once high level language
programs have been created they may be

14 - 18

permanently saved for quick and easy loading
back into the computer.

The system operator should check with the
person who implements 8CELBAL on the
individual system in regards to the details of
I/O operations when the SAVE command is
utilized. This is because the SAVE command
simply directs the program to go to a user
provided I/O handling routine to perform the
necessary transfer operations with the bulk
storage device.

If the system does not have a bulk storage
device available then the SAVE command
should not be issued by the operator.

If the system does not have a bulk storage
device available then the LOAD command
should not be issued by the operator.

The LOAD Command

The LOAD command is used to transfer a
higher level program, previously stored on a
bulk storage device using the SAVE com-
mand, back into the user program buffer so
that it may be executed. Once again, the sys-
tem operator should check with the person
who implements SCELBAL on the system in
regards to the details of I/O operations when
the LOAD command is utilized. This is be-
cause the LOAD command simply directs the
program to a user provided I/O routine.

ERROR MESSAGES

SCELBAL has been provided with the
capability to detect many types of syntax
error conditions as well as various types of
operating error conditions. When such error
conditions are detected, program execution
will be halted and an error message will be
displayed. If an error is detected when the
program is in the executive mode, such as
when lines are being entered into the user
program buffer, or SCELBAL is being used in
the calculator mode, then a simple two letter
error code will be issued. When an error is de-

tected while a stored program is being execu-
ted, the two letter error code will be followed
by a message indicating the line number that
was being interpreted when the error was
detected.

A list of the error codes used to indicate
the various types of errors that SCELBAL can
detect, arranged in alphabetical order is pre-
sented below. The condition(s) associated
with each type of error code is also listed.

ERROR CODE

AF

BG

DE

DZ

FE

FN

FX

GS

IF

IN

IQ

I(

LE

OR

ERROR CONDITION

Array Format error. An array element is missing a right hand
parenthesis.

BiG error. An input is too big for a buffer. Used to indicate
when user program buffer is filled (line causing overflow of the
user program buffer will not be accepted). Also issued if too
many characters placed on a line, or variables table filled.

Dimension Error. A DIMension statement line is invalid.

Divide by Zero error. A calculation involving division by zero
was encountered.

For Error condition. The "=" sign is missing in a FOR state-
ment.

For/Next error. Invalid FOR statement or improper nesting of
FOR/NEXT statements.

FiX error. An attempt was made to integerize a number that
cannot be displayed as fixed point.

GoSub error. More than eight levels of subroutine nesting
attempted in a program.

IF error. An IF statement does not contain a GOTO or THEN
directive.

megal Number. A number string is invalid, such as: 1..23X45.

Imbalanced Quotes. The type of quotation mark used to com-
mence a text string in a PRINT statement is different from the
one used to terminate the string. For example: PRINT "HI'.

Imbalanced Parenthesis error condition.

Let Error condition. A LET statement does not contain an
equal ("=") sign.

Out of Range. The number indicated for an array element is
not in the range allowed for the array variables storage table.

14 - 19

iately execute the statement directive when
it is terminated by a carriage return.

The use of the PRINT statement by itself
will simply result in the issuance of a carriage
return and line feed combination! This fact
may be of little use when SCELBAL is being
used in the calculator mode, but it is valuable
when it is used in a program as it may simply
be used to provide formatting spaces between
lines of information outputted by a program!

In its more typical application, however,
the PRINT statement may be followed by a
variety of terms. These terms may either be
interpreted as representing mathematical
values (represented as numbers, variables or
expressions), or text strings. To signify that
terms following a PRINT statement are to be
interpreted as a text string, they must be en-
closed by single or double quotation marks.
For example, the statements:

PRINT "HELLO"

or:

PRINT 'HELLO'

would result in the program displaying the
text message:

HELLO

when the statement line was terminated by
the operator striking the carriage return key.
After displaying the HELLO text message, a
carriage return and line feed combination
would also be issued. In fact, a carriage re-
turn and line feed combination will always be
issued at the conclusion of the execution of a
PRINT statement unless the statement line is
terminated by a comma (,) or semicolon (;).
The comma and semicolon signs are special
indicators when used in a PRINT statement
line. Both signs may be used to separate terms
in a line. However, the comma sign, while
separating terms, will also provide a special
feature. It will cause the display device to
space over to the next "tabbing" position in
the line being displayed by the program!

14 - 2

In the version of SCELBAL presented these
"tabbing" positions are set at every sixteenth
column in a line. (However, the tabbing posi-
tions may be modifed. See the source listing
for the PRINT statement.) The semicolon
does not provide the tabbing capability. It
is used in place of the comma sign when the
programmer desires the output of the
next term to begin on the next position in
the line.

Several examples of the use of the comma
and semicolon signs should be helpful to the
reader at this point. The statement:

PRINT "HELLO"'"HELLO''' , ,

would result in the output device displaying:

HELLOHELLO

That is, the two words would be run together.
Additionally, since the statement line also
ends with a semicolon, the display mechanism
would not issue a carriage return and line feed
combination after the second word. The dis-
play unit would be positioned to start typing
at the next character position in the same line.

The statement line:

PRINT "HELLO" "HELLO" , ,

would result in the output device displaying:

HELLO HELLO

The second word would start at the sixteenth
column position in the line. Since a comma
was also used to end the line, no carriage re-
turn and line feed combination would be is-
sued and the display device would be posi-
tioned to start typing (the next time a PRINT
statement was encountered) at the thirty-
second column in the line.

It will be mentioned that a text string
may consist of letters, numbers, words, and
punctuation marks; including the comma and
semicolon signs! Whatever is enclosed within
quotation marks on a PRINT statement line

ERROR CODE ERROR CONDITION

RT ReTurn error. A RETURN statement occurred when a sub-
routine had not been called (by a GOSUB statement).

SQ SQuare root error. A calculation involving taking the square
root of a negative number was encountered.

SY SYntax error. Issued for the use of incorrect keywords or
invalid commands.

UN UNdefined line number such as using a GOTO or GOSUB
statement keyword and not following it with a line number,
or referencing a line number that does not exist in a program.

Use of CONTROL!,C'

At times an operator may desire to termi-
nate the operation of a program without
having to wait for an END statement to be
encountered. If the program includes any
INPUT statements, such a program may be
terminated at any time that the program is
expecting to receive an input from an opera-
tor. This is accomplished by the operator
simultaneously depressing the CONTROL

key and the key for the letter C on the key-
board input device. When this occurs, the
program will cease performing the operations
dictated by the high level program and go
back to the EXECutive mode. As it does
this it will display the message:

l' C AT LINE LL

where LL stands for the line number being
processed when the program was aborted.

ILLUSTRATIVE SCELBAL PROGRAMS

The remainder of this chapter will be de-
voted to presenting a series of high level
programs written in SCELBAL language. As
the example programs are presented, brief
discussions will highlight points of interest
to the prospective SCELBAL programmer.

The first such sample program illustrates
the use of the PRINT, INPUT, LET, GOSUB,
RETURN and GOTO statements while
demonstrating how a small higher language
subroutine may be used in place of "extended
functions" in a language. The program is one
that will calculate the SINE of an angle
entered in degrees (when in the range: greater
than zero, on up to 90 degrees).

The reader may note that the PRINT state-

14 - 20

ment in line 05 is terminated by a semicolon
sign so that a carriage return and line feed
combination will NOT be issued after the
text message is displayed. Line 20 in the pro-
gram illustrates the use of a subroutine which
starts at line 50 and is terminated by the
RETURN statement at line 60. (While it was
not necessary to establish a subroutine for
this example, and in fact was wasteful of pro-
gram storage space to do so, the subroutine
was presented to illustrate the technique as
well as provide the reader with a useful func-
tion. The instructions contained in lines 50,
55 and 60 calculate the sine of an angle when
the angle is expressed in degrees (the variable
value D) using a Taylor series expansion form-
ula. The subroutine should be of value to
many readers!)

LIST
05 PRINT "ENTER NUMBER OF DEGREES:";
10 INPUT D
20 GOSUB 50
25 PRINT 'THE SINE OF';D;" DEGREES IS F.QUALTO:";SN
30 PRINT
35 GOTO 05
50 LET X = D/57.296
55 LET SN = X - «X l' 3}/(2*3)) + «X t 5)/(2*3*4*5}} - «X i 7)/(2*3*4*5*6*7}}
60 RETURN

RUN
ENTER NUMBER OF DEGREES:?30
THE SINE OF 30.0 DEGREES IS EQUAL TO: 0.4999980

ENTER NUMBER OF DEGREES:?60
THE SINE OF 60.0 DEGREES IS EQUAL TO: 0.8660190

ENTER NUMBER OF DEGREES:?45
THE SINE OF 45.0 DEGREES IS EQUAL TO: 0.7071040

ENTER NUMBER OF DEGREES:? 1'"C AT LINE 10

The illustration above shows the example
program being listed after the executive
LIST command was issued. Next, several
examples of the program's operation are
shown (with program execution being ini-
tiated by the operator entering the executive
RUN command). The reader should take note
of how the PRINT statements used quotation
marks and semicolons to obtain the desired
formatting of the messages that appear when
the program is executed. (Operator inputs
during program operation are underlined in
the above and following examples.)

The values shown are the actual values
that SCELBAL produces. Note, for in-
stance that the answer given for the sine of
30 degrees is quite close to the theoretical
value (0.5). The margin of error is attributable
to the precision obtainable when using 23 bin-

ary bits in calculations, the fact that the
number of degrees per radian (line 50) was
approximated in the above formula, and that
only four terms were used in the expansion
formula. Most users should find the degree of
accuracy quite suitable for routine calcula-
tions.

The last line in the above example illus-
trates the use of the "CONTROL/C" combi-
nation by the operator to terminate the
program. Remember, this special directive
can be issued whenever a program expects an
input from an operator. (Note that the pro-
gram forms an endless loop and will simply
keep asking the operator for new data as
long as it is running.)

Prefer to obtain the cosine of a number
rather than the sine? Just change line 55 in
the above example to read;

55 LET CS = 1 - «X t 2)/(2}} + «X t 4)/(2*3*4}} - «X 1'6)/(2*3*4*5*6}}

14 - 21

Changing line 55 to the formula just
presented will change lines 50 through 60 to a
subroutine for calculating the cosine of an
angle in the range zero to ninety degrees. (If
one wants to use the same type of program to
obtain cosine values, just change line 25 so
that the last variable is CS instead of SN!)

The next program to be presented will
illustrate the use of another type of state-

LIST
10 INPUT A,B
40 Xl = A
50 IF A>B GOTO 80
60 Xl = B
70 B= A
80 X2 = B
90 X3 = X2

ment and the use of a function directive. The
statement type to be illustrated is the IF
statement. The function demonstrated is
the INTeger function.

The program, shown below along with
several examples of output from the program
when it is in operation, may be used to ob-
tain the lowest common factor between two
integer numbers.

100 X2 = INT(X2*(X1/X2 - INT(X1/X2)))
110 Xl = X3
120 IF X2 <>0 GOTO 90
130 PRINT 'THE GCF IS';X1
140 GOTO 10

RUN
?20
?40
THE GCF IS 20.0
?112
?1143
THE GCF IS 1.0
?32
?64
THE GCF IS 32.0

First, the reader might take note of the use
of the IMPLIED LET statements in lines num-
bered: 40, 60, 70, 80, 90, 100 and 110. The
IMPLIED LET statements are simply LET
statements without the LET keyword actually
having to be stated. They simply save the pro-
grammer a little less work when entering pro-
grams.

Lines 50 and 120 illustrate the use of the

14 - 22

IF statement. In line 50 a single condition
(IF A is greater than B) is specified. If the
condition is satisfied when the program is
executed, then the GOTO directive at the end
of the line is followed. The GOTO 80 direc-
tive, when executed, causes the program to ef-
fectively skip program lines 60 and 70. If the
condition is not met, then the above program
continues directly on to execute statement
lines 60 and 70. The IF statement in line 120

illustrates a double condition specification.
That is, IF the value of X2 is less than OR
greater than zero, then the GOTO 90 direc-
tive is followed. The satisfaction of either of
those conditions results in the program effec-
tively looping back to line 90. Otherwise, the
program continues on to line 130.

(NOTE: Line 120 in the program being
discussed could have been stated as:

120 IF X2 = 0 GOTO 130

provided that another line had been inserted
between line 120 and line 130 such as:

125 GOTO 90

When dealing with pure integer values, as is
the case in this example with the INTeger
function being used, such a test is perfectly
sound programming practice. However, in
other situations, the use of "less than" or
"greater than" tests are generally preferable.
This is because the "exactly equal" test may
not occur in many situations (even though
the programmer may know that theoretically
they do occur) due to the small inaccuracies
that are often introduced into binary calcu-
lations that involve non-ending series of digits
that must be limited (rounded) to a finite
number of bits. The situation is analogous
to dividing the decimal number one by three
(yielding .3333333), then multiplying by
three yielding .99999 , when theoreti-
cally the result would be the original value
of one! A machine perfoming the calculation
and then testing for the theoretical one condi-
tion would not find the theoretical result.
Thus, the SCELBAL programmer will be wise
to limit the use of the exactly equal test in IF
statements to calculations involving simple
integer quantities!)

Line number 100 in the program illustrates
the use of the INTeger function. In fact, the
reader may observe that it is permissable to
specify a function within a function as in the
example statement line.

Finally, line 10 in the program illustrates

14 - 23

how more than one input may be requested
in an INPUT statement line by separating the
names of variable values to be inputted by a

• comma sIgn.

The results of the program being operated
is illustrated following the program listing.

Earlier in this chapter a discussion of the
use of the CHR (character) function was
presented. It was pointed out that this func-
tion could be used when it was desired to
output alphanumeric characters using their
decimal ASCII encoded values. A reverse
capability, that of converting alphanumeric
characters received as inputs into their deci-
mal ASCII encoded equivalents was also
mentioned. This capability is implemented
by following variable names specified in
INPUT statements by a dollar ("$") sign.

The following program serves to demon-
strate the use of the CHR function. While
doing so, it will generate a list of the deci-
mal and octal values of the ASCII code for
a subset of commonly used alphanumeric
characters. This list may then be used for
reference purposes by SCELBAL orogram-
mers. Additionally, the program illustrates
the practical application of the FOR and
NEXT statements to form a program loop.

Line number 100 in the program (pre-
sented on the next page) is used to esta-
blish the start of a FOR/NEXT loop. The
loop is set up by initializing a variable named
N to a decimal value of 160. Since no speci-
fic STEP size is indicated in the FOR state-
ment, the program assumes an IMPLIED
STEP value of one. The FOR line also indi-
cates that the FOR/NEXT loop is to be
terminated after the value of N reaches
223.

Line number 160 contains the NEXT N
statement which marks the end of the FOR/
NEXT loop connected with the variable N.
When this statement is reached, the program
will loop back to the original FOR statement.

Line number 170, the next statement line

after the NEXT N statement, is the line to
which program operation will be transferred
once the value of N exceeds the TO value of
223 indicated in the FOR statement line.
The line contains an END statement to indi-
cate to the interpreter that execution of the
high level program may be halted and control
passed back to the executive. Had line num-
ber 160 been the last line in the program, the
interpreter would still have ceased operation

10 PRINT
20 PRINT

and returned control to the executive. How-
ever, the use of the END statement might be
considered better programming practice in
such a situation.

The program is presented below. The
reader may enter and R Ul'T the program to
obtain a list of the data it generates for refe-
rence purposes. The output from the pro-
gram will not be duplicated here.

30 PRINT 'TABLE OF ASCII CHARACTERS'
40 PRINT
50 PRINT ' CHAR OCTAL DECIMAL'
100 FOR N = 160 TO 223
110 Q1 = INT(N/64)
120 Q2 = INT((N - 64*Q1)/8)
130 Q3 = INT(N - 64*Q1 - Q2)
140 PRINT' ';CHR(N);' ';CHR(176 + Q1);CHR(176 + Q2);CHR(176 + Q3);
150 PRINT' ';N
160 NEXT N
170 END

Just about anyone who has a computer sys-
tem likes to have a game program that will
run on the machine. If not for the system
owner to play with, at least such a program
may be used to amuse those that might not
have the deep appreciation for the machine
that most readers of this publication un-
doubtably possess. It would be impolite to
say the least, if this pUblication did not con-
tain some such program written in SCELBAL.

The program on the next page is a game
program, which, while it may be used for
amusement purposes, will ostensibly be pre-
sented to demonstrate the use of the RND
(random number generating) function and a
few other SCELBAL programming points
which will be mentioned in the following
discussion.

The only new directive used (in the sense

14 - 24

of not having been used in previous sample
programs) is the RND function contained
in line number 90. Note that this is a case
where the random number (generated in the
range from zero to one) is immediately multi-
plied to put it in another range (by multi-
plying by seven). Note too, that the RND
mnemonic must be followed by a pair of
parenthesis (enclosing the zero) to identify
it to the interpreter as a function! Addition-
ally, the reader may observe that the RND
function is contained as part of an expres-
sion for another function (the INT direc-
tive), which, as pointed out previously, is
perfectly valid when using SCELBAL.

The reader has already been introduced
to the practical applications of the other
types of statements and directives contained
in the game program. However, since a few
new "twists" are utilized, the following tech-

niques will be pointed out.

Lines 15, 16, 22, 24 and several other IF
statements illustrate the use of entire mathe-
matical expressions as test values (instead of
just a simple variable name).

Line 20 (and later line 26) establishes a
subroutine at line 80 which in turn calls

05 LET S = 0
10 PRINT
11 PRINT 'BET"
12 INPUT A
13 PRINT

,

14 IF A<1 GOTO 50
15 IF (A - 1000»0 GOTO 50
16 IF (A - INT(A))<>O GOTO 50
20 GOSUB 80
21 LET X = R
22 IF (R - 7)*(R - 11) = 0 GOTO 60
24 IF (R - 2)*(R - 3) = 3 GOTO 70
26 GOSUB 80
30 IF (R - 7) = 0 GOTO 70
32 IF (X - R) = 0 GOTO 60
40 GOTO 26
50 PRINT 'ILLEGAL BET!'
52 GOTO 10
60 PRINT 'YOU WIN! ';
62 LET S = S + A
64 GOTO 74
70 PRINT 'YOU LOSE. ';
72 LET S = S - A

another subroutine at line 90. This is an
example of the use of nested subroutines in a
program. Remember, this nesting process can
be carried up to eight levels if required.

What does the game play? Dice. Be careful!
People have reported difficulty in getting
computers to payoff after players have had
winning streaks!

74 PRINT' YOUR WINNINGS ARE: "S ,
76 GOTO 10
80 GOSUB 90
81 PRINT ' X';
82 LET D1 = R
84 GOSUB 90
85 PRINT
86 LET R = R + D1
88 RETURN
90 LET R = (INT(RND(0)*7))
92 IF R>6 GOTO 90
94 IF R< 1 GOTO 90
96 PRINT R;
98 RETURN

14 - 25

The next example program to be presented
was chosen primarily to illustrate the use of
the TAB function in a PRINT statement. The
program uses the TAB function to plot the
points on a circle. The line containing the
TAB directives in the program is number 60.

Several other points of interest in the pro-
gram include the use of the comma sign in

10 PRINT 'RADIUS';
15 INPUT R
16 K = 1.6
20 R2 = R t 2

line 21 to implement a standard tabbing
operation (causes the display device to space
over to the next column number that is a
multiple of sixteen), the use of a FOR/NEXT
loop with the variable value ranging from a
negative value to a positive value (line 30) and
the use of the SQR function in line 40.

The program followed by a sample of its
output is shown below.

21 PRINT 'AREA =';3.14159*R2, 'CIRCUM =';3.14159*2*R
22 PRINT
23 PRINT
25 K1 = K*R
30 FOR X = -R TO R + 0.1
40 Y = K*SQR(R2 - X t 2)
50 PRINT TAB(2.5 + K1 - Y);'*';TAB(5.5 + K1 + Y);'*'
60 NEXT X
70 END

RUN
RADIUS?10
AREA = 314.1592

*
*

*
*

*
*

*
*
*
*

*
*

*
*
*

*

*

*

CIRCUM - 62.83185

*
*

*
*

*
*
*

*
*
*
*

*
*

*
*

*
*

*

14 - 26

The example programs presented to this
point in the chapter can all be executed in a
version of SCELBAL implemented in a mini-
mum configuration (8 K of memory without
the optional array handling routines).

The remaining example programs in this
chapter utilize the optional array handling
capabilities of SCELBAL. The next two pro-
grams could actually be run in an 8 K version
of SCELBAL that had the DIMension and
array handling routines installed. (In this
configuration, the user program buffer would
only have 512 bytes available for program
storage. As mentioned in an earlier chapter
this implementation is not recommended be-
cause of the small storage space it leaves for
user programs). The final program in this
chapter would require more than a minimum
system configuration. (The configuration
assumed for the assembled listings of the pro-
gram with array handling routines presented
in this book would be more than sufficient.)
It requires that the user program buffer have
about 1000 bytes available when the array
handling routines (and array values table
storage area) are installed. Thus, about a
9 K system would be required, as a minimum,
to execute the final example program. How-
ever, even if one does not have the capability
at present to try the program (or any desire
to use it, for that matter), one may desire to
examine the listing. That is because the pro-
gram will illustrate how single dimension
array handling capability can be utilized to
solve problems typically processed using two
dimensional array techniques!

The first sample program involving an array
is presented on the next page. It is a program
that will calculate the mean and standard
deviation values after receiving a number of
inputs. The important feature of this program
is that it shows how the array feature may be
used to effectively increase the number of
variable values that may be stored and mani-
pUlated by a program. Instead of having to
use a new variable name for each value, one
may simply assign the value to a position
(element) in an array that has one name, with
elements in the named array being identified

14 - 27

by a subscript (number).

Noting the following items in the listing of
the example program should prove valuable
for the novice programmer who is not familiar
with the use of arrays.

Line 10 is the all important DIMensioning
statement. The DIMension statement must be
given in a SCELBAL program before any at-
tempt is made to reference an array element.
The DIMension statement in the example
creates an array having the name A and pro-
vides for up to 64 elements to be assigned to
this array name. (Remember, that is the maxi-
mum number of elements that may be assig-
ned amongst all arrays in a SCELBAL pro-
gram.)

Line number 70 in the program illustrates
how the element of an array may be referen-
ced. Note particularly that here it is permis-
sible to use a variable name as a subscript.
(It is not permissible to use a variable name
when setting up the size of an array using the
DIMension statement!)

Lines 80 and 130 illustrate the subscripted
variable A(J) being used as part of a mathe-
matical expression just as a regular variable
value may be used. In these cases, the value
for A(J) will be the value currently existing
for the J'th element of the array named A.
(The subscript number J, indicating which ele-
ment in the array is being referenced, is deter-
mined by the FOR statement in line 50 or
120. The FOR/NEXT loops, the reader may
observe, will step the number for J from a
value of 1 to N, where N is the number of
values to be entered by the operator.)

The reader may observe that the program
uses an array in which to store values as they
are inputted by the operator until all the data
has been inputted. Then, all the data stored
in the array is processed to obtain the desired
information. An example of the program
being used to calculate the mean score and
standard deviation for a group of hypothetical
test scores is illustrated following the program
listing.

10 DIM A(64)
20 PRINT 'NR OF SCORES';
30 INPUT N
40 S = 0.0
50 FOR J = 1.0 TO N
60 PRINT 'SCORE NR.';J;
70 INPUT A(J)
80 S = S + A(J)
90 NEXT J
100 M = SIN
110 D = 0.0
120 FOR J = 1.0 TO N
130 D = D + (M - A(J)) 1" 2
140 NEXT J
150 PRINT 'M ="M ,
160 PRINT 'SD =';SQR(D/N)
170 END

RUN
NR OF SCORES?2.Q
SCORE NR. 1.0?100
SCORE NR. 2.0?76
SCORE NR. 3.0?32
SCORE NR. 4.0?89
SCORE NR. 5.0?72
SCORE NR. 6.0?33
SCORE NR. 7.0?75
SCORE NR. 8.0?76
SCORE NR. 9.0?84
SCORE NR. 10.0?83
SCORE NR. 11.0?16
SCORE NR. 12.0?95
SCORE NR. 13.0?91
SCORE NR. 14.0?55
SCORE NR. 15.0?55
SCORE NR. 16.0?78
SCORE NR. 17.0nO
SCORE NR. 18.0?68
SCORE NR. 19.0?64
SC(,RE NR. 20.0?88
M = 70.0
SD = 21.67948

The next program is a program to demon-
strate how the CRR function may be used
with arrays to handle the processing of very
simple text strings. The technique to be il-
lustrated can be quite useful if one wants to

14 - 28

have a program perform an operation such as
reading in a name and later displaying it back
to the operator. (Note that this capability is
quite different from displaying a message
previously stored by the programmer!)

Line number 01 in the program contains
the DIMension statement, which in this case
assigns all 64 array element storage locations
to the array named L.

Line 03 contains an INPUT statement that
specifies an array element in which the value
of the variable to be inputted is to be stored.
Following the variable name by a dollar sign
("$") means that the character that is entered
by the operator will be converted to its
decimal ASCII representation.

The instructions in lines 03 through 07
form a program loop that operates to accept
characters and store their decimal ASCII
values in elements of the array. The process
will continue until 64 characters have been
received or the operator enters a carriage
return on the input device. (The test in line

01 DIM L(64)
02 LET X = 1
03 INPUT L(X)$
04 IF L(X) = 141 GOTO 10
05 LET X = X + 1
06 IF X>64 GOTO 10
07 GO TO 03
10 PRINT
11 LET X = 1
12 PRINT CHR(L(X));
13 IF L(X) = 141 GOTO 20
14 LET X = X + 1
15 GOTO 12
20 PRINT
30 END

RUN
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ABCDEFGHIJKLMNOPQRSTUVWXYZ

The final SCELBAL example program to
be illustrated is a program that will solve
simultaneous equations. The program is pre-
sented primarily to demonstrate how the

04 will identify the inputting of a carriage
return!)

Once a character string has been inputted
the balance of the program will cause the
string to be outputted. Line 12 using the
CHR function will output the characters
by converting the decimal ASCII values
stored in the array to alphanumeric charac--
ters.

The example is an extremely simple case,
but it demonstrates the capability. Naturally,
one may manipulate several smaller text
strings within a program by assigning several
array variable names and splitting the avail-
able storage locations up among the several
arrays.

The program listing and a sample of its
operation is provided below.

1234567890
1234567890

optional single dimension array handling
capability may be utilized to solve problems
commonly written using two dimensional
arrays. The trick, of course, is to manipulate

will be considered part of the text message.
Thus, one may have entire sentences dis-
played. The statement:

PRINT 'HELLO! I AM A COMPUTER.';

Will result in then sentence:

HELLO! I AM A COMPUTER.

being displayed.

\\-'hen terms on a PRINT statement are not
enclosed by single or double quotation marks
they are assumed to represent mathematical
quantities. Mathematical quantities may be
expressed in the form of a number, the name
of a variable, or a combination of these two
forms coupled by mathematical operators
which would be considered an expression.

The statement:

PRINT 123456;

will result in the display of the number:

123456

(Some readers might note that in the case of
pure simple numbers, one would get the same
result when using the PRINT statement when
the number was enclosed in quotation marks!)

A statement such as:

PRINT A;

would result in the current value of the
variable named A to be displayed. If the
operator entered the above statement immed-
iately after using the SCRatch command, the
system would display:

o
as the variable A would have had no previous
value assigned to it.

Perhaps the most common application of
the PRINT statement when used in the cal-

14 - 3

culator mode, is to use it to obtain the value
of a mathematical expression. For example,
typing in:

PRINT (412*3.14159/16)*14

would result in the program displaying the
result of performing the calculations con-
tained in the expression. The number:

1132.544

would thus be displayed back to the opera-
tor. Of course, one does not have to use
pure numbers in a mathematical expression
that is to be evaluated. If the values for
variable names have previously been de-
fined (by the LET statement which will be
discussed later) so that, for instance:

A = 412
B = 3.14159

(' - 16
D = 14

and the PRINT statement:

PRINT (A *B/C)*D

was entered, the result:

1132.544

would again be displayed back to the opera-
tor. Naturally, one may also mix variable
names and numeric values in an expression.
However, when in the calculator mode, if
variables are being used, one must ensure that
they are first defined before attempting to use
them in an expression. Otherwise, their values
will be zero when they are encountered in the

• expresslOn.

The use of the PRINT statement when it is
used as part of a program (in which case the
statement is preceeded by a line number) is
essentially the same as described. However, in
the stored program mode, one is more likely
to make use of the capability of having both
text messages and mathematical values dis-
played using a single PRINT statement. An

10 DIM A(64)
20 PRINT
40 PRINT 'NO OF EQUATIONS';
50 INPUT N
55 PRINT
60 N2 = N + 1
80 FOR R = 1 TO N
90 FOR C = 1 TO N + 1
100 INPUT A(N2*R - N2 + C)
110 NEXT C
115 PRINT
120 NEXT R
130 PRINT
140 FOR I = 1 TO N
141 FOR J = 1 TO N2
142 PRINT A(N2*I - N2 + J),
143 NEXT J
144 PRINT
145 NEXT I
150 PRINT
160 FOR P = 1 TO N
170 IF A(N2*P - N2 + P) = 0 GOTO 470
190 M = 1/A(N2*P - N2 + P)
200 FOR C = 1 TO N2
210 A(N2*P - N2 + C) = A(N2*P - N2 + C)*M
220 NEXT C
240 FOR R = 1 TO N
250 IF P = R GOTO 380
260 FOR C = N + 1 TO 1 STEP - 1
270 A(N2*R - N2 + C) = A(N2*R - N2 + C) - A(N2*P - N2 + C)* A(N2*R -N2 + P)
280 NEXT C
290 FOR I = 1 TO N
300 FOR J = 1 TO N2
310 PRINT A(N2*I - N2 + J),
320 NEXT J
330 PRINT
340 NEXT I
360 PRINT
380 NEXT R
390 NEXT P
410 FOR R = 1 TO N
420 PRINT A(N2*R - N2 + N + 1)
430 NEXT R
440 END
470 IF P = N GO TO 620
480 X = P
490 FOR R = X + 1 TO N
495 R1 = R
500 IF A(N2*R - N2 + X) <> 0 THEN R = N
520 NEXT R
522 IF A(N2*R1 - N2 + X) = 0 GOTO 620

14 - 30

530 FOR C = 1 TO N + 1
540 A(N2*N + C) = A(N2*X - N2 + C)
550 A(N2*X - N2 + C) = A(N2*R1 - N2 + C)
560 A(N2*R1 - N2 + C) = A(N2*N + C)
570 NEXT C
580 GOTO 190
620 PRINT 'SINGULAR MATRIX'
630 END

the data in the one dimensional array in a
manner that simulates having a two dimen-
sional array storage area. This is easy to do
with SCELBAL because elements in an array
may be identified by using a mathematical
expression containing one or more regular
variables (as long as no additional parenthesis
are required in the expression other than the
pair that identify the expression as the sub-
script of an array name).

Line 100 in the program illustrates how
elements in a single dimension array can be
mathematically assigned to sections within
the array. If those sections were then viewed
as being side-by-side, one would effectively
obtain a two dimensional array. The formula
in the subscript for the array named A in the
program, given in line 100, is:

N2*R - N2 + C

By examining lines 60, 80 and 90 in the pro-
gram, the reader may observe that the regular
variable R referred to in the expression will be
incremented from a value of 1 to a value of N.
(N represents the number of variables/equa-
tions to be solved. Taking a two dimensional
view, this number would represent the num-
ber of entries along the Y axis of a two di-
mensional matrix.) The variable C will ad-
vance from a value of 1 to a value of N + 1.
(This represents the number of entries along
the X axis if a two dimensional view is con-
sidered.) The FOR/NEXT loops established in
lines 80 and 90 will cause the value of C to be
incremented through its range for each value
of R. If one takes for instance, a value of 3
for N and solves the formula for all the pos-
sible values as Rand C are advanced through
their ranges one would obtain a range of
values that could be arranged in a two dimen-

14 - 31

sional table as illustrated here:

C=l C=2 C=3 C=4

R=l (1) (2) (3) (4)

R=2 (5) (6) (7) (8)

R=3 (9) (10) (11) (12)

This table illustrates how a formula for the
subscript (element) of a single dimension
array may be implemented to effectively
create a two dimensional array pattern. This
is the technique used in the program for sol-
ving simultaneous equations.

The program presented can handle equa-
tions with up to 7 unknowns. (An equation
with 7 unknowns requires 56 (7 times 8) en-
tries in a matrix. Remember, there are only
64 array elements available. Thus, an equa-
tion with 8 unknowns, which would require
the storage of 72 (8 times 9) elements, would
not fit in the available array storage area.)

Another point of interest in the program
is the use of nested FOR/NEXT statements
at several points. Note how the inner-most
FOR statement is terminated by its corres-
ponding NEXT statement before an earlier
FOR statement may be closed. (See, for
example, lines 80 and 90, then 110 and 120.)

Finally, notice in line number 260 the
use of the STEP directive in the FOR state-
ment line, and how the step directive may
be used to decrement a value over a range
going from high to low just as easily as one
may use it to increment a value over a range.

RUN

NO OF EQUATIONS?.!i

?1 -?1 -?1 -
?6 -
?3 -
?- 2
?1 -
?2 -
?10
?6 -
?- 3
?13

1.0
3.0
10.0

1.0
o
10.0

1.0
o
o

1.0
o
o
1.0
o
o
1.0
o
o

1.0
o
o

1.0
1.999999
3.0

1.0
- 2.0

6.0

1.0
- 5.0

6.0

1.0
- 5.0
- 4.0

o
1.0

- 4.0

o
1.0
o
o
1.0
o

o
1.0
o

1.0
1.0

- 3.0

1.0
- 2.0
- 3.0

1.0
- 2.0
- 13.0

0.5999999
0.3999999

- 13.0

0.5999999
0.3999999

- 11.4

o
0.3999999
1.0

o
o
1.0

14 - 32

6.0
2.0
13.0

6.0
- 16.0

13.0

6.0
- 16.0
- 47.0

2.8
3.199999

- 47.0

2.8
3.199999

- 34.2

1.0
3.199999
3.0

1.0
1.999999
3.0

The preceeding page shows a sample of
the output from the program when it is given
the task of solving for the unknowns in the
three equations:

X+Y+Z=6
3X - 2Y + Z = 2

lOX + 6Y - 3Z = 13

14 - 33

Readers should now have a pretty good
grasp of how to use eCELBAL. At this point
the process of creating programs will be left
to the individual user. Between the examples,
explanations, and error messages table presen-
ted in this chapter, the reader who gets down
to practical experience should have little dif-
ficulty in learning how to enjoy eCELBAL.

example of this capability is illustrated here:

10 PRINT 'THE ANSWER IS: ';(A*B/C)*D

would result in the program displaying:

THE ANSWER IS: 1132.544

(Assuming the variable values were the same
as mentioned earlier in the discussion when
the statement was executed!)

The reader should note in the statement
line above that a space character was inserted
after the colon at the end of the text string
just before the quotation character marking
the end of the text string. This was done so
that there would be normal spacing between
the text string and the answer when it was
displayed. The prospective high level lan-
guage programmer should keep the tip in
mind when mixing text strings and mathe-
matical values as in the above example.

The PRINT statement is truly a "work-
horse" directive in SCELBAL. It controls all
the outputting of data to the operator. The
above discussion covers the primary forms of
its use. However, later the reader will see how
several special functions (TAB and CHR) may
be used within the statement to provide even
more output capability and flexibility.

Remember, when you want some output
from SCELBAL, tell it to PRINT.

PRECEDENCE of Mathematical Operators

The PRINT statement just discussed, and
many other statements in SCELBAL may
cause the program to evaluate mathematical
expressions in order to obtain a numerical
value. In order to perform such calculations in
a consistent manner, it is necessary to esta-
blish a system of "operator precedence," and
rules for evaluating an expression. This system
must be learned by the high level programmer
because it is the system that has been "fixed"
in the computer.

14 - 4

The first rule to learn is that SCELBAL
evaluates all expressions by proceeding to
"read" expressions on a left to right basis.

As a mathematical expression is read
from left to right, mathematical terms
(numbers and variable names representing
numbers) are joined by operator signs. (These
are the parenthesis, exponentiate (" f "), mul-
tiply ("*"), divide ("I"), add ("+") and sub-
tract ("-") signs.) The operator signs are as-
signed PRECEDENCE values which are used
to determine when to perform an operation.
The highest operator precedence is assigned to
the exponentiate sign. Next, having equal pre-
cedence are the multiply and divide signs.
Lower in the precedence order are the add
and subtract signs (having equal precedence
with each other). Terms within parenthesis
are always evaluated before proceeding fur-
ther in a line. (Thus, the left hand parenthesis
sign serves as a start of group marker, the
right hand one as an end of group marker.)

As an expression is evaluated, each mathe-
matical term (number or variable value) is
saved on an ARITHMETIC STACK. Each
time an operator is encountered, a test is
made to determine if that operator is less than
or equal to any previously unprocessed opera-
tor that has been encountered. If not, that is,
if the operator is higher in precedence than
the preceeding one encountered in the line,
it is saved on an OPERATOR STACK. If,
however, the precedence of the operator is
less than or equal to the previous one, the
operation dictated by the previous operator
is executed upon the two previous mathe-
matical terms contained in the arithmetic
stack.

This method of stacking the lower prece-
dence operators results in the higher prece-
dence operations being performed first!

This may be seen more clearly, perhaps,
by following the evaluation of an expression
which contains a variety of terms with dif-
ferent precedences. Such an expression is
presented on the next page.

(X + 2*Y'tN - 1) + Z*N
l. I J

2. I I

3. I I
4. I I

5. I I
6. I ,

When the above expression is scanned by
SCELBAL the left hand parenthesis will be
the first operator detected. A left hand paren-
thesis is always placed on the operator stack
as though it had the highest possible prece-
dence. However, once on the stack, its prece-
dence is changed to be lower than all other
operators. This precedence switching "trick"
results in all the terms within a pair of paren-
thesis being evaluated before remaining terms
on a line are calculated as will become ap-
parent shortly.

The first term to be encountered in the
example expression is the name of a variable
called X. This variable is followed by the
operator "+" for addition. The "+" operator
has a higher precedence than the left hand
parenthesis on the operator stack. (Remem··
ber, once the left hand parenthesis is on the
operator stack, it has the lowest operator sign
precedence!) Thus, the "+" sign will be placed
on the top of the operator stack. The value of
X will be placed on the arithmetic stack.

Next, the program will find the number 2
followed by the "*,, multiplication sign. The
multiplication sign has higher precedence than
the "+" sign on the top of the operator stack
so it becomes the top entry on that stack. The
number 2 is added to the top of the arith-
metic stack.

Continuing to scan the line the program
will find the variable name Y and the" l' "
exponentiate operator. The exponentiate
operator has higher precedence than the "*,,
operator so it is placed on the operator stack.
The value for Y is placed on the arithmetic
stack.

Next, the variable name N and the minus
sign operator "-" will be scanned. This is the

14 - 5

first point in the line that will result in actual
mathematical operations being performed!
This is because the "-" operator has a lower
precedence than the exponentiate sign pro-
cessed earlier in the line. Since it does have
a lower precedence, the exponentiate opera-
tor must be executed. It will operate on the
value for the variable Nand Y (stored on the
top of the arithmetic stack). The result of
that operation will be placed on the top of
the arithmetic stack. The exponentiate opera-
tor is removed from the top of the operator
stack. Now, the top of that stack will contain
the "*,, operator. The "-" has lower prece-
dence than the "*" operator too, so now the
multiplication operation can be performed. It
will be performed between the previously
calculated quantity Y l' N and the number 2.
Those two quantities on the arithmetic stack
are replaced by the result of the multiplica-
tion operation. The "*,, operator is removed
from the top of the operator stack. Now the
"+" sign will be on the top of that stack. The
current "-" sign is equal in precedence to the
"+" sign so once again the operation on the
stack is performed! The quantity 2 times Y
to the N power will be added to the value of
X. Those two entries in the arithmetic stack
are replaced by the current total. At this
point, only the left hand parenthesis sign,
having a lower precedence than the "-" sign is
left on the operator stack. Thus, the "-" sign
is placed on top of the operator stack.

As the program continues to scan the ex-
pression it will next encounter the number 1
and the right hand parenthesis operator. The
")" operator has the lowest possible operator
sign precedence. Therefore, all operations on
the operator stack must be performed until
the initiating left hand parenthesis is located!
In this case, the "-" operator is on top of the
operator stack. So, the quantity one will be
subtracted from the quantity X plus 2 times
Y raised to the power N. The result is placed
on the top of the arithmetic stack replacing
the previous entry. The "-" sign is removed
from the operator stack leaving just the ini-
tial "(" left hand parenthesis sign. This ef-
fectively cancels with the right hand paren-
thesis leaving the operator stack cleared.

At this point the arithmetic stack contains
the value of the expression contained in the
parenthesis. The operator stack is empty. The
program will continue to scan the line and
pick up the "+" operator that follows the
right hand parenthesis. Since the operator
stack is empty, the "+" sign will be placed on
the top of the stack. Next, the program will
find the variable name Z and the operator
"*,, for multiplication. The multiplication
sign has higher precedence than the "+" sign
which is on the operator stack so the "*,, sign
is placed on the stack with the value for the
variable Z going on top of the arithmetic
stack.

Finally, the program will encounter the
second occurrence of the variable name N at
the end of the expression. When the end of an
expression is reached, all terms in the line are
processed according to the operators con-
tained in the operator stack. The top of the
operator stack contains the "*,, sign. Thus,
the values for the variables Z and N will be
multiplied. The result will replace those en-
tries on the top of the arithmetic stack. The
"*,, sign is removed from the operator stack
leaving just the "+" operator. The quantity
Z * N will then be added to the quantity in
parenthesis which will yield the final result
for the entire expression contained on the
line!

The lines under the expression on the pre-
vious page illustrate the order in which actual
operations would be performed when the ex-
pression was evaluated by SCELBAL.

Readers who desire a more detailed ex-
planation of the process involved in eval-
uating mathematical expressions should refer
to the appropriate chapters which present and
explain the machine language routines which
perform the mathematical evaluations.

The user of SCELBAL must realize that the
precedence given to mathematical operators is
important when writing the mathematical ex-
pressions that one desires to have a program
solve. If one desires to have an expression
such as the quantity N plus 2 multiplied by

14 - 6

the quantity M minus 3, it must be written in
the form:

(N + 2) * (M . 3)

and not:

N+2*M-3

For, the latter format would result in the
expression being evaluated as the quantity
N plus the quantity 2 times M minus the
quantity 3!

Remember, the higher precedence opera-
tors are executed first! A good rule of thumb,
when in doubt about the precedence rules, is
to group terms using parenthesis. Thus, to
raise 2 to the N minus one power, write the

• expreSSIOn as:

2 t (N· 1)

not:

2 t N-1

The second format will result in one being
subtracted from the quantity 2 raised to the
power N,

What other rules must the programmer
know about writing mathematical expressions
when using SCELBAL? This: Terms (names
of variables, or numbers) must be separated
by operators, and, as a general rule, operators
must be separated by terms. EXCEPT, when
the operator is a parenthesis! A parenthesis
must always be followed by an operator other
than an opposite parenthesis.

Thus, the following formats are valid:

A+B
(A + B) * (C + D)

and the following are not valid:

A + * B
(A + B) (C + D)

(A + B) N

Special mention must be made of the case
when the programmer desires to use the
minus sign as a unary operator. That is, when
it is used to specify a minus number. The
mathematical routines in SCELBAL perform
the unary minus operation by subtracting the
value that follows the minus sign from zero.
Thus, if one enters the expression:

A/-B ,

The program will attempt to perform the
operation as:

A/O - B

This particular example case would result in
a program error message being generated for
an attempted divide by zero operation!

The proper way to handle expressions
containing the unary minus operator is to
enclose the term and the unary minus sign
in parenthesis. The above example expression
would be properly executed if it was written
as:

A/(-B)

because the program would execute it as:

A/(O - B)

(Provided that B is not zero in this case!)

NUMBERS

Numerical values used in mathematical
expressions for SCELBAL programs may be
entered in two formats. Decimal fixed point
notation and decimal floating point notation.

With either notation, the programmer is
limited to six to seven significant decimal
digits. SCELBAL will accept six significant
digits at all times, and seven significant digits
if the number does not exceed 5242879. This
limitation on the size of seven digit numbers
is related to the manner in which the mathe-
matical input buffer is limited to prevent its

14 - 7

overflow. If one attempts to enter numbers
larger than this only the first six digits (if the
number is larger than 524287) or seven digits
(if the number is between 524287 and the
number 5242879) will be used. Perhaps the
easiest rule of thumb for the novice program-
mer to remember is to simply limit inputs to
six significant digits.

The number of significant digits one can
enter of course provides the range in which
numbers may be entered using fixed point
notation. The limitations of fixed point nota-
tion in terms of the magnitude that they may
express may be extended by the use of float-
ing point notation. Floating point notation
allows the programmer to specify an expo-
nent portion indicating the power to which a
number may be raised. Using floating point
notation, one may enter numbers having mag-
nitudes from minus the 38 'th to plus the
38 'th power of ten!

Some examples of numbers that may be
entered using fixed and floating point nota-
tion are shown below.

1.234567
1234.567

999999
.0000123

105.68E+12
0.045E-9

All numbers entered in a SCELBAL pro-
gram will be converted to binary floating
point notation and manipulated in that for-
mat during calculations. Calculations are per-
formed by the floating point mathematical
routines contained in the program with all
calculations maintained to twenty-three
binary bits of precision (for the mantissa
portion) and seven binary bits for the ex-
ponent. These values limit the precision and
range of numbers that the program can suc-
cessfully handle. Several factors are impor-
tant from the programmers view point.

One important factor for the programmer
to keep in mind is that if calculations exceed
the allowable range of the floating point regis-

ters and cause the binary exponent to over-
flow, that the results will be erroneous. From
the programmer's viewpoint, using decimal
numbers, this means that the programmer
must ensure that a program will not attempt
to perform calculations where the decimal ex-
ponent value would exceed plus or minus the
thirty-eighth power! Thus, performing a cal-
culation such as:

1.0E+24 * 2.0E+20

which would theoretically yield a result of:

O.2E+45

would cause the floating point binary expo-
nent register in SCELBAL to overflow and
results displayed to the operator would be
meaningless.

It is easy enough for a programmer to
remember the allowable range of numbers for
SCELBAL when performing routine calcu-
lations. However, one must be alert to cases
where the possibility of exceeding the allow-
able range is hidden in a program. This case is
more likely to occur in a program where one
starts raising numbers to a power. For in-
stance, if one has a program with a calcula-
tion such as:

Nt (X)

and proceeds to iterate X, a point will be
reached where the allowable range of magni-
tude as discussed above is exceeded. The user
has been cautioned!

Another parameter that the programmer
will want to keep in mind relates to the ac-
curacy with which calculations can be main-
tained in a program. Since the floating point
binary registers in which numbers are held are
limited to twenty-three binary bits, fractional
results from operations such as multiplication
and division are rounded off to leave the 23
most significant binary bits. This operation
may introduce a small error, particularly
when the results of operations involve a non-
ending binary series. In a chain of operations

14 - 8

such errors can accumulate. These small errors
will often affect the least significant decimal
digit displayed to the operator. The novice
programmer who is not used to digital cal-
culations may be initially surprised to find
that a directive such as:

PRINT 999999

will result in the display sho wing:

999999.5

Or, a directive such as:

PRINT 500 * 500

will result in the answer:

250000.1

The first example above might be par-
ticularly surprising to an operator who sur-
mises that the program cannot even display
back the same value entered! The result one
obtains in the first answer is affected by the
fact that the program in performing the direc-
tive, actually converts the decimal number to
floating point binary notation, and then per-
forms the reverse procedure. The conversion
process involves multiplying the binary num-
ber (representing 999999) by the value 0.1
(decimal). The value 0.1 in binary notation
is a non-ending series that must be rounded
to twenty-three binary bits. The rounding
process during the conversion results in the
error factor shown for the example.

The actual amount of error that can ac-
cumulate in a calculation depends on the ac-
tual numbers involved, the extent of chain-
ing of calculations involving non-ending ser-
ies, and so forth. It is not the purpose of this
presentation to go into a discussion of the fac-
tors relating to the precision and accuracy of
calculations performed on a digital machine.
The main point being made here is that such
deviations are normal.

(Actually, the reason the deviation in the
above examples shows up is because the pro-

gram permits the display of seven digits, even
though the entry was only six. Users who find
the display of the above types of small errors
disconcerting may consider revising the ap-
propriate section of the floating point output
routine to limit the display to six significant
digits!)

Numbers outputted by SCELBAL are
automatically displayed in fixed point format
if they are in the range:

1.0 to 8388608

Numbers outside this range are automatically
displayed in floating point format which ap-
pears as shown below.

0.8388609E+07

VARIABLE NAMES

SCELBAL allows the operator to create
mnemonic names to represent variable values.
All names must begin with a letter of the
alphabet and regular variable names may con-
sist of one or two characters. The second
character of a regular name may be a number
if desired. Some typical regular variable names
might be:

A
AA
Al

Examples of illegal variable names would be:

lA
AAA

Up to twenty regular variable
be used in a program.

names may •

Th e termino logy "regular variab les" refers
to variables not associated with the optional
DIMension or ARRAY handling capabilities
of SCELBAL. Names of variables associated
with an array will be called ARRAY VARI-
ABLES. An array variable name may only
consist of one letter of the alphabet and must

14 - 9

always be followed by a subscript enclosed in
parenthesis. An example of an array variable
name would be:

A(l)

Up to four array names may be assigned in
a program (independent of the number of
regular variable names assigned). Addition-
ally, since an array variable name is identi-
fied by the presence of a subscript, the same
letter may be assigned to an array variable
and a regular variable in a program.

The LET Statement

Now that the prospective SCELBAL pro-
grammer has been introduced to some of the
fundamental aspects of the language - enough
so that one may sit at the keyboard and try
the various capabilities of SCELBAL as they
are explained, it is time to proceed to intro-
duce and explain the use of the various re-
maining types of STATEMENTS that the pro-
gram can interpret.

The LET statement is used to define the
value of a variable name. This statement ac-
tually has two forms. The express form, and
the implied form. The express form is imple-
mented by entering the statement keyword
LET followed by the name of the variable
that is to be defined. The variable name is
then followed by the equal ("=") sign. The
statement line is concluded by expressing,
in mathematical terms, just what the value for
the variable name will be when the directive is
executed. This may be signified by giving an
actual numerical value, by specifying another
variable name, or by a mathematical expres-
sion. Some typical LET statements are illus-
trated here:

LET X = 100
LET X = y

LET X = 100 * Y

When a LET statement is executed, the
value of the variable indicated on the left
hand side of the equal sign will be made equal

SUGGESTIONS FOR PROGRAM TINKERERS

The whole purpose of presenting the pro-
gram SCELBAL in the form of this publica-
tion was so that readers could acquire the
knowledge that would give them the freedom
to modify and adapt the program to meet
their individual requirements. It is fully ex-
pected that many readers will want to take
advantage of this aspect. The purpose of this
final chapter is to provide some assistance and
suggestions to those readers who contemplate
modifying the program.

Perhaps one of the first aspects of the pro-
gram that a user might have need to alter is
the storage area assigned to the user program
buffer. In the assembled version of SCELBAL
presented (for a 12 K system with the op-
tional array capability installed) the buffer is
assigned memory locations starting at address
page 33 location 000 and extending up to
page 54 location 377. The most common al-
teration to this buffer size will undoubtably
be simply to reduce or extend the upper limit
depending on the amount of memory avail-
able in the user's system and whether the op-
tional array routines are installed in the upper
portion (3 pages) of available memory. Chang-
ing the upper limit of the user program buffer
only requires changing one location. In the
assembled listing provided the address of this
location is at page 12 location 222. This is the
address of the second byte in a CPI instruc-
tion in the INSERT routine that checks to see
if adding a line to the user program buffer will
cause it to overflow. This byte should contain
the page value of the highest page in memory
that is to be allocatted to the buffer! Thus, if
a user only has an 8 K system, this location
should contain a value of 037 (page 37), as-
suming that the optional array routines were
not included. If they were included, one
would need to reduce this value to 034. If one
had, say, a 10 K system; and intended to
install the array handling routines on pages
45 and 46 (reserving page 47 for the array
values table), then the limit value in the CPI
instruction at the address indicated would
simply be 044. (Remember, the buffer will

15 - 1

use the locations on the page specified as the
upper limit, the limit specifies that the buffer
is not to extend beyond that page!)

Since changing the upper limit of the user
program instruction only requires altering one
byte in the entire SCELBAL program, one
may see that it is easiest to make additions to
the program by placing routines in the area
originally assigned to be the highest address
region of the user program buffer and then
simply lower the buffer size by changing the
indicated location. Thus, for instance, a user
who might not be able to place the 1/0 rout-
ines required by the program on page 00 as
suggested in the chapter on 1/0 operations,
might place them on page 37 (in an 8 K sys-
tem without arrays) and change the buffer
limit value to page 36. Or, a user that wanted
to append a lengthy machine language routine
that was executed as part of a user defined
function, would probably find it easiest to
place the new routine in the highest locations
available for the buffer and then lower the
buffer limit value as required.

Of course, there may be instances when the
user desires to change the lower boundaries of
the user program buffer area. Doing so, how-
ever, requires altering considerably more than
a single location in the program. Altering this
limit requires changing the data in the follow-
ing addresses (as they appear in the assembled
listing provided):

10332
11 017
11 051
11132
11173
13107
15255

All of the above locations would have to be
changed from their original values of 033 to
whatever value represented the page number
at which the programmer desired the user
program buffer to start.

Another type of alteration that some read-
ers may wish to implement actually is related
to the user provided I/O routines. This has to
do with processing and displaying relatively
short lines such as may be required by some
CR T and TV display systems. Such systems
often are limited to 32 or 40 characters to a
line. While many users might not be concern-
ed with having such short lines, and would be
content with simply writing all SCELBAL
programs in forms that did not exceed this
limitation, some users might be hampered by
such a limitation. (While all statement types
and commands can easily be handled in such
a short line length, the line length of some
types of statements will be a function of the
complexity of the mathematical expressions
contained in the line. A short line length can
thus affect the manner in which one writes
mathematical formulas.)

When inputting lines to SCELBAL, the
user with such a display system can handle
the situation without any modification to
SCELBAL itself. This may be done by hav-
ing the user provided input subroutine sim-
ply screen for a special character such as a
line feed. When the routine encountered the
special character it could simply issue a "new
line" directive to the display device (assumed
to be echoing the input) and discard the
character so that it was not processed by the
main program. Thus, whenever inputting in-
formation the operator would simply enter
the special character on the keyboard so that
the display would go to a new line, yet only
relevant characters would go into the line in-
put buffer used by the program. (Remember,
however, that the line input buffer used in
SCELBAL is limited to holding 72 characters
at a time!)

On the outputting side, one could make a
minor modification to the ECHO subroutine
in SCELBAL (using patching techniques)
along the following Hne. Examine the output
character counter. When it reaches the value
equal to the maximum length of a line issue
a "new line" directive to the display device.
Then, reset the output character counter.
This capability may be inserted just before

15-2

the end of the ECHO SUbroutine. (The ECHO
subroutine starts on page 03 location 202 in
the assembled listing. The source listing for
the subroutine is presented in the chapter that
discusses the SYNTAX routine.) This proce-
dure would take care of the displaying of
lengthy statements or cases where the pro-
grammer failed to properly format PRINT
statements. (One would, of course, plan on
formatting PRINT statements to suit the dis-
play device being utilized.)

The program in this publication was devel-
oped and presented in a fashion that would
lend itself to easy modification by the reader.
Indeed, with the organizational and concep-
tual information that has been presented,
along with the multitude of routines, serious
students of this manual are in a position to

•

customize the higher level language to their
individual desires. Some thoughts on such
customizing will be presented in the next few
pages.

One area in which a user might desire addi-
tional capability, for example, could be in the
number of user defined functions that the
user could add to the program. The FUNC-
TION LOOK-UP table only provides for the
mnemonic UDF. How could one easily add
the capability to perform several different
user defined routines?

One way this could be accomplished would
be to let the argument associated with the
mnemonic specify a particular subfunction!
For instance, the terms:

UDF(l)
UDF(2)
UDF(3)
UDF(4)

could represent four different types of func-
tions. To determine what type of function
was to be performed, the programmer would
simply arrange the first part of the user pro-
vided UDF subroutine so that it checked
the value of the argument (which would be
residing in the FP ACC) and then directed

the program to the appropriate subfunction!

It is important to note that while some
readers might automatically relate functions
with the performance of mathematical opera-
tions, such a narrow interpretation is not
necessary. One can have a user defined func-
tion perform practically any useful type of
operation such as control an external device.
One interesting and useful idea for such a
user defined function is to have it control a
tape unit. Thus, one could read in the next
section of a mUltiple-segment program if the
user program buffer was too small to hold all
the needed directives for a large program.
(Be careful, though, when organizing the
high level program, not to overlay when in-
side a nested statement type such as a FOR/
NEXT loop or a GOSUB directive!)

Going on to another area of customizing,
consider the mnemonics for statement
names, and indeed, the specific tasks that the
various statement types perform. The user
who doesn't like the statement keywords as
presented, can change the statement keyword
table quite readily. If one takes care not to
exceed the space allotted to the table, and
keeps the same order (so that the token value
structure is not altered as discussed in the
chapter dealing with the SYNTAX routines)
among the various types, one can simply re-
name the offensive mnemonics with no furth-
er alterations to the program! Thus, if a user
prefers to use the mnemonic SET instead of
the mnemonic LET, a simple change to the
name in the STATEMENT KEYWORD table
is all it takes.

The next step is to alter the operation of
a statement type, or substitute a different
type of statement. Perhaps a particular user
finds that the FOR/NEXT statement types
are of no particular benefit to the user's appli-
cations. Presto! Change two entries in the
keyword table, to say, do THIS and do THAT
as the mnemonics for two new statement
types. Then, remove the subroutines relating
to the FOR/NEXT statements and substitute
routines that perform THIS and THAT.

15-3

Suppose a user likes all the statement
types presented but could use a few more?
Well, the names assigned to the various
statement types are almost all longer than
necessary. By compacting those keyword
names (thereby opening up room in the
keyword table) to just one or two charac-
ters, assigning some new token values, and
adding the appropriate tests for the new
token values in the DIRECT routine (refer
to the chapter that presents the source list-
ings for the statement type routines), one
can enhance the program by adding new
statement types. The actual routines to per-
form the new statements may be placed in
areas in memory formerly used as the user
program buffer by appropriately limiting
the size of the buffer as mentioned at the
beginning of this chapter.

The reader with a little imagination will
soon find all kinds of possibilities for en-
hancing the described package. With all the
various utility routines available within the
program, one will find that many kinds of
capabilities that a user might desire can be
added to the program with relative ease.
Suppose, for instance, that one is interested
in manipulating text strings and would like
to implement some string function capabili-
ties in SCELBAL. A little review of some of
the kinds of subroutines already present in
the program described will show that there
are a number of routines available that may
be combined to rapidly build up some string
handling functions. Just to name a few, con-
sider the following:

The MOVEIT SUbroutine can transfer
strings of characters from one area in memory
to another.

The CONCT A and associated subroutines
can concatenate (append) characters from
one buffer to another.

The STRCP subroutine can determine if
character strings in buffers are the same
length.

The STRCPL and associated routines can

determine whether character strings match
one another.

(NOTE. The locations of the routines
mentioned within the assembled program
provided, as well as the chapter and page
number in which the source listing was
presented, may be found in the Appendix.)

These types of routines, coupled with
appropriate user provided linking instruc-
tions, etc., can very quickly be capitalized
upon by the adventurous and ambitious
programmer to add string handling type
functions to the language if desired.

The amount of creative additions of
the above nature, given the base that one has
to start within the SCELBAL package, is vir-
tually unlimited.

There are a few other aspects about the
package that will be interest to those that de-
sire to tinker with the program. The machine
language programmer with even a modest
amount of experience will find the program
quite easy to modify using patching or com-
pressing techniques. This is because several
design guidelines followed during program
development for this pUblication have side
effects that are useful in this regards.

For example, perhaps the most signifi-
cant decision made regarding the package's
development had to do with whether or not
to utilize locations on page zero in memory.
Doing so would have meant the program
could have been organized and compressed
to reside in about 1.5 K bytes less memory
from this one factor alone! Why wasn't it
done? Experience indicated that many small
system owners dedicated all or part of page
zero in their systems to monitor functions
or similar permanent or semi-permanent pro-
grams. Requiring the use of page zero would
have meant these users would have to re-
assemble SCELBAL for use on their systems.
Furthermore, the features that would have
been so useful to capitalize on, had page zero
been used, would have made such re-assembly
a somewhat difficult task.

15-4

For instance, the RST (Restart) locations
on page zero could have been used to hold
commonly used instructional sequences (par-
ticularly in the 8008 version) such as:

or

LBM
INB
LMB

LAM
l'TDA

Just being able to replace those two and three
byte instructions by one byte RST instruc-
tions, would have enabled some two to three
pages of memory to be saved! But, woe to the
poor user who had to re-assemble the pro-
gram. That would require finding all the RST
instructions, replacing them with the multi-
byte sequences, and greatly expanding the
size of the program. One is far more likely to
be upset about seeing a program expand than
to discover that with a little effort the pro-
gram can be made to contract!

Secondly, using page zero for most of the
pointers and counters, say, would have meant
a good many LHI XXX type instructions (to
set the page portion of the memory pointer)
could have been reduced to a one byte LHX
instruction (because quite often a CPU regis-
ter will contain the value zero) or eliminated
altogether because of less frequent changes to
the pointer page. Again, woe to the user who
might have been forced to re-assemble be-
cause page zero was not available. All such
single byte (or worse, non-existent) set ups
would have had to be located and the multi-
byte LHI XXX inserted!

As the package has been presented, if it is
necessary to relocate the program, the re-
assembly process can be made quite straight-
forward. If the pages containing pointers,
counters and buffers must be altered, then
only the page value byte in the LHI XXX
instructions need be altered. All such loca-
tions have been marked in the book by the
double asterisk "**" indicator. Program size,
the relative locations or subroutines, etc.,
would all remain fixed. In many instances

involving relocation, only one data page, or a
few might have to be relocated, so the num-
ber of LHI XXX instructions that would be
altered would be even less. (Re-assembly
might also affect the values in locations
marked by "tt.")

These guidelines provide additional bene-
fits for the user. Those with systems that do
have page zero available will find they have a
package with the potential for being consid-
erably reduced in size if they wish to re-
assemble the package to take advantage of the
possibilities.

Those not interested in that type of pro-
ject, but that should find they desire to make
minor changes or patches to various portions
of the program, will find that frequently it is
possible to compress even one lengthy routine
by quite a few bytes. This may be done in
many cases by replacing a few of the fre-
quently used instructional sequences with one
byte RST instructions and placing the instruc-
tions in the sequence on page zero at the ap-
propriate restart address. Room can thus
readily be made to accomodate some extra in-

15 - 5

structions in the routine one desires to alter.

The use of page zero could save up to 1.5 K
bytes of memory in the 8008 version of the
program. It hardly need be mentioned that
the amount of compression that can be ob-
tained in the 8080 version is considerably
more. This is because some of the frequently
used small subroutines and instructional se-
quences used in the program actually have
shorter (in terms of the number of bytes re-
quired) equivalent commands available in the
8080 instruction set. A good machine lan-
guage programmer who wants to· take the
time and effort, should have little difficulty
getting an 8080 version of SCELBAL
(say, without array capability, in order to
allow for a decent sized user program buffer)
in a 4 K system.

But, such undertakings are not at all nec-
essary to enjoy SCELBAL. Using the program
as it has been presented may keep many read-
ers occupied for years. But, should any start
to get bored, it is always nice to know that
the freedom to make changes is right in this
book!

THE FUNDAMENTAL CAPABILITIES OF SCELBAL

As explained in Chapter One, SCELBAL
was developed to operate in an INTERPRE-
TIVE mode. This means that the entire
program resides in memory at one time
along with the program written in the higher
level language that is to be executed. When
the INTERPRETER is given the RUN com-
mand it immediately proceeds to INTER-
PRET each line of the higher level language
program and perform the necessary calcu-
lations and functions.

SCELBAL has actually been designed so
that it may operate in a "calculator" mode
or operate in a stored program mode. In the
calculator mode, each statement is executed
immediately after it is entered on the input
device. In this mode, the program is ideal
for solving simple formulas when the user
only needs to obtain a few values.

For instance, if one typed in the state-
ment:

PRINT 2*2 + 3*3 +4*4

the value:

29

would be displayed as soon as the end of line
code (carriage-return) was issued at the end of
the PRINT statement.

One may use the calculator mode to solve
more complex problems. For instance, if one
entered a series of statements such as:

and then entered:

LET A = 2
LET B = 3
LET C = 4

PRINT A*A + B*B + C*C

2 - 1

the answer:

29

would immediately be displayed. This is
because, in the calculator mode, the values
assigned to A, B and C would be immed-
iately assigned and available for use in
solving the formula given in the PRINT
statement above.

When it is not desired to operate in the
calculator mode, but rather in a stored
program mode, the user simply inserts a
line number in front of each statement.
A whole series of statements may then be
arranged to form a program. When it is
desired to execute the steps in the pro-
gram, a special executive RUN command is
issued. This command will cause the INTER-
PRETER to proceed to execute the program
one statement at a time.

SCELBAL is able to handle actual num-
eric values using a floating point package
which is an integral part of the interpreter.
While a floating point package is used to
perform all calculations, inputs and out-
puts to the program may be in fixed for-
mat within certain ranges.

When inputting information or speci-
fying values within a program, the user may
use fixed point notation for numbers in the
range plus or minus 0.999999 to 999999.
Numbers smaller or greater than this must
be stated in floating point format, such as:

+0.123456E-IO

or

-654321E+12

The • • and maximum powers that mmunum

the floating point package used in SCELBAL
can handle is ten to the plus or minus thirty-
eighth.

SCELBAL automatically outputs numbers
in the range plus or minus 1.0 to approxi-
mately 999999 in fixed point format. Out-
side this range, output automatically switches
to floating point notation.

The floating point package itself provides
SCELBAL with the four most fundamental
arithmetic capabilities. They are addition,
subtraction, multiplication and division. All
calculations in the floating point package are
maintained to twenty-three sig!lificant binary
bits in the mantissa, with the multiplication
and division routines providing binary round-
ing when calculations yield numbers that ex-
ceed twenty-three binary bits.

While the floating point package provides
the essential capability to handle the opera-
tors: +, -, * (multiply) and / (divide), the
language, using supplementary routines, can
also recognize the operators t (raise to a
power), and parenthesis "(" and ")" which
may be used to group or nest mathematical
statements.

Up to twenty user defined variables are
permitted at one time when using the lan-
guage. However, in order to conserve mem-
ory space, variables must be limited to a
maximum of two characters. Variables must
begin with a letter of the alphabet.

The Executive portion of SCELBAL allows
the user to control the overall operation
of the program from an I/O device such
as a keyboard and teleprinter. The user
can create a program in the higher level
language and have it executed using the
features of the Executive portion of the
program. A portion of the Executive is
actually a small Editor program that allows
the user to "edit" the information (pro-
gram) in the program buffer at any time.
Lines may be deleted and new lines enter-
ed. Clerical errors on a line may be cor-•

rected. Furthermore. a portion of the

2-2

Executive checks for various types of syntax
errors as each line is entered. If
an error is detected, an error code message
is presented to the operator. This feature
is extremely valuable for novice program-
mers, (and though some of them might not
admit it, is quite comforting to the old pro-
fessionals as well).

The Exective portion of SCELBAL has
five major commands available to the opera-
tor which are defined and explained breifly
below.

SCR is used to indicate the SCRATCH
command. This command effectively clears
out any previous program stored in the pro-
gram buffer along with any previous user
defined variables. It is used in preparation
for entering a new high level program into
the program storage area.

The LIST command does just that: It
causes the contents of the program buffer
to be displayed or "llsted" on the system '5

output device so that it may be reviewed
by the operator.

RUN directs the interpreter to begin
operations and execute the program stored
in the program buffer.

SAVE. This command may be used to •
direct the program to save a copy of the pro-
gram stored in the program buffer on the sys-
tem's external bulk storage device. A program
saved using this command can later be re-
stored for further use by using the command
presented next.

LOAD. This command directs the program
to read in a copy of a program from an exter-
nal bulk storage device (previously written
thereon using the above SAVE command) in-
to the program buffer so that it may be
executed by the interpreter.

The higher level language SCELBAL con-
sists of STATEMENTS that are interpreted by
the program resulting in selected operations
being performed. SCELBAL recognizes the

following types of statements.

The REM for REMarks statement indicates
a comment which is to be ignored as far as the
interpreter is concerned. Information on a
line prefaced by a REM statement is intended
only for the use of programmers and may be
used to document a program.

The LET statement is used to set a variable
equal to a numerical value, another variable,
or an expression. For instance, the statement:

LET X = (y*y + 2*Y - 5)*(Z + 3)

would mean that the variable X was to be
given the value of the expression on the right
hand side of the equal sign.

Since the LET statement is such a frequen-
tly used directive, SCELBAL also recognizes
an implied LET statement. Thus, the simple
statement:

X = (y*y + 2*Y - 5)*(Z + 3)

would be interpreted as though the LET
directive had been stated.

The IF combined with the THEN state-
ment allows the higher level program to make
decisions. SCELBAL will allow one or two
conditions to be expressed in an IF THEN
statement. Thus, the statement:

IF X = Y THEN LL

would be interpreted to mean that if, and
only if, X is equal to Y, then the program
would branch to line number LL in the pro-
gram.

While the directive:

IF X <= Y THEN LL

would mean that if X was less than OR equal
to Y (two conditions), that the program was
to go to line number LL.

Similarly, the statement:

2 - 3

IF X < > Y THEN LL

would mean that if X was less than 0 R great-
er than Y that the program was to branch
(again two conditions).

If the condition(s) in an IF ... THEN state-
ment are not met, then the program contin-
ues by going directly to the next sequential
statement in the program and does not exe-
cute the branch directive.

The GO TO statement directs the program
to effectively JUMP to a specified line num-
ber in a program. The GOTO statement may
be used to skip over a block of instructions
in a multiple segment or subroutined pro-
gram.

The FOR, NEXT and STEP statements
provide capability for the programmer to
form program loops. For example, the series
of statements:

FOR X = 1 TO 10
LET Z = x*x + 2*X + 5
NEXT X

would result in Z being calculated for all
the integer values of X from 1 to 10. While
SCELBAL does not require the insertion
of a STEP directive in a FOR - NEXT loop,
a STEP value may be defined if desired.
The implied STEP value if not specifically
stated is always 1. However, it may be set
to a value other than 1 by following the
FOR range statement by a STEP directive
that dictates the desired STEP size. Thus,
the statement line:

FOR X = 1 TO 10 STEP 2

would result in X assuming values of 1, 3,
5, 7 and 9 as the FOR - NEXT loop was
traversed.

GOSUB is a statement that is used to
direct the program to perform another
statement or group of statements as a
subroutine. The statement is used in con-
junction with a line number which desig-

nates where subroutine execution is to
begin.

A RETURN statement is used to incli-
cate the end of a subroutine. When a
RETURN statement is encountered, the
program will return to the next statement
immediately following the GOSUB direc-
tive which was used to call the subroutine.

SCELBAL permits multiple nesting of
subroutines (up to eight levels) within a
program.

INPUT is used to direct the interpreter
to wait for an operator to INPUT informa-
tion to the program. After the information
has been received operation of the program
automatically continues.

The PRINT statement is used to output
information from a program. By using the
PRINT statement the user may direct the
program to display the values of variables,
expressions, or other types of information
such as messages. The PRINT statement in
SCELBAL permits mixed types of output
on the same line (numerical values and alpha-
numeric messages), and the option of provId-
ing a carriage-return and line-feed after out-
putting information or the suppression of
that function. For instance, the statement:

PRINT 'X IS EQUAL TO: ';X

would result in the program first printing the
text message "X IS EQUAL TO: " and then
the value of the variable X on the same line.
After the value of the variable X had been
displayed a carriage-return and line-feed com-
bination would be issued. To suppress the is-
suing of the CR & LF function in the above
example, the programmer would only need to
include another semicolon at the end of the
statement!

The PRINT statement is augmented by
several functions and features. For instance,
a comma sign in a PRINT statement may be
used to cause the display device to space over
to the next TAB position before continuing

2-4

to output more data. A special TAB function
that will be discussed later may also be used
with the PRINT statement to format the out-
putting of data. And, another special function
which will be presented shortly will provide
capability for SCELBAL to convert decimal
numbers (representing ASCII codes) into
alphanumeric characters for display.

The END statement is used to designate
the conclusion of a higber level program in
the program buffer. When this statement is
interpreted control will return to the Execu-
tive portion of SCELBAL.

There is an optional statement available
in SCELBAL that may be added to the pack-
age if the user desires to utilize the capability
and has sufficient memory to adequately sup-
port the statement. This is the DIM for DIM-
ension statement. It is used to specify the
formation of a one dimensional array in a pro-
gram. Up to four such arrays having a total of
up to 64 entries are permitted in a program
when the optional feature is included in the
user's version of SCELBAL. Thus, when
a user elects to provide tbe capability, the
statement:

DIJ\I K(20)

would set up space for an array containing 20
entries. (The array size must be specified.
using a numerical value, not a variable.)

The power of SCELBAL is further enhan-
ced by the addition of seven functions that
may be used within statements. These func-
tions are discussed below.

INT returns the INTeger value of the ex-
pression, variable or number requested as the
argument. The integer value is defined as the
greatest integer number less than or equal to
the argument. Thus, a statement which con-
tained:

INT(X)

would result in the value, for instance,
5.0 being returned if X at the time the fune-

tion was encountered was greater than or
equal to 5.0 but less than 6.0 (such as 5.0001,
5.54321,5.99999).

SGI\' returns the SiGN of the variable, num-
ber, or expression. If the value is greater than
zero, the value +1.0 is returned. If the value
is less than zero the value -1.0 is returned. The
value 0 is returned when the expression or
variable is zero.

ABS returns the ABSolute value (magni-
tude without regard to sign) of the variable
or expression identified as the argument of
the function.

SQR returns the SQuare Root of the ex-
pression, variable, or number.

RND produces a semi-psuedo-RaNDom
number in the range of 0 to 0.99. This
function is particularly useful to have avail-
able for games programs or when it is desired
to have random values when doing statistical
analysis problems. The random number gene-
rated may be operated on to produce ran-
dom numbers within a desired range. For in-
stance, the statement:

LET X == RND(O)*10

would result in X being assigned values in the
range of a to 9.99.

CRR is a special CHaRacter function. It
may be used in a PRINT statement and will
cause the ASCII character correspond ing to
the decimal value of the argument to be dis-
played. Thus, if:

CHR(193)

was contained in a PRINT statement, the
letter A would be displayed. The argument
portion of the CHR function may be a user
defined variable so that different characters
would be displayed depending on the value
of the variable at the time the PRINT state-
ment was executed.

A reverse function is available for use in

2-5

an INPUT statement. This function is speci-
fied by placing a dollar sign ($) immediately
after a variable in an INPUT statement. This
function will cause the decimal value for the
ASCII code of the letter that is inputted to be
returned to the program. Thus, if an INPUT
statement contained the directive:

INPUT A$

and the operator entered the letter Y as
an input to the program, the value 217
would be returned as the value for the
variable A. This function is valuable in a
number of applications. For instance, if
the programmer desired to have a user
answer a question in a program with a
yes or no response, the function enables
the higher level program to ascertain
which response was entered by testing
the decimal value received.

A TAB function is available for use in
a PRINT statement. This function allows
the programmer to direct the display de-
vice to space over to the column number
specified as the argument of the function.
This function thus allows the programmer
to format the output into neat columns.
Thus, the statement:

PRINT X; TAB(10);Y;TAB(20);Z

would result in the value for X being dis-
played starting at column 1, the value Y
starting at column 10, and the value of Z
starting at column 20.

SCELBAL is designed to run in a system
having a minimum of 8 K of read and write
memory. In an 8 K system, the program,
leaving out the optional DIMension (single
dimension array) capability, provides about
1,250 bytes of memory for storage of the
users higher level language program. While
it is possible to include the DIMension capa-
bility in an 8 K system, doing so would re-
duce the program storage area in about half.
One nice feature about SCELBAL is that the
user with more than 8 K of memory can use
the additional memory for higher level pro-

gram storage. A user with, for instance, a
12 K system, may configure the package so
that there are about 5,000 bytes of memory
available for storage of a program. It is reco-
mended that those desiring to include the
DIMension capability of SCELBAL have 9 or
10 K of memory in the system so that the
program storage area will not be prohibitively
small. The package has been arranged so that
those that desire the DIMension option can
install this section in the upper portion of
available memory. Those that do not desire
this feature, may leave it out to provide ad-
ditional program storage room.

Even with just an 8 K system, surprisingly
complex programs can be executed. A game
such as Lunar Landing is easily accomodated
if one reduces the number and lengths of the
messages issued to the player. An 8 K system
will be adequate for many users who are pri-
marily interested in using the package as a
sophisticated programmable calculator.

A 12 K system will support quite sophisti-
cated programs with plenty of alphanumeric
messages. With approximately 5 K bytes of
memory available for program storage in such
a system, the user would have the capability
to execute programs that contained several
hundred statements.

While most 8008 based systems are limited
to a maximum of 16 K of memory, those uti-
lizing the 8080 version of SCELBAL could
conceivably have a program storage area (in
a 64 K system) in excess of 56 thousand
bytes. The kinds of programs one could run
in that amount of memory could fill books
alone!

The execution speed of SCELBAL, while
slow compared to higher level languages that
are designed to run on large computers, is

2-6

surprisingly good. The 8008 version is, of
course, about an order of magnitude slower
than the 8080 version due to the relative
speeds of the two types of CPUs. The exe-
cution speed of an 8008 version can be almost
doubled if one installs an 8008-1 CPU in their
system. Some users may want to consider that
option. However, even on an 8008 based unit,
the execution speed of SCELBAL is quite tol-
erable. For instance, the typical response
time between the displaying of a new set of
parameters when running a Lunar Landing
game is in the order of six to seven seconds.
A program that calculates the mortgage pay-
ments on a house on a monthly basis and
displays such data as the payment number
and current balance after each payment re-
quires but a few seconds between the dis-
playing of each new line of data. A dice
playing game responds with new throws
of the dice in the order of a second or so
when using a formula that includes the use
of the random number generating function.
These times are by no means fast but they
are in the general range that one might ob-
tain when solving formulas of similar com-
plexity on commonly used programmable
hand held calculators. Remember, these
times are for the slowest 8008 version. They
are lowered by an order of magnitude on an
8080 based system.

The information presented in this chapter
is merely to whet the reader's appetite and
present an overall picture of the fundamen-
tal capabilities of SCELBAL. The detailed
use of the language will be presented in a
later chapter along with numerous actual
programming examples. It is now time to
start learning how SCELBAL is organized as
an overall package and then proceed to dis-
cuss the various portions of the program in
detail. This coverage starts with the next
chapter.

FUNDAMENTAL OPERATION OF SCELBAL

The following brief description provides a
summary of the manner in which SCELBAL
proceeds to process a higher level program.
It should help the reader who needs some
confidence building before digging into a soft-
ware package that may initially seem complex
due to the large number of individual machine
language instructions that make up the over-
all package. The reader will hopefully soon
see that all the individual machine language
instructions are organized into relatively small
routines and these in turn are carefully organ-
ized into a surprisingly simple scheme. The
essential concepts of this simple scheme are
presented in this section.

SCELBAL, as discussed in the opening
chapter, is an interpretive language. The pro-
gram simply operates by analyzing each line
of source coding which the operator inputs
in the defined higher level language format
using the defined syntax. As the program ana-
lyzes each portion of a line, it performs the
operations indicated.

Virtually all of the analyzation of a line of
source coding is accomplished when the in-
formation is residing in a temporary storage
buffer in memory called the LINE INPUT

1.) I LIST

2.) I LET X = Y + 2

3.) 1123 PRINT X

The first line format illustrated above has
an EXECUTIVE COMMAND as the first word
in the line. Each time a line of information is
entered into the LINE INPUT BUFFER from
the system's input device, the EXECUTIVE
portion of SCELBAL checks to see if the

I

I

I

BUFFER. This LINE INPUT BUFFER is
used to initially store data as it is inputted
to the program from the operator's console,
which would typically be an input device
such as an ASCII encoded electronic key-
board. As will be illustrated shortly, infor-
mation stored in the LINE INPUT BUFFER
can be transferred to a USER PROGRAM
BUFFER. Or, information in the LINE
INPUT BUFFER can be analyzed and inter-
preted. Finally, a line of information in the
USER PROGRAM BUFFER can be trans-
ferred back to the LINE INPUT BUFFER.

A LINE of information is simply a string
of allowable ASCII encoded characters which
may consist of COMMANDS, NUMBERS,
ST ATEMENTS, FUNCTIONS, user defined
VARIABLES and mathematical OPERA-
TORS. A LINE is always terminated (during
operator input) when a line ending termi-
nator, the ASCII code for a carriage-return
(CR) is detected.

The pictorial below illustrates three gene-
ral formats for lines of information. These
three general formats essentially provide a
means of controlling the overall operation
of SCELBAL.

EXECUTIVE COMMAND

-----..... DIRECT MODE

---..... STORED PROGRAM

first word in the line represents anyone of
the valid SCELBAL commands such as LIST,
RUN, SCRatch, SAVE or LOAD. If so, appro-
priate action is taken such as LISTing the con-
tents of the USER PROGRAM BUFFER or
SCRatching (clearing out the USER PRO-

3 - 1

GRAM BUFFER).

If the first word in a line is not an EXECU-
TIVE COMMAND, SCELBAL checks to see
if the first string of characters represents a
LINE NUMBER such as shown in example
number three on the previous page. If such
is the case it means that the line of infor-
mation is to be stored in the USER PRO-
G RAM BUFFER as part of a high level
stored program being created by the user.
Appropriate steps are then taken by the
program to append, insert, change or delete
information in the USER PROGRAM BUF-
FER.

If a LINE NUMBER is not detected at
the start of a line, the program assumes
that the information in the line represents
a higher level program STATEMENT which
is to be DIRECTly interpreted. This would
be the situation when the user desired to use
SCELBAL in the "calculator" mode.

In this case, the program would proceed
to EVALuate the information by SCANning
the information in the LINE INPUT BUF-
FER. This is done by examining the SYN-
T AX of the line and initially testing to see
if the first word in the line represents a
statement KEYWORD such as LET, FOR,
IF, GOSUB etc. Upon ascertaining the type
of STATEMENT that is to be processed, the
program is directed to an appropriate routine
that will further evaluate and process the in-
formation on the line. This is accomplished
by calling on routines that SCAN the line and
decode the information, then performing the
indicated operations. To do this, other rout-
ines such as a PARSER (routine to detect and
decode mathematical operators), FUNCTION
subroutines (such as SQR, TAB, INT), and
FLOATING POINT mathematical routines
may be called on to perform the operations
specified by the higher level syntax. This pro-
cess is accomplished on a step-by-step basis
following logical rules that establish a HEIR-
archy for performing the various types of
operations that will be explained in detail in
the appropriate sections of this publication.

3-2

O.K. The reader now knows how three
basic line formats direct SCELBAL to per-
form an executive function, or place a line of
information into the USER PROGRAM BUF-
FER, or DIRECTly execute a line of infor-
mation being held in the INPUT LINE BUF-
FER. What happens when it is desired to exe-
cute a higher level program that has been
stored in the USER PROGRAM BUFFER?

The scheme is still very simple. When the
executive portion of SCELBAL detects a line
containing the executive RUN command the
program simply does the following. It goes
to the start of the USER PROGRAM BUF-
FER and pulls a copy of the first line of in·
formation from that storage area back into
the INPUT LINE BUFFER. As it does this
it strips off the LINE NUMBER. The infor-
mation in the LINE INPUT BUFFER is then
simply processed in the same manner in which
a DIRECT type of line would be handled.
When the directives contained in that line
have been performed, the program proceeds
to get the next line in the USER PROGRAM
BUFFER (unless directed otherwise by such
statements as IF, GOSUB and so forth), strip
off the line number, and DIRECTly execute

•

that statement. This process continues until
the end of the USER PROGRAM BUFFER
has been reached, or an END statement is
encountered!

These operational concepts, the reader
may now agree, are indeed quite straight-
forward. True, it does take thousands of
machine language instructions to accom-
plish the tasks, the concepts of which are
so easily conveyed in just a few paragraphs.
However, the essential point being made is
that the overall plan is quite simple. The
reader should keep this simple picture in
mind as the various sections are discussed
in detail. A similar pattern of simplicity
will hopefully emerge as the various levels
of detail are presented in the following
chapters. Readers should refer to this sec-
tion whenever they feel they are becoming
too immersed in the details of individual
routines to review where the particular

process being discussed fits in to the basically
simple scheme of SCELBAL. The pictorials
provided below serve as a summary of what

has just been presented as a quick and easy
review when desired.

Representative lines in
LINE INPUT BUFFER

I LIST/ EXECUTIVE COMMAND therefore do LIST executive routine.
or

I PRINT X I No line number therefore DIRECT ("calculator") interpret mode.
or

1100 LET X == Y + 2 I --+-- Has a line number therefore contains information to be stored in
the USER PROGRAM BUFFER.

or Insert'
90 IF X = N THEN 120

f-95 FOR Y=l TO 10 -
Change 1-105 INPUT S -

or f-110 PRINT M -
______ D_e_l_et_e) LET M =

120 PRINT M

NOTE
1105 INPUT Z I
1110 I

or
l125 NEXT X I Append I- -

)

The EXECUTIVE portion of
SCELBAL can Insert, Change,
Delete or Append lines to the
USER PROGRAM BUFFER
just by examining the line
number!

USER PROGRAM BUFFER

SUMMARY OF FUNDAMENTAL OPERATION OF SCELBAL AS CONTROLLED
BY THE THREE DIFFERENT TYPES OF LINES IN THE LINE INPUT BUFFER

LINE INPUT BUFFER

IIF X = N THEN 120 I+-..
When SCELBAL is in the RUN mode each line is pulled from the
USER PROGRAM BUFFER. The line number is stripped off and
the information in the line is interpreted and executed.

, Y N
100 LET X = Y + 2

, -105 INPUT Z =
i'+- LET M == SQR(X*Zt
I'-f- _120 PRINT M _
'+- _125 NEXT X _

USER PROGRAM BUFFER

OPERATION OF SCELBAL WHEN IN THE PROGRAM RUN MODE

3-3

THE EXECUTIVE

The EXECUTIVE portion of SCELBAL is
the part that essentially enables the operator
to control the primary operations of the pro-
gram from a keyboard device. This part of
the program actually performs two types of
operations. It can decode and direct the pro-
gram to execute any of the defined executive
COMMANDS which are SCRatch, LIST,
RUN, SAVE and LOAD. It also serves as an
Editor to enable information to be arranged
in the USER PROGRAM BUFFER. This
buffer is an area in memory used to hold a
user created program in the high level syntax
of SCELBAL. The executive RUN command
causes a program stored in this area to be
executed as a stored program.

Before beginning to present the routines
that make up SCELBAL it will be beneficial
to explain some aspects of the presentation
techniques to be used in this pUblication.

As each section of the program is dis-
cussed the actual source listings for that sec-
tion of the program will be presented with
highly detailed comments. These source
listings will refer to the assembled version
of the program for an 8008 machine that
will be presented later in this pUblication.
(An assembled version for an 8080 machine
will also be presented.) That is, the values
of pointers, counters, temporary storage
locations, and buffers used in the source
listings will be those values used in the ac-
tual assembled example listing.

SCELBAL uses three PAGES of memory
for the storage of pointers, counters, temp-
orary data areas and look up tables. In the
assembled program presented in this publi-
cation these areas were assigned to pages
01, 26 and 27 in memory. A considerable
number of machine language instructions
in the program are devoted to establishing
pointers to these areas through the use of
LLI XXX and LHI YYY instructions. It is
likely that some users may desire to assemble
the package to reside in areas of memory

4 - 1

other than those used by the version pro-
vided. In such an event, if the storage loca-
tions assigned to pages 01, 26 and 27 were
altered, the user would have to alter the
values used when setting up pointers to
those areas. As an aid to those that might
undertake this task, those LHI YYY instruc-
tions that point to those areas in memory
have been "flagged" with a double asterisk
(**) at the beginning of the associated com-
ments lines. (It is assumed that the locations
of storage areas within a page would not be
altered.) Thus, a person desiring to create a
new assembly of the program would be able
to easily spot those instructions to which
particular attention would have to be paid.

While discussing the subject of pointers,
counters, temporary storage locations, etc.,
it will be pointed out that the actual loca-
tions of all these storage locations will be
presented in the final assembled listing of
SCELBAL. During the discussion and presen-
tation of the various routines that make up
the program during the next several chapters,
the reader does not have to be concerned
with where each and every such storage
location resides. Indeed, there are too many
of them for a person to even attempt to keep
close tabs on. The actual locations of such
storage areas is not important during the
description process as it is only necessary
for the reader to realize that such locations
do exist and to understand the functions
that they perform when required.

During the course of the following chap-
ters, virtually each and every routine used in
SCELBAL will be presented in its source
listing format. However, due to the general
complexity of the program (in the micro-
scopic view point of individual instructions,
remember, the fundamental concepts are
quite simple), some routines may not be ex-
plained or presented in detail the first time
they are utilized in the source listing. In
these cases the user need only understand
that there is a routine or subroutine that

REMOVl, LLI364
LHI 026
LDM
INL
LAM
SUB
LMA
RFC
DCL
DCD
LMD
RET

INSERT, LLI 364
LHI 026
LAM
INL
LLM
LHA
CALINDEXB
LAH
CPI054
JFS BIGERR
CALSUBHL

INSERl, LCM
CALINDEXB
LMC
CALSUBHL
CAL CPHLDE
JTZ INSER3
CAL DEC
JMPINSERl

INSER3, INCLIN, LLIOOO
LHI026
LBM
INB
LLI 364
LDM
INL
LEM
CAL ADBDE
LME
DCL
LMD
RET

Load L with end of user pgm buffer pointer storage loc
** Load H with page of that pointer storage location
Get page portion of end of pgm buffer address
Advance memory pointer
And get low portion of end of pgm buffer address into
Accumulator then subtract displacement value in B
Restore new low portion of end of pgm buffer address
If subtract did not cause carry can return now •

Otherwise decrement memory pointer back to page
Storage location, decrement page value to give new page
And store new page value back in buffer pntr storage loc
Then return to calling routine

Load L with end of user pgm buffer pointer storage loc
** Load H with page of that pointer storage location
Get page portion of end of program buffer address
Advance memory pointer
Load low portion of end of program buffer address
Into L and finish setting up memory pointer
Add (cc) of line in input buffer to form new end of
Program buffer address. Fetch new end of buffer page
tt Address and see if this value would exceed user's
System capability. Go display error message if so!
Else restore original value of end of buffer address

Bring byte pointed to by H & L into CPU register C
Add displacement value to current memory pointer
Store the byte in the new location
Now subtract displacement value from H & L
Compare this with the address stored in D & E
If same then go finish up Insert operation
Else set pointer to the byte before the byte just
Processed and continue the Insert operation

Load L with start of line input buffer
** Load H with page of start of line input buffer
Fetch length of the line in line input buffer
Increment value by one to include (cc) byte
Set memory pointer to end of user pgm buffer pointer
Storage location on same page and fetch page address
Of this pointer into D. Then advance memory pointer
And get low part of this pointer into CPU register E.
N ow add displacement (cc) of line in input buffer to
The end of program buffer pointer. Replace the updated
Low portion of the new pointer value back in storage
And restore the new page value back into storage
Then return to calling routine

4 -10

CPHLDE, LAH
CPD
RFZ
LAL
CPE
RET

ADBDE, LAE
ADB
LEA
RFC
IND
RET

CTRLC, LAI 336
LCI303
JMP ERROR

FINERR, LLI 340
LHI026
LAM
NDA
JTZ FINER1
LLI 366
LHI 001
CALTEXTC
LLI 340
LHI026
CALTEXTC

FINER1, CAL CRLF
JMP EXEC

DVERR, LAI 304
LCI332
JMP ERROR

FIXERR, LAI306
LCI330
JMP ERROR

NUMERR, LAI 311
LCI316
LLI 220
LHI001
LMIOOO
JMP ERROR

The following are small subroutines used by the
EXECutive and other parts of SCELBAL.

Subroutine to compare if the contents of CPU registers
H & L are equal to registers D & E. First compare
Register H to D. Return with flags set if not equal. If
Equal continue by comparing register L to E.
IF L equals E then H & L equal to D & E so return to
Calling routines with flags set to equality status

Subroutine to add the contents of CPU register B (single
Byte value) to the double byte value in registers D & E.
First add B to E to form new least significant byte
Restore new value to E and exit if no carry resulted. •

If had a carry then must increment most significant byte
In register D before returning to calling routine

•

Set up ASCII code for t (up arrow) in Accumulator.
Set up ASCII code for letter 'C' in CPU register C.
Go display the 'Control C' condition message.

Load L with starting address of line number storage area
** Load H with page of line number storage area
Get (cc) for line number string. If length is zero meaning
There is no line number stored in the buffer then jump
Ahead to avoid displaying "AT LINE" message
Else load L with address of start of "AT LINE" message
** Stored on this page
Call subroutine to display the "AT LINE" message
N ow reset L to starting address of line number storage
** Area and do same for CPU register H
Call subroutine to display the line number
Call subroutine to provide a carriage-return and line-feed
To the display device then return to EXEC UTIVE.

Set up ASCII code for letter 'D' in Accumulator
Set up ASCII code for letter 'Z' in CPU register C
Go display the 'DZ' (divide by zero) error message

Set up ASCII code for letter 'F' in Accumulator
Set up ASCII code for letter 'X' in CPU register C
Go display the 'FX' (FiX) error message

Set up ASCII code for letter 'I' in Accumulator
Set up ASCII code for letter 'N' in CPU register C
Load L with address of pointer used by DINPUT
** Routine. Do same for register H.
Clear the location
Go display the 'IN' (Illegal Number) error message

4 - 11

INSTR, LDI 026
LEI 000

INSTR1, CAL ADVDE
CALSAVEHL
LBM
CALADV
CAL STRCPC
JTZ RESTHL
CAL RESTHL
LLIOOO
LHI026
LAM
CPE
JTZ INSTR2
CAL RESTHL
JMPINSTRl
HLT

INSTR2, LEI 000
RET

ADVDE, INE
RFZ
IND
RET

The following subroutine, used by various sections of
SCELBAL, will search the LINE INPUT BUFFER for
a character string which is contained in a buffer starting
at the address pointed to by CPU registers H & L when
the subroutine is entered.

** Set D to starting page of LINE INPUT BUFFER
Load E with starting location of LINE INPUT BUFFER

Advance D & E pointer to the next location (input
Buffer). Now save contents of D, E, H & L before the
Compare operations. Get length of TEST buffer in B.
Advance H & L pointer to first char in TEST buffer
Compare contents of TEST buffer against input buffer
For length B. If match, restore pntrs and exit to caller.
If no match, restore pointers for loop test.
Load L with start of input buffer (to get the char cntr)
** Load H with page of input buffer.
Get length of buffer (cc) into the accumulator.
Compare with current input buffer pointer value.
If at end of input buffer, jump ahead.
Else restore test string address (H&L) and input buffer
Address (D&E). Look for occurence of test string in In.
Safety halt. If program reaches here have system failure.

If reach end of input buffer without finding a match
Load E with 000 as an indicator and return to caller.

Subroutine to advance the pointer stored in the register
Pair D & E. Advance contents of E. Return if not zero.
If register E goes to zero when advanced, then advance
Register D too. Exit to calling routine.

4 - 12

will perform a particular function, the de-
tails of which will eventually be presented.
This is particularly true in the next several
chapters as the beginning sections of the
program are discussed.

LINE FORMAT

In the preceeding chapter, the general
format of a line of information as it came

from the system's input device was pre-
sented. The precise format will now be
shown.

Whenever the operator enters informa-
tion on the system's input device an input
routine (labeled STRIN) will arrange a line
of information in an INPUT BUFFER in
the following format which is illustrated
for the example input:

100 LET X == Y + 2

021 261 260 260 240 314 305 324 240 330 240 275 240 331 240 253 240 262

cc 1 o o sp L E T sp

The first line in the above illustration
shows tbe actual machine code that would be
stored in successive locations in the INPUT
LINE BUFFER. The line beneath it gives the
data the code represents in the example. The
reader should note that the first entry in the
string represents a CHARACTER COUNT.
That is a binary count of the number of bytes
that the character string consumes. This
CHARACTER COUNT (cc) will always be
the first byte of data in a character string
that is processed by the program. The re-
maining bytes in a character string are oc-
cupied by the ASCII code for the charac-
ters being represented shown in eight-Lit
octal format with the parity bit always be-
ing defined in this program as being in a
marking (logic one) state. The CHARAC-
TER COUNT for a line of information is
calculated by simply reserving the first loca-

X sp . = sp y sp + sp 2

tion in a character string buffer for that in-
formation, counting the number of charac-
ters inputted until a line terminating charac-
ter (carriage-return) is received, and then
storing the value of that count in the first
byte of the character string buffer. The
character count for a line of information
is an important piece of data that is utilized
by many parts of the program package. The
reader will soon see how this information
is utilized when manipulating lines of data
in the Executive/Editor portion of SCELBAL.

With the precise manner in which charac-
ter strings are stored now explained, one can
proceed to present the first major section of
SCELBAL. The section to be presented is
illustrated bv the flow chart shown on the ,

next two pages. The commented source
listing begins below.

SCELBAL and EXECUTIVE start here. This first part
sets a pointer to a buffer containing the message
READY and calls on a subroutine to display this to the
operator indicating program is in the EXECUTIVE
COMMAND mode.

EXEC, LLI 352
LHI001
CALTEXTC

Load L with address of READY message
** Load H with page of READY message
Call subroutine to display the READY message

4-2

/ '\
EXEC
"-

DISPLA Y "READY"

INPUT A LINE FROM OPERATOR
AND PLACE IN INPUT BUFFER

NO IS IT YES LIST THE CONTENTS
"LIST" OF THE

? PROGRAM BUFFER •

""
J...

NO IS IT YES '\
"RUN" RUN

? ./ •

"V

.J..

NO IS IT YES SET POINTERS
"SCR" TO CLEAR OUT

? PROGRAM BUFFER •

v

.1
NO IS IT YES SAVE USER'S PROGRAM

"SAVE" ON EXTERNAL
? BULK STORAGE DEVICE •

.....

NO IS IT YES RESTORE USER'S PROGRAM
"LOAD" FROM BULK STORAGE

? TO PROGRAM BUFFER •

1
CALL SYNTAX SUBROUTINE
TO DETERMINE STATEMENT

ERROR

NO IS YES I
STATEMENT SYNTAX ERROR ERROR ROUTINE
TYPE = -1 ?

-
..I.

NO IS YES
LINE NUMBER DIRECT

BLANK?

4-3

,

SET POINTER TO START
OF PROGRAM BUFFER

TEST TO SEE IF LINE NUMBER
POINTED TO IN PROGRAM

BUFFER IS LESS THAN LINE
NUMBER IN INPUT BUFFER

NO
?
•

YES

TEST TO SEE IF LINE NUMBER
POINTED TO IN PROGRAM
BUFFER IS SAME AS LINE

NUMBER IN INPUT BUFFER

YES
? •

NO

REMOVE LINE POINTED
TO IN PROGRAM BUFFER

INSERT LINE IN INPUT
BUFFER INTO THE
PROGRAM BUFFER

/'"
EXEC
',--./

EXECl, LLI 000
LHI026
CAL STRIN
LAM
NDA
JTZ EXECI

ADVANCE PROGRAM
BUFFER POINTER

TO NEXT LINE NUMBER

YES END
OF

PGM?
v

NO

APPEND LINE TO CONTENTS
OF THE PROGRAM BUFFER

/ '" EXEC
'- .)

This next section fetches a line from the operator's
input device into the INPUT LINE BUFFER. After
making sure that the line contains data it tests to see
if the first word in the line is the command LIST.
If so, it sets up to perform the LIST directive.

Load L with starting address of INPUT LINE BUFFER
** Load H with page of INPUT LINE BUFFER
Call subroutine to input a line into the buffer
The STRIN subroutine will exit with pointer set to the
CHARACTER COUNT for the line inputted. Fetch the
Value of the counter, if it is zero then line was blank.

4-4

LLI 335
LHI001
LDI026
LEI 000
CAL STRCP
JFZ NOLIST
LLI 000
LHI 033

LIST, LAM
NDA
JTZ EXEC
CALTEXTC
CAL ADV
CAL CRLF
JMP LIST

NOLIST, LLI 342
LHI001
LEI 000
LDI 026
LEI 000
CAL STRCP
JTZ RUN
LDI 026
LEI 000
LLI 346
LHI 001
CAL STRCP
JFZ NOSCR
LHI 026
LLI364
LMI033
INL
LMIOOO
LLI077
LHI027
LMI001
LLI 075
LMIOOO
LLI 120
LMIOOO
LLI210

Load L with address of LIST in look up table
** Load H with address of LIST in look up table
** Load D with page of line input buffer
Load E with start of line input buffer
Call string compare subroutine to see if first word in
Input buffer is LIST. Jump ahead if not LIST.
If LIST, set up pointers to start of USER PROGRAM
tt BUFFER. (Note user could alter this starting addr)

N ext portion of program will LIST the contents of the
USER PROGRAM BUFFER until an end of buffer
(zero byte) indicator is detected.

Fetch the first byte of a line in the USER PROGRAM
BUFFER and see if it is zero. If so, have finished LIST
So go back to start of Executive and display READY.
Else call subroutine to display a line of information
Now call subroutine to advance buffer pointer to
Character count in next line. Also display a CR & LF.
Continue LISTing process

If line inputted by operator did not contain a LIST
command, continue program to see if RUN or SCRatch
command.

Load L with address of RUN in look up table
** Load H with address of RUN in look up table
Load E with start of line input buffer
** Load D with page of line input buffer
(Reserve 2 locs in case of patching by duplicating above)
Call string compare subroutine to see if first word in
Input buffer is RUN. Go to RUN routine if match.
** If not RUN command, reset address pointers back
To the start of the line input buffer
Load L with address of SCR in look up table
** Load H with page of SCR in look up table
Call string compare subroutine to see if first word in
Input buffer is SCR. If not then jump ahead.
** If found SCR command then load memory pointer
With address of a pointer storage location. Set that
tt Storage location to page of start of USER PRO-
GRAM BUFFER. (Buffer start loc may be altered).
Then adv pntr and do same for low addr portion of pntr
Now set pointer to address of VARIABLES counter
** Storage location. Initialize this counter by placing
The count of one into it. Now change the memory pntr
To storage location for number of dimensioned arrays
@@ And initialize to zero. (@@ = Substitute NOPs if
@@ DIMension capability not used in package.) Also
@@ Initialize 1 'st byte of array name table to zero.
Set pointer to storage location for the first byte of the

4-5

LMIOOO
INL
LMIOOO
LHI 033
LLIOOO
LMIOOO
LHI057

SCRLOP, LMIOOO
INL
JFZ SCRLOP
JMP EXEC

NOSCR, LEI 272
LDI001
LHI 026
LLIOOO
CAL STRCP
JTZ SAVE
LLI 277
LHI001
LDI026
LEI 000
CAL STRCP
JTZ LOAD
LLI360
LHI 026
LMI033
INL
LMIOOO
CAL SYNTAX
LLI203
LHI 026
LAM
NDA
JFS SYNTOK

SYNERR, LA! 323
LCI331
JMP ERROR

SYNTOK, LLI 340
LAM
NDA

V ARIABLES symbol table. Initialize it to zero too.
Advance the pointer and zero the second location
In the Variables table also.
tt Load H with page of start of USER PROGRAM
BUFFER. (Buffer start location could be altered.)
Clear first location to indicate end of user program.
@@ Load H with page of ARRAYS storage

@@ And form a loop to clear ou t all the locations
@@ On the ARRAYS storage page. (@@ These become
@@ NOPs if DIMension capability deleted fm package.)
SCRatch operations completed, go back to EXEC.

If line inputted did not contain RUN or SCRatch com-
mand, program continues by testing for SAVE or LOAD
commands. If it does not find either of these com-
mands, then operator did not input an executive com-
mand. Program then sets up to see if the first entry in
the line inputted is a LINE NUMBER.

Load E with address of SAVE in look up table
** Load D with page of look up table
** Load H with page of input line buffer
Set L to start of input line buffer
Call string compare subroutine to see if first word in
tt Input buffer is SAVE. If so, go to user's SAVE rtn
If not SAVE then load L with address of LOAD in look
** Up table and load H with page of look up table
** Load D with page of input line buffer
And L to start of input line buffer
Call string compare subroutine to see if first word in
tt Input buffer is LOAD. If so, go to user's LOAD rtn
If not LOAD then set pointer to address of storage loc
** For USER PROGRAM BUFFER pointer. Initialize this
tt Pointer to the starting address of the program buffer.
Advance memory pntr. Since pointer storage requires
Two locations, initialize the low addr portion also.
Call the SYNTAX subroutine to obtain a TOKEN indi-
Cator which will be stored in this location. Upon return
** From SYNTAX subroutine set memory pointer to
The TOKEN indicator storage location and fetch the
Value of the TOKEN. If the value of the syntax TOKEN
Is positive then have a valid entry.

However, if SYNTAX returns a negative value TOKEN
Then have an error condition. Set up the letters SY in
ASCII code and go to display error message to operator.

Set pointer to start of LINE NUMBER storage area
First byte there will contain the length of the line
Number character string. Fetch that value (cc).

4-6

JTZ DIRECT
LLI 360
LMI033
INL
LMIOOO

GETAUX, LLI201
LHI 026
LMI001
LLI350
LMIOOO

GET ADO, LLI 201
CAL GETCHP
JTZ GETAU1
CPI260
JTS GETAU2
CPI272
JFS GETAU2
LLI 350
LHI 026
CAL CONCT1

GETAU1, LLI201
LHI026
LBM
INB
LMB
LLI360
LHI026
LCM
INL
LLM
LHC
LAM
DCB
CPB
JFZ GETAUO

If line number blank, have a DIRECT statement!
If have a line number must get line in input buffer into
tt User program buffer. Initialize pointer to user buffer.
This is a two byte pointer so after initializing page addr
Advance pointer and initialize location on page address

If the line in the LINE INPUT BUFFER has a line num-
ber then the line is to be placed in the USER PRO-
GRAM BUFFER. It is now necessary to determine
where the new line is to be placed in the USER PRO-
GRAM BUFFER. This is dictated by the value of the
new line number in relation to the line numbers cur-
rently in the program buffer. The next portion of the
program goes through the contents of the USER PRO-
GRAM BUFFER comparing the values of the line num-
bers already stored against the value of the line number
currently being held in the LINE INPUT BUFFER.
Appropriate action is then taken to Insert or Append,
Change, or Delete a line in the program buffer.

Set memory pointer to line character pointer storage
** Location and then initialize that storage location
To point to the 1 'st character in a line
Set memory pointer to addr of start of auxiliary line
Number storage area and initialize first byte to zero
Set memory pointer to line character pointer storage loc
Fetch a char in line pointed to by line pointer
If character is a space, skip it by going to advance pntrs
If not a space check to see if character represents a
Valid decimal digit in the range 0 to 9 by testing the
ASCII code value obtained. If not a decimal digit then
Assume have obtained the line number. Go process.
If valid decimal digit want to append the digit to the
** Current string being built up in the auxiliary line
Number storage area so call sub to concat a character.

Reset memory pointer to line character pntr storage loc
** On the appropriate page.

Fetch the pointer, increment it, and restore new value

Set memory pointer to pgm buff line pntr storage loc
**
Bring the high order byte of this double byte pointer
Into CPU register C. Then advance the memory pntr
And bring the low order byte into register L. Now trans-
Fer the higher order portion into memory pointer H.
Obtain the char cntr (cc) which indicates the length of
The line being pointed to by the user program line pntr
Compare this with the value of the chars processed so
Far in current line. If not equal, continue getting line nr.

4-7

GETAU2, LLI360
LHI 026
LDM
,INL
LLM
LHD
LAM
NDA
JFZ NOTEND
JMP NOSAME

NOTEND, LLI350
LHI 026
LDI026
LEI 340
CAL STRCP
JTS CONTIN
JFZ NOSAME
LLI360
LHI 026
LCM
INL
LLM
LHC
LBM
INB
CAL REMOVE
LLI203
LHI026
LAM
NDA
JTZ EXEC

NOSAME, L1I 360
LHI026
LDM
INL
LEM
L1I 000
LHI 026
LBM
INB
CAL INSERT
LLI360
LHI 026
LDM
INL
LEM
L1I 000
LHI 026
CAL MOVEC
JMP EXECl

Reset mem pntr to pgm buffer line pntr storage
** On this page and place the high order byte
Of this pointer into CPU register D
Advance the memory pointer, fetch the second
Byte of the pgm buffer line pointer into register L
Now make the memory pointer equal to this value
Fetch the first byte of a line in the program buffer
Test to see if end of contents of pgm buff (zero byte)
If not zero continue processing. If zero have reached
End of buffer contents so go APPEND line to buffer.

Load L with addr of auxiliary line number storage loc
** Load H with addr of aux line number storage loc
** Load D with addr of line number buffer location
Load E with address of line number buffer location
Compare line nr in input buffer with line number in
User program buffer. If lesser in value keep looking.
If greater in value then go to Insert line in pgm buffer
If same values then must remove the line with the same
** Line number from the user program buffer. Set up
The CPU memory pointer to point to the current
Position in the user program buffer by retrieving that
Pointer from its storage location. Then obtain the first
Byte of data pointed to which will be the character
Count for that line (cc). Add one to the cc value to take
Account of the (cc) byte itself and then remove that
Many bytes to effectively delete the line fm the user
Program buffer. Now see if line in input buffer consists
** Only of a line number by checking SYNTAX
TOKEN value, Fetch the TOKEN value from its
Storage location. If it is zero then input buffer only
Contains a line number. Action is a pure Delete.
Reset memory pointer to program buffer
** Line pointer storage location
Load high order byte into CPU register D
Advance memory pointer
Load low order byte into CPU register E
Load L with address of start of line input buffer
** Do same for CPU register H
Get length of line input buffer
Advance length by one to include (cc) byte
Go make room to insert line into user program buffer
Reset memory pointer to program buffer
** Line pointer storage location
Load higher byte into CPU register D
Advance memory pointer
Load low order byte into CPU register E
Load L with address of start of line input buffer
** Do same for CPU register H
Call subroutine to Insert line in input buffer into the
User program buffer then go back to start of EXEC,

4-8

MOVEC, LBM
INB

MOVEPG, LAM
CAL ADV
CAL SWITCH
LMA
CAL ADV
CAL SWITCH
DCB
JFZ MOVEPG
RET

CONTIN, LLI 360
LHI026
LDM
INL
LEM
LHD
LLE
LBM
INB
CAL ADBDE
LLI360
LHI 026
LMD
INL
LME
JMP GETAUX

GETCHP, LHI 026
LBM
LLI 360
LDM
INL
LEM
CAL ADBDE
LHD
LLE
LAM
CPI240
RET

REMOVE, CALINDEXB
LCM
CALSUBHL
LMC
LAC
NDA
JTZ REMOVI
CALADV
JMP REMOVE

Fetch length of string in line input buffer
Increment that value to provide for (cc)
Fetch character from line input buffer
Advance pointer for line input buffer
Switch memory pointer to point to user pgm buffer
Deposit character fm input buff into user pgm buff
Advance pointer for user program buffer
Switch memory pntr back to point to input buffer
Decrement character counter stored in CPU register B
If counter does not go to zero continue transfer ops
When counter equals zero return to calling routine

Reset memory pointer to program buffer
** Line pointer storage location
Load high order byte into CPU register D
Advance memory pointer
Load low order byte into CPU register E
Now set CPU register H to high part of address
And set CPU register L to low part of address
Fetch the character counter (cc) byte fm line in
Program buffer and add one to compensate for (cc)
Add length of line value to old value to get new pointer
Reset memory pointer to program buffer
** Line pointer storage location
Restore new high portion
Advance memory pointer
And restore new low portion
Continue til find point at which to enter new line

** Load H with pointer page (low portion set upon
Entry). Now fetch pointer into CPU register B.
Reset pntr to pgm buffer line pointer storage location
Load high order byte into CPU register D
Advance memory pointer
Load low order byte into CPU register E
Add pointer to pgm buffer pointer to obtain address of
Desired character. Place high part of new addr in H.
And low part of new address in E.
Fetch character from position in line in user pgm buffer
See if it is the ASCII code for space
Return to caller with flags set to indicate result

Add (cc) plus one to addr of start of line
Obtain byte from indexed location and
Subtract character count to obtain old location
Put new byte in old location
As well as in the Accumulator
Test to see if zero byte to indicate end of user pgm buff
If it is end of user pgm buffer, go complete process
Otherwise add one to the present pointer value
And continue removing characters from the user pgm bf

4-9

THE MAIN SYNTAX ROUTINE

In order to avoid confusing the reader with
the title of this chapter, it will be pointed out
that the word SYNTAX generally refers to
the complete set of rules or grammar associa-
ted with a language such as SCELBAL. The
above title implies more than this single chap-
ter will cover. The preceeding chapter actual-
ly began explaining the complete syntax of
SCELBAL by showing how Executive com-
mands were processed and defining the use of
line numbers. Other rules of the syntax de-
fined for SCELBAL will become apparent as
other chapters are presented. The section of
SCELBAL to be discussed in this chapter is
limited to the first major subset of the lan-
guage which consists of the statement classi-
fications. Statements are the major types of
higher level directives which the language can
interpret and execute such as LET, GOTO,
IF, FOR etc. When SCELBAL finds one of
these statements in a line of higher level cod-
ing, it will know what major type of opera-
tion it is to perform. The portion of the pro-
gram that makes this initial syntax deter-
mination has been labeled SYNTAX, hence
the title name of this chapter.

The SYNTAX subroutine to be presented
in this chapter is not difficult to understand
once the reader gets an overall view of the
process. Referring to the flow chart for the
routine illustrated on the next several pages
will help the reader get the essential concepts
involved.

The purpose of the routine is simply to
determine whether a group of characters
(taken from the contents of the LINE INPUT
BUFFER) represent a program line number,
and a valid statement KEYWORD. A KEY-
WORD in this context is simply a group of
characters that form the name of a valid
statement such as LET, GOSUB, FOR, NEXT
and so forth. If a line number is found, and/
or a valid KEYWORD is found, the routine
will place a TOKEN value in a special TOKEN
BUFFER to indicate what the SYNTAX sub-
routine processed. A TOKEN value in this

5 - 1

context is simply a numerical value used to
symbolize the finding of a particular type of
character string. It isa sort of shorthand nota-
tion that serves to reduce the amount of data
that must be processed by the computer in
the future.

Thus, for instance, if during the opera-
tion of the SYNTAX routine, the keyword
REM is detected, a token value of 001 (oc-
tal) will be established. The finding of the
keyword GOTO would result in a token
value of 004 being set up. Each valid key-
word has a token value associated with it.
The token value established is then used
later by other portions of SCELBAL to
signify a particular type of operation using
much less storage space than would be re-
quired if one had to refer to an entire
string of ASCII characters that make up a
keyword. The technique of establishing a
token value to represent a particular string
of characters is thus a powerful method in
the process of converting higher level Eng-
lish language directives which are conven-
ient for human programmers, down to the
simple numerical directives that the com-
puter needs for sustenance!

The process by which keywords are con-
verted to token values is shown quite clear-
ly in the flow chart provided. Essentially
the routine seeks to find a match between
a group of characters (taken from the line
input buffer and examined while in a work-
ing register) to determine if they match any
entry in a keyword look-up table. The key-
word look-up table utilized by this routine
is formatted as follows:

CCC
AAA
BBB

•

NNN
CCC
AAA

•

Number of characters in keyword.
ASCII code for 1 'st letter of keyword
ASCII code for 2'nd letter of keyword

ASCII code for N'th letter of keyword •

Number of characters in next keyword
ASCII code for 1 'st letter of the next

entry in the keyword table, etc .

CRLF, LAI215
CAL ECHO
LAI212
CAL ECHO
LLI043
LHI001
LMI001
LHD
LLE
RET

DEC, DCL
INL
JFZ DECNO
DCH

DECNO, DCL
RET

INDEXB, LAL
ADB
LLA
RFC
INH
RET

ECHO, LDH
LEL
LLI 043
LHI 001
LBM
INB
LMB
CAL ttt ttt
LHD
LLE
RET

CINPUT, JMP ttt ttt

Load ASCII code for carriage-return into ACC
Call user provided display driver subroutine
Load ASCII code for line-feed into ACC
Call user provided display driver subroutine
Set L to point to COLUMN COUNTER storage location
** Set H to page of COLUMN COUNTER
Initialize COLUMN COUNTER to a value of one
Restore H from D (saved by ECHO subroutine)
Restore L from E (saved by ECHO subroutine)
Then exit to calling routine

Subroutine to decrement double-byte value in CPU
registers Hand L.

Decrement contents of L
Now increment to exercise CPU flags
If L not presently zero, skip decrementing H
Else decrement H
Do the actual decrement of L
Return to caller

Subroutine to index the value in CPU registers Hand L
by the contents of CPU register B.

Load L into the accumulator
Add B to that value
Restore the new value to L
If no carry, retl.!rn to caller
Else, increment value in H
Before returning to caller

The following subroutine is used to display the ASCII
encoded character in the ACC on the system's display
device. This routine calls a routine labeled CINPUT
which must be provided by the user to actually drive the
system's output device. The subroutine below also in-
crements an output column counter each time it is used.

Save entry value of H in register D
And save entry value of L in register E
Set L to point to COLUMN COUNTER storage location
** Set H to page of COLUMN COUNTER
Fetch the value in the COLUMN COUNTER
And increment it for each character displayed
Restore the updated count in memory
tt Call the user's device driver subroutine
Restore entry value of H from D
Restore entry value of L from E
Return to calling routine

tt Reference to user defined input subroutine

5 -10

SYNTAX

CLEAR SYMBOL BUFFER

SEE IF FIRST STRING OF
CHARACTERS REPRESENT

A LINE NUMBER

NO

NO END OF
LINE

BUFF?

YES

YES

PROCESS NEXT CHARACTER
STRING IN THE LINE

NO

NO

NO

IS
CHAR. A
SPACE?

IS
CHAR.

"=" ? •

IS
CHAR.
" (" ?

YES

YES

YES

SET TOKEN VALUE
TO 016 OCTAL

5-2

STORE LINE NUMBER
IN LINE NUMBER BUFFER

SET TOKEN VALUE TO
ZERO TO INDICATE ONLY

HA VE A LINE NUMBER

SET TOKEN VALUE
TO 015 OCTAL

/ """'-
C

\..

CONCATENATE CHARACTER
TO SYMBOL BUFFER

INITIALIZE TOKEN COUNTER
(COUNT OF '1' = 'REM')

COMP ARE CURRENT STRING
OF CHARACTERS IN THE SYMBOL

BUFFER AGAINST AN ENTRY IN
THE KEYWORD TABLE

NO YES

....... /

INCREMENT TOKEN COUNTER

ADVANCE KEYWORD TABLE
POINTER TO NEXT TABLE ENTRY

RESET POINTER TO BEGINNING
OF THE CURRENT CHARACTER

STRING IN THE SYMBOL BUFFER·

NO TESTED
FOR ALL KEY-

WORDS?

YES

EXIT

/' "\ .-------------L __ -o A

ADV ANCE INPUT LINE BUFFER
POINTER TO NEXT CHARACTER

NO END OF
LINE INPUT

BUFFER?

YES

SET TOKEN = '-1' FOR ERROR

/ """'-
EXIT

\. /

5-3

The table contains all the valid keywords
defined for statement types used in the high
level language SCELBAL. These are: REM,
IF, LET, GOTO, PRINT, INPUT, FOR,
NEXT, GOSUB, RETURN, DIM and END.
They appear in the table in the order just
presented.

Since the number of characters making up
a keyword can vary, the technique used to
look for a match between a group of charac-
ters in the line input buffer and the look-up
table is as follows.

Characters are taken one at a time from
the line input buffer and placed in a special
buffer (referred to as the SYMBOL buffer).
Each time a character is added to the symbol
buffer, a search is made through the keyword
look-up table. At the start of the search a
TOKEN value of 001 (octal) is set in the
TOKEN VALUE storage register. Now, as
each entry in the look-up table is compared
against the character string currently in the
symbol buffer and fails to match, the token
value is incremented. This technique results,
if a match IS found, in the token value al-
ready being set to the proper token value.
For instance, if a match was found for the
keyword PRINT, the token value would be
at 005. (Print is the fifth entry in the look-up
table.) If a match is not found during the
search of the table, the routine goes back and
appends another character from the input
buffer onto the symbol buffer. It then re-
initializes the token value back to 001 and
tries searching the table again. This process
continues until either a match is found or an
end of character string terminator is detected.
Notice that if a keyword is not found, once
the table look-up process is started, that an
error condition (SYntax error) is assumed to
exist. For such an error condition, a negative
value (377 octal) is placed in the token value
register so that the routine calling SYNTAX
will be able to detect the error condition.

The reader should note that the flow chart
illustrates two special syntax conditions. One
is when an equal (=) sign is detected. Finding
an equal sign before a keyword has been es-

5-4

tablished can occur for a special situation
called the IMPLIED LET. The IMPLIED LET
statement enables SCELBAL to interpret a
statement such as:

X=Y

without having to put in the actual LET
keyword. An IMPLIED LET statement
signified by an equal sign at the point in
a line where the SYNTAX routine would
be processing the information is handled
as a special keyword and given the token
value of 015.

A second special case is defined for
handling array (subscripted) variables in
an IMPLIED LET situation. The use of
a left hand parenthesis "(" at this point
in a line is assigned a token value of 016.

One of the principal functions of the
SYNT AX subroutine, which is shown at
the beginning of the flow chart, is to see
if the line being processed contains a line
number and to store the line number in a
special line number buffer. This is because
the SYNTAX routine is the first routine
to be called when SCELBAL is in the RUN
mode each time a new line is processed.
Lines stored in the program buffer start
with a line number, and then the keyword
statement. Naturally, the SYNTAX sub-
routine must get beyond the line number
before it can look for the keyword in the
line. However, there are certain cases, such as
when SYNTAX is called by the EXECutive
routine (described in the previous chapter)
where a line in the input buffer may contain
just a line number and no keyword. (This is
the situation when an operator wishes to de-
lete a specific line number from the user's
program buffer.) For this special case, the
SYNT AX subroutine assigns a token value
of 000.

The converse case can occur when a
DIRECT (calculator mode) statement is being
processed. In that case there would be no line
number. The flow chart illustrates that if the
first group of characters in a line is not num-

erical the routine proceeds to just look for a
keyword.

low the detailed source listing for this section
of the program as presented next starting at
the instruction labeled SYNTAX. The reader
may review from the flow chart as desired. The reader should now be prepared to fol-

SYNTAX, CAL CLESYM
LLI340
LHI026
LMIOOO
LLI 201
LMI001

SYNTX1, LLI 201
CAL GETCHR
JTZ SYNTX2
CPI260
JTS SYNTX3
CPI272
JFS SYNTX3
LLI340
CAL CONCT1

SYNTX2, LLI 201
CAL LOOP
JFZ SYNTX1
LLI203
LMIOOO
RET

SYNTX3, LLI 201
LBM
LLI 202
LMB

SYNTX4, LLI 202
CALGETCHR
JTZ SYNTX6
CPI275
JTZ SYNTX7
CPI250
JTZ SYNTX8
CAL CONCTS
LLI 203
LMI001
LHI 027
LLIOOO

Clear the SYMBOL BUFFER area
Set L to start of LINE NUMBER BUFFER
** Set H to page of LINE NUMBER BUFFER
Initialize line number buff by placing zero as (cc)
Change pointer to syntax counter/pointer storage loco
Set pointer to first character (after cc) in line buffer

Set pointer to syntax cntr/pntr storage location
Fetch the character pointed to by contents of syntax
Cntr/pntr from the line input buffer. If character was
A space, ignore. Else, test to see if character was ASCII
Code for a decimal digit. If not a decimal digit, consider
Line number to have been processed by jumping
Over the remainder of this SYNTX1 section.
If have decimal digit, set pointer to start of LINE
NUMBER BUFFER and append incoming digit there.

Reset L to syntax cntr/pntr storage location. Call sub-
Routine to advance pntr and test for end of input buffer
If not end of input buffer, go back for next digit
If end of buffer, only had a line number in the line.
Set pntr to TOKEN storage location. Set TOKEN = 000.
Return to caller.

Reset pointer to syntax cntr/pntr and fetch
Position of next character after the line number
Change pntr to SCAN pntr storage location
Store address when SCAN takes up after line number

Set pntr to SCAN pntr storage location
Fetch the character pointed to by contents of the SCAN
Pointer storage location. If character was ASCII code
For space, ignore. Else, compare character with "=" sign
If is an equal sign, go set TOKEN for IMPLIED LET.
Else, compare character with left parenthesis" ("
If left parenthesis, go set TOKEN for implied array LET
Otherwise, concatenate the character onto the string
Being constructed in the SYMBOL BUFFER. Now set
Up TOKEN storage location to an initial value of OOL
** Set H to point to start of KEYWORD TABLE.
Set L to point to start of KEYWORD TABLE.

5 - 5

SYNTX5,

SYNTXL,

SYNTX6,

SYNTX7,

LDI026
LEI 120
CAL STRCP
RTZ
CAL SWITCH

INL
LAM
NDI300
JFZ SYNTXL
CAL SWITCH
LLI203
LHI026
LBM
INB
LMB
CAL SWITCH
LAB
CPI015
JFZ SYNTX5

LLI 202
LHI026
CAL LOOP
JFZ SYNTX4
LLI203
LMI377
RET

LLI203
LMI015
RET

LLI203
LMI016
RET

BIGERR, LAI302
LCI307

ERROR, CAL ECHO
LAC
CAL ECHO
JMP FINERR

GETCHR, LA\1
CPI120
JFS BIGERR

** Set D to page of SYMBOL BUFFER
Set E to start of SYMBOL BUFFER
Compare char string nresently in SYMBOL BUFFER
With entry in KEYWORD TABLE. Exit if match.
TOKEN will be set to keyword found. Else, switch

Pointers to get table address back and advance pntr to
KEYWORD TABLE. Now look for start of next entry
In KEYWORD TABLE by looking for (cc) byte which
Will NOT have a one in the two most sig. bits. Advance
Pntr til next entry found. Then switch pointers again so
Table pointer is in D&E. Put addr of TOKEN in L.
** And page of TOKEN in H. Fetch the value currently
In TOKEN and advance it to account for going on to
The next entry in the KEYWORD TABLE.
Restore the updated TOKEN value back to storage.
Restore the keyword table pointer back to H&L.
Put TOKEN count in ACC.
See if have tested all entries in the keyword table.
If not, continue checking the keyword table.

Set L to SCAN pointer storage location
** Set H to page of SCAN pointer storage location
Call routine to advance pntr & test for end of In buffer
Go back and add another character to SYMBOL BUFF
And search table for KEYWORD again. Unless reach
End of line input buffer. In which case set TOKEN=377
As an error indicator and exit to calling routine.

Set pointer to TOKEN storage register. Set TOKEN
Equal to 015 when "=" sign found for IMPLIED LET.
Exit to calling routine.

Set pointer to TOKEN storage register. Set TOKEN
Equal to 016 when "(" found for IMPLIED array LET.
Exit to calling routine.

The following are subroutines used by SYNTAX and
other routines in SCELBAL.

Load ASCII code for letters Band G to indicate BIG
ERROR (For when buffer, stack, etc., overflows.)

Call user provided display routine to print ASCII code
In accumulator. Transfer ASCII code from C to ACC
And repeat to display error codes.
Go complete error message (AT LINE) as required.

Get pointer from memory location pointed to by H&L
See if within range of line input buffer
If not then have an overflow condition = error.

5 - 6

LLA
LHI026
LAM
CPI240
RET

CLESYM, LLI 120
LHI 026
LMIOOO
RET

CONCT A, CPI 301
JTS CONCTN
CPI333
JTS CONCTS

CONCTN, CPI 260
JTS CONCTE
CPI272
JFS CONCTE

CONCTS, LLI120
LHI026

CONCT1, LCM
INC
LMC
LBA
CALINDEXC
LMB
LAIOOO
RET

CONCTE, JMPSYNERR

STRCP, LAM
CAL SWITCH
LBM
CPB
RFZ
CAL SWITCH

STRCPL, CAL ADV
LAM
CAL SWITCH

Else can use it as addr of character to fetch from the
** LINE INPUT BUFFER by setting up H too.
Fetch the character from the line input buffer.
See if it is ASCII code for space.
Return to caller with flags set according to comparison.

Set L to start of SYMBOL BUFFER.
** Set H to page of SYMBOL BUFFER.
Place a zero byte at start of SYMBOL BUFFER.
To effectively clear the buffer. Then exit to caller.

Subroutine to concatenate (append) a character to the
SYMBOL BUFFER. Character must be alphanumeric.

See if character code less than that for letter A.
If so, go see if it is numeric.
See if character code greater than that for letter Z.
If not, have valid alphabetical character.

Else, see if character in valid numeric range.
If not, have an error condition.
Continue to check for valid number.
If not, have an error condition.

If character alphanumeric, can concatenate. Set pointer
** To starting address of SYMBOL BUFFER.

Fetch old character count in SYMBOL BUFFER.
Increment the value to account for adding new
Character to the buffer. Restore updated (cc).
Save character to be appended in register B.
Add (cc) to address in H & L to get new end of buffer
Address and append the new character to buffer
Clear the accumulator
Exit to caller

If character to be appended not alphanumeric, ERROR!

Subroutine to compare character strings pointed to by
register pairs D & E and H & L.

Fetch (cc) of first string.
Switch pointers and fetch length of second string (cc)
Into register B. Compare the lengths of the two strings.
If they are not the same
Return to caller with flags set to non-zero condition
Else, exchange the pointers back to first string.

Advance the pointer to string number 1 and fetch a
Character from that string into the accumulator.
Now switch the pointers to string number 2.

5-7

CALADV

STRCPE, CPM
RFZ
CAL SWITCH
DCB
JFZ STRCPL
RET

STRCPC, LAM
CAL SWITCH
JMP STRCPE

ADV, INL
RFZ
INH
RET

LOOP, LBM
INB
LMB
LLI 000
LAJ.l\1
DCB
CPB

, ! '

STRIN, LCI 000

STRINl, CAL CINPUT
CPI377
JFZ NOTDEL
LAI334
CAL ECHO
DCC
JTS STRIN
CAL DEC
JMP STRINI

Advance the pointer in line number 2.

Compare char in string 1 (ACC) to string 2 (memory)
If not equal, return to caller with flags set to non-zero
Else, exchange pointers to restore pntr to string 1
Decrement the string length counter in register B
If not finished, continue testing entire string
If complete match, return with flag in zero condition

Fetch character pointed to by pointer to string 1
Exchange pointer to examine string 2
Continue the string comparison loop

Subroutine to advance the two byte value in CPU regi-
sters Hand L.

Advance value in register L.
If new value not zero, return to caller.
Else must increment value in H
Before returning to caller

Subroutine to advance a buffer pointer and test to see
if the end of the buffer has been reached.

Fetch memory location pointed to by H & L into B.
Increment the value.
Restore it back to memory.
Change pointer to start of INPUT LINE BUFFER
Fetch buffer length (cc) value into the accumulator
Make value in B original value
See if buffer length same as that in B
Return with flags yielding results of the comparison

The following subroutine is used to input characters
from the system's input device (such as a keyboard)
into the LINE INPUT BUFFER. Routine has limited
editing capability included. (Rubout = delete previous
character(s) entered.)

Initialize register C to zero.

Call user provided device input subroutine to fetch one
Character from the input device. Is it ASCII code for
Rubout? Skip to next section if not rubout.
Else, load ASCII code for backslash into ACC.
Call user display driver to present backslash as a delete
Indicator. Now decrement the input character counter.
If at beginning of line do NOT decrement Hand L.
Else, decrement H & L line pointer to erase previous
Entry, then go back for a new input.

5 - 8

NOTDEL, CPI 203
JTZ CTRLC
CPI215
JTZ STRINF
CPI212
JTZ STRIN1
CAL ADV
INC
LMA
LAC
CPI120
JFS BIGERR
JMP STRIN1

STRINF, LBC
CALSUBHL
LMC
CAL CRLF
RET

SUBHL, LAL
SUB
LLA
RFC
DCH
RET

TEXTC, LCM
LAM
NDA
RTZ

TEXTCL, CAL ADV
LAM
CAL ECHO
DCC
JFZ TEXTCL
RET

See if character inputted was 'CONTROL C'
If so, stop inputting and go back to the EXECutive
If not, see if character was carriage-return
If so, have end of line of input
If not, see if character was line-feed
If so, ignore the input, get another character
If none of the above, advance contents of H & L
Increment the character counter
Store the new character in the line input buffer
Put new character count in the accumulator
Make sure maximum buffer size not exceeded
If buffer size exceeded, go display BG error message
Else can go back to look for next input

Transfer character count from C to B
Subtract B from H & L to get starting address of
The string and place the character count (cc) there
Provide a line ending CR & LF combination on the
Display device. Then exit to caller.

Subroutine to subtract contents of CPU register B from
the two byte value in CPU registers H & L.

Load contents of register L into the accumulator
Subtract the contents of register B
Restore the new value back to L
If no carry, then no underflow. Exit to caller.
Else must also decrement contents of H.
Before returning to caller.

Subroutine to display a character string on the system's
display device.

Fetch (cc) from the first location in the buffer (H & L
Pointing there upon entry) into register Band ACC.
Test the character count value.
No display if (cc) is zero.

Advance pointer to next location in buffer
Fetch a character from the buffer into ACC
Call the user's display driver subroutine
Decrement the (cc)
If character counter not zero, continue display
Exit to caller when (cc) is zero.

Subroutine to provide carriage-return and line-feed
combination to system's display device. Routine also
initializes a column counter to zero. Column counter
is used by selected output routines to count the num-
ber of characters that have been displayed on a line.

5-9

ST ATEMENT INTERPRET ATION

The reader has now been presented with
the knowledge of how SCELBAL utilizes an
Executive routine to store a user created
high level language program in memory. Ad-
ditionally, the reader has been shown how
the SYNTAX routine is used to analyze the
first portion of a line in order to obtain the
line number and to set up a token value re-
presenting the finding of a particular type of
statement in the beginning portion of a line.
(A line referring to a line of the source cod-
ing in the higher level language.) The reader
should now be prepared to learn how a pro-
gram stored in the user program buffer (or
a single line "calculator mode" directive re-
siding in the line input buffer) is further
processed.

The flow chart on the next page will
once again illustrate how the program con-
tinues to operate in a straightforward, con-
ceptually simple manner. It illustrates that
when the Executive interprets a RUN com-
mand, the program proceeds to perform
operations in the following fashion.

The first line stored in the user program
buffer is pulled into the line input buffer.
Then the SYNTAX subroutine is used to
find out what type of statement is contained
in the line. A TOKEN value representing the
type of statement found is returned by the
SYNT AX subroutine. This token value is
then used to direct the program to go to a
particular routine that will perform the type
of operation dictated by the statement type.
It is as simple as that!

There is then a whole series of routines,
one for each type of statement used in the
language, that processes the remaining data on
a line after the statement keyword. This chap-
ter will present the details for each of these
routines.

When the execution of a statement rout-
ine has been completed, the program con-

6 - 1

tinues by simply extracting the next line of
information stored in the user program buf-
fer and repeating the process.

In the DIRECT, or "calculator" mode,
the program simply restricts its operation to
processing the line of information stored in
the input line buffer, instead of extracting
lines from the user program buffer. The read-
may observe that the RUN flow chart shows •

several entry points to various subsections of
the program. The reader can see that there is
a DIRECT entry to the routine which is used
when the program is interpreting a single line
statement in the "calculator" mode.

The reader might also note that there are
two special entry points in the RUN routine
named NXTLIN and SAMLIN. The first entry
point is used when the program has finished
the execution of a statement and is to pro-
ceed to interpret the next line of information
in the user program buffer. The second entry
point is used in special situations which will
be explained more fully later in this chapter.
One such case is when the program has exe-
cuted a GOTO statement. This is because, the
routine that processes a GOTO statement will
search for the line number in the user pro-
gram buffer that was specified in the GOTO
directive. When it finds that line number, the
program will already have the user program
buffer pointer set up to point to the line that
should be processed next!

The various statement routines presented
in this chapter will call on subroutines whose
functions will be described in detail in follow-
ing chapters. However, the reader should be
able to discern the essential operations of
each type of statement as they are presented.
The supplementary subroutines will fall into
logical order once the information in this
chapter has been digested and is understood.

The source listing for the RUN routine and
associated subsections of that routine are pre-
sented immediately following the flow chart.

QUOTE, LLI367
LMA
CAL CLESYM
LLI203
LBM
INB
LLI204
LMB

QUOTE1, LLI 204
CAL GETCHR
LLI367
CPM
JTZ QUOTE2
CAL ECHO
LLI 204
CAL LOOP
JFZ QUOTE1

QUOTER, LAI311
LCI321
LLI367
LHI 026
LMIOOO
JMPERROR

QUOTE2, LLI204
LBM
LLI202
LMB
LAB
LLIOOO
CPM
JFZ PRINT1
CAL CRLF
LLI367
LHI 026
LMIOOO
JMP NXTLIN

PFPOUT, LLI126
LHI001
LAM
NDA
JTZ ZERO
INL

Load L with address of QUOTE flag
Store type of quote in flag storage location
Initialize the SYMBOL buffer for new entry
Load L with address of PRINT pointer
Fetch the PRINT pointer into register B
Add one to advance over quote character
Load L with address of QUOTE pointer
Store the beginning of the QUOTE field pointer

Load L with address of QUOTE pointer
Fetch the next character in the TEXT field
Load L with the QUOTE flag (type of quote)
Compare to see if latest character this quote mark
If so, finish up this quote field
If not, display the character as part of TEXT
Reset L to QUOTE pointer storage location
Increment QUOTE pointer and test for end of line
If not end of line, continue processing TEXT field

If end of line before closing quote mark have an error
So load ACC with I and register C with Q
Load L with the address of the QUOTE flag
** Load H with the page of the QUOTE flag
Clear the QUOTE flag for future use
Go display the IQ (Illegal Quote) error message

Load L with address of QUOTE pointer
Fetch the QUOTE pointer into register B
Load L with address of SCAN pointer storage location
Store former QUOTE pointer as start of next field
Place QUOTE pointer into the accumulator
Change L to point to start of the input line buffer
Compare QUOTE pointer value with (cc) value
If not end of line, process next PRINT field
Else display a CR & LF combination at end of line
Load L with the address of the TAB flag
* * Load H with the page of the TAB flag
Clear the TAB flag for future use
Go process next line of the program.

The following subroutines are utilized by the PRINT
routine.

Load L with the address of the FPACC MSW (Floating
** Point ACC). Load H with page of the FP ACC MSW.
Fetch the FP ACC MSW into the accumulator. Test to
See if the FP ACC MSW is zero. If so, then simply go and
Display the value "0"
Else advance the pointer to the FP ACC Exponent

6 - 10

LAM
NDA
JTZ FRAC
JMP FPOUT

ZERO, LAI 240
CAL ECHO
LAI260
JMP ECHO

•

FRAC, LLI110
LMIOOO
JMP FPOUT

PCOMMA, LLI 000
LAM
LLI 203
SUM
RTS
LLI043
LHI001
LAM
NDI360
ADI020
SUM
LCA
LAI240

PCOM1, CAL ECHO
DCC
JFZ PCOM1
RET

Fetch the FPACC Exponent into the accumulator
See if any exponent value. If not, mantissa is in range
0.5 to 1.0. Treat number as a fraction.
Else perform regular numerical output routine.

Load ASCII code for space into the ACC
Display the space
Load ASCII code for 0 into the ACC
Display 0 and exit to calling routine

Load L with address of FIXED/FLOAT flag
Reset it to indicate floating point mode
Display floating point number and return to caller

Load L with address of (cc) in line input buffer
Fetch the (cc) for the line into the ACC
Change pointer to PRINT pointer storage location
Subtract value of PRINT pointer from line (cc)
If at end of buffer, do not TAB
If not end, load L with address of COLUMN COUNTER
** Set H to page of COLUMN COUNTER
Fetch COLUMN COUNTER into the accumulator
Find the last TAB position (multiple of 16 decimal)
Add 16 (decimal) to get new TAB position
Subtract current position from next TAB position
Store this value in register C as a counter
Load the ACC with the ASCII code for space

Display the space
Decrement the loop counter
Continue displaying spaces until loop counter is zero
Then return to calling routine

THE LET STATEMENT ROUTINE

The LET statement is used to set a variable
equal to the value of another variable, an ex-
pression, or a specific number. This is illus-
trated by the following examples.

LET X = Y
or

LET X = (Y*2 + 3*Y + 4)*(N - M)
or

LET X = 3.14159

The operation of the LET routine simply
consists of defining the variable on the left

6 -11

hand side of the equal sign in a statement
line (by defining, it is meant determining
what character(s) are being used to repre-
sent the variable) and then calculating the
value of the expression contained on the
right hand side of the equal sign. This value
is then stored along with the variable in a
variables symbol table.

The operation of the LET statement
routine is summarized in the flow chart
shown on the next page. The source listing
for the routine is then presented.

/'
LET

'-------

INITIALIZING PROCEDURES

EXAMINE NEXT CHARACTER
IN THE LINE BUFFER FOR AN

EQUAL (=) SIGN

NO YES
FIND ONE?

EVALUATE THE EXPRESSION
AFTER THE EQUAL SIGN

STORETHEVALUEOFTHE
EXPRESSION EVALUATED

FOR THE VARIABLE DEFINED

I

NXTLIN

END
OF

BUFF?

YES /

APPEND CHARACTER TO THE
AUXILIARY SYMBOL BUFFER

ADV ANCE LINE
BUFFER POINTER

6 - 12

LETO, CAL SA VSYM
LLI202
LHI026
LBM
LLI203
LMB
JMP LET5

LET, CAL CLESYM
LLI144
LHI026
LMIOOO

LETl, LLI 202
LHI026
LBM
INB
LLI 203
LMB

LET2, LLI 203
CAL GETCHR
JTZ LET4
CPI 275
JTZ LET5
CPI250
JFZ LET3
CAL ARRAY
LLI206
LHI026
LBM
LLI 203
LMB
JMP LET4

LET3, LLI 144
LHI 026
CAL CONCTI

LET4, LLI 203
CAL LOOP
JFZ LET2

LETERR, LAI314
LCI305
JMP ERROR

LET5, LLI 203
LHI 026
LBM
INB

Entry point for IMPLIED LET statement. Save the
Variable (to left of the equal sign). Set L to the SCAN
** Pointer. Set H to the page of the SCAN pointer.
Fetch value of SCAN pointer. (Points to = sign in In bf)
Change pointer to LET pointer (was TOKEN value)
Place the SCAN pointer value into the LET pointer
Continue processing the LET statement line

Initialize the SYMBOL BUFFER for new entry
Load L with address of start of AUX SYMBOL BUFF
** Load H with page of AUX SYMBOL BUFFER
Initialize AUX SYMBOL BUFFER

Entry point for ARRAY IMPLIED LET statement.
** Set pointer to SCAN pointer storage location
Fetch the SCAN pointer value (last letter scanned by
SYNT AX subroutine) and add one to next character
Change L to LET pointer storage location
Store former SCAN value (updated) in LET pointer

Set L to storage location of LET pointer
Fetch the character pointed to by the LET pointer
If character is a space, ignore it
See if character is the equal (=) sign
If so, go process other side of the statement (after =)
(iiJ@ If not, see if character is a right parenthesis "("
If not, continue looking for equal sign
@@ If so, have subscript. Call array set up subroutine.
@@ Load L with address of ARRAY pointer
@@ ** Load H with page of ARRAY pointer
@@ Fetch value (points to ")" character of subscript)
@@ Load L with address of LET pointer
@@ Place ARRAY pointer value as new LET pointer
@@ Continue to look for = sign in statement line

Reset L to start of AUX SYMBOL BUFFER
** Load H with page of AUX SYMBOL BUFFER
Concatenate character to the AUX SYMBOL BUFFER

Load L with address of LET pointer storage location
Add one to pointer and test for end of line input buffer
If not end of line, continue looking for the equal sign

If do not find an equal sign in the LET statement line
Then have a LE (Let Error). Load the code for Land E
Into registers ACC and C and go display the error msg.

When find the equal sign, reset L to point to the LET
** Pointer and H to the proper page. Fetch the pointer
Value into register B and add one to advance pointer
Over the equal sign to first char in the expression.

6 - 13

LLI276
LMB
LLIOOO
LBM
LLI277
LMB
CAL EVAL
CAL RESTSY
CALSTOSYM
JMP NXTLIN

Set L to point to the address of the EV AL pointer
Set EV AL pointer to start evaluating right after the
Equal sign. Now change L to start of line input buffer.
Fetch the (cc) value into register B. (Length of line.)
Load L with EV AL FINISH pointer storage location.
Set it to stop evaluating at end of the line.
Call the subroutine to evaluate the expression.
Restore the name of the variable to receive new value.
Store the new value for the variable in variables table.
Go process next line of the program.

THE GOTO STATEMENT ROUTINE

The GOTO statement is one of the easiest
statements to process even though the source
listing is somewhat longer than the LET
routine just described. The reason for the
relatively lengthy source listing is because a
lot of pointer manipulation is required. Con-
ceptually, the process involves nothing more
than searching the user program buffer for

the line containing the line number specified
as part of the GOTO statement. Once it is
located, the program simply continues exe-
cuting the high level program with that line!

The source listing for the GOTO statement
is presented below. The reader may correlate
it with the flow chart on the next page.

GOTO, LLI350
LHI 026
LMIOOO
LLI 202
LBM
INB
LLI203
LMB

GOT01, LLI 203
CAL GETCHR
JTZ GOT02
CPI260
JTS GOT03
CPI272
JFS GOT03
LLI350
CAL CONCT1

GOT02, LLI203
CAL LOOP
JFZ GOT01

Load L with start of AUX LINE NR BUFFER
** Load H with page of AUX LINE NR BUFFER
Initialize the AUX LINE NR BUFFER to zero
Load L with address of SCAN pointer storage location
Fetch pointer value (last char scanned by SYNT AX)
Add one to skip over the last a in GOTO keyword
Change pointer to GOTO pointer (formerly TOKEN)
Store the updated SCAN pointer as the GOTO pointer

Load L with address of GOTO pointer
Fetch the character pointed to by the GOTO pointer
If character was a space, ignore it
See if character is in the range of a decimal digit
If not, must have end of the line number digit string
Continue to test for decimal digit
If not, must have end of the line number digit string
If valid decimal digit, load L with addr of AUX LINE
NR BUFFER and concatenate digit to the buffer.

Reset pointer to GOTO pointer storage location
Advance the pointer value and test for end of line
If not end of line, fetch next digit in GOTO line number

6 - 14

I'

ADV ANCE POINTER TO START
OF NEXT LINE IN THE USER

PROGRAM BUFFER

GOTO

INITIALIZING PROCEDURES

FETCH THE LINE NUMBER
REFERRED TO BY THE GOTO

STATEMENT INTO THE
AUXILIARY LINE NUMBER

BUFFER

SET POINTERS TO START OF
USER PROGRAM BUFFER

FETCH THE LINE NUMBER OF
THE LINE POINTED TO IN THE
USER PROGRAM BUFFER INTO

THE SYMBOL BUFFER

SEE IF THIS NUMBER IS EQUAL
TO THE ONE IN THE AUXILIARY

LINE NUMBER BUFFER

NO YES
?

NO YES

USER PROGRAM BUFFER
POINTER IS NOW SET TO
THE ST ART OF THE LINE
SPECIFIED BY THE GOTO

STATEMENT!

SAMLIN

END
OF

BUFF? '''--'/
v

6 - 15

•

GOT03, LLI360
LHI026
LMI033
INL
LMIOOO

GOT04, CAL CLESYM
LLI 204
LMIOOI

GOT05, LLI 204
CAL GETCHP
JTZ GOT06
CPI260
JTS GOT07
CPI272
JFS GOT07
CAL CONCTS

GOT06, LLI204
LHI026
LBM
INB
LMB
LLI360
LCM
INL
LLM
LHC
LAM
DCB
CPB
JFZ GOT05

GOT07, LLI120
LHI026
LDI026
LEI 350
CAL STRCP
JTZ SAMLIN
LLI 360
LHI026
LDM
INL
LEM
LHD
LLE
LBM
INB
CALADBDE
LLI 360

Set L to user program buffer pointer storage location
** Set H to page of program buffer pointer
tt Initialize high part of pointer to start of pgm buffer
Advance the memory pointer
Initialize the low part of pointer to start of pgm buffer

Clear the SYMBOL BUFFER
Load L with address of GOTO SEARCH pointer
Initialize to one for first char of line

Load L with address of GOTO SEARCH pointer
Fetch character pointed to by GOTO SEARCH pointer
From line pointed to in user program buffer. Ignore
Spaces. Check to see if character is a decimal digit.
If not, then have processed line number at the start of
The current line. Continue the check for a valid decimal
Digit. If have a decimal digit then concatenate the digit
Onto the current string in the SYMBOL BUFFER.

Change L to the address of the GOTO SEARCH pointer
** And H to the proper page of the pointer
Fetch the GOTO SEARCH pointer value
Increment the GO TO SEARCH pointer
And restore it back to memory

•

Change L to address of user program buffer pointer
Save the high part of this pointer value in register C
Advance L to the low part of the pgm buffer pointer
Now load it into L
And transfer C into H to point to start of the line
Fetch the (cc) of the current line being pointed to in the
User pgm buff. Decrement B to previous value. Compare
GOTO SEARCH pointer value to length of current line.
If not end of line then continue getting current line nr.

Load L with address of start of the SYMBOL BUFFER
** Set H to the page of the SYMBOL BUFFER
** Set D to the page of the AUX LINE NR BUFFER
Set E to the start of the AUX LINE NR BUFFER
Compare GOTO line number against current line nr.
If they match, found GOTO line. Pick up ops there!
Else, set L to user program buffer pntr storage location
** Set H to page of user program buffer pointer
Fetch the high part of this pointer into register D
Advance the memory pointer
Fetch the low part into register E
Transfer the pointer to H
And L. Fetch the (cc) of the current line into register
B and then add one to account for the (cc) byte to get
Total length of the current line in the user pgm buffer
Add the total length to the pointer value in D & E
To get the starting address of the next line in the user

6 - 16

LHI 026
LMD
INL
LME
LLI364
LAD
CPM

** User program buffer. Place the new value for the user
Program buffer pointer back into the user program
Buffer pointer storage locations so that it points to the
Next line to be processed in the user program buffer.
Load L with address of end of user pgm buffer storage
Location (page address) and fetch end of buffer page.
Compare this with next line pointer (updated).

JFZ GOT04
INL
LAE

If not end of buffer, keep looking for the specified line
If have same page addresses, check the low address
Portions to see if

CPM Have reached end of user program buffer
JFZ GOT04 If not, continue looking. If end of buffer without

GOTOER, LAI 325
LCI316
JMP ERROR

Finding specified line, then have an error condition.
Load ACC and register C with code for "UN" and go
Display "Undefined Line" error message.

THE IF STATEMENT ROUTINE

The IF statement routine is a little more
complicated than most statement routines
presented so far. This is because the state-
ment line may take several forms. The typical
forms the IF statement may appear in are
illustrated here:

IF X = Y + 2 GO TO 120

or

IF X - Y + 2 THEN 120

or

IF X = Y + 2 THEN Z = 3.14159

The first two examples of the IF statement
format are relatively straightforward. If the
specified condition is not met, the user pro-
gram simply continues with the next high
level statement in the program. If the condi-
tion is satisfied, the program simply proceeds
directly to the line number specified after the
GOTO or THEN directive.

The third example effectively results in a
line of the user's high level program contain-

6 - 17

ing two statements. The first statement in the
example is the IF directive, the second is an
IMPLIED LET provided that the IF condi-
tion is satisfied.

It should be noted that the IMPLIED LET
part of the line in the examole could be re-
placed by other types of SCELBAL state-
ments.

The processing of an IF statement is out-
lined in the flow chart shown on the next
several pages. The case where a line number
follows the THEN or GOTO directive in the
statement is handled effectively as a JUMP to •
the designated line number in the user pro-
gram buffer. The case where another state-
ment follows the THEN directive is handled
as if the program actually was processing a
new line of the higher level program except
that the line number remains the same as
that used for the originating IF statement!

The reader may refer to the flow chart
when necessary to understand the operation
of this portion of SCELBAL while studying
the source listing of the IF statement routine.

INITIALIZING PROCEDURES

SET UP EVALUATOR POINTERS

LOOK FOR "THEN" DIRECTIVE
IN THE CURRENT LINE

NO FIND
"THEN"

?

YES

LOOK FOR "GOTO" DIRECTIVE
IN THE CURRENT LINE

NO FIND
"GOTO"

?
•

YES

CALL SUBROUTINE TO
EV ALUATE THE "IF"

EXPRESSION

SEE IF THE CONDITION FAILED

NO YES
? •

LOOK FOR CHARACTER STRING
AFTER "THEN" OR "GOTO" IN

THE CURRENT STATEMENT LINE

6 -18

NXTLIN

SEE IF IT BEGINS WITH
A NUMERIC CHARACTER

NO YES
? GOTO •

"V

HAVE ANOTHER STATEMENT

MOVE THE NEW STATEMENT
INTO THE PROPER POSITION
IN THE LINE INPUT BUFFER
SO THAT IT EMULATES THE

PRESENCE OF A NEW
STATEMENT LINE

CALL THE SYNTAX SUBROUTINE
AT A SPECIAL ENTRY POINT

TO GET A NEW TOKEN VALUE

GO PERFORM THE NEW ST ATE-
MENT AS DIRECTED BY THE

IF, LLI202
LHI026
LBM
INB
LLI 276
LMB
CAL CLESYM
LLI320
LHI001
CALINSTR
LAE
NDA
JFZ IF1
LLI013
LHI027
CALINSTR

NEW TOKEN VALUE

DIRECT

Set L to SCAN pointer storage location.
** Load H to page of SCAN pointer storage location.
Fetch the SCAN pointer value to register B.
Add one to advance pointer over last char scanned.
Change L to address of EV AL pointer. Set up EV AL
Pointer to begin evaluation with next char in the line.
Clear the SYMBOL BUFFER.
Set L to starting address of THEN in look-up table.
** Set H to page of the look-up table.
Search for occurrence of THEN in the line input buffer.
Transfer register E to ACC. If THEN not found
The value in E will be zero.
If THEN found, can evaluate the IF expression.
If THEN not found, set L to starting address of GOTO
** In the KEYWORD look-up table. Set H to table
Search for occurrence of GO TO in the line input buffer.

6 - 19

NXTLIN

SAMLIN

DIRECT

SYNTAX ERROR

/ '\
EXEC

RUN
./

INITIALIZE POINTERS
AND CO UNTERS

SET POINTER TO NEXT LINE
IN USER PROGRAM BUFFER

TRANSFER LINE IN USER
PROGRAM BUFFER INTO

LINE INPUT BUFFER

NO IS
LINE

BLANK?

YES / "'\

CALL SYNTAX SUBROUTINE

SEE IF TOKEN VALUE
RETURNED BY SYNTAX SUB-

ROUTINE IS VALID

NO YES
?
•

GO TO APPROPRIATE
STATEMENT ROUTINE

6-2

''-/

LAE
NDA
JFZ IF1

IFERR, LAI 311
LCI306
JMP ERROR

IF1, LLI277
LHI026
DCE
LME
CAL EVAL
LLI 126
LHI001
LAM
NDA
JTZ NXTLIN
LLI 277
LHI 026
LAM
ADI005
LLI202
LMA
LBA
INB
LLI 204
LMB

IF2, LLI 204
CALGETCHR
JFZIF3
LLI204
CAL LOOP
JFZ IF2
JMPIFERR

IF3, CPI260
JTSIF4
CPI272
JTS GOTO

IF4, LLI 000
LAM
LLI 204
SUM
LBA
INB
LCM
LLIOOO
LMB

Transfer E to ACC. If GOTO not found
The value in E will be zero.
If GOTO found, can evaluate the IF expression.

Set ASCII code for letter I in ACC
And code for letter F in register C
Go display the IF error message

Load L with addr of EV AL FINISH pointer storage loc
** Load H with page of storage location
Subtract one from pointer in E and set the EV AL
FINISH pointer so that it will evaluate up to the THEN
Or GOTO directive. Evaluate the expression.
Load L with address of FPACC Most Significant Word
** Load H with page of FP ACC MSW
Fetch the FP ACC MSW into the accumulator
Test the value of the FP ACC MSW
If it is zero, IF condition failed, ignore rest of line.
If not, load L with addr of EV AL FINISH pointer
** Set H to the appropriate page
Fetch the value in the EV AL FINISH pointer
Add five to skip over THEN or GOTO directive
Change L to SCAN pointer storage location
Set up the SCAN pointer to location after THEN or
GOTO directive. Also put this value in register B.
Add one to the value in B to point to next character
After THEN or GOTO. Change L to addr of THEN pntr
Storage location and store the pointer value.

Load L with the address of the THEN pointer
Fetch the character pointed to by the THEN pointer
If character is not a space, exit this loop
If fetch a space, ignore. Reset L to the THEN pointer
Add one to the THEN pointer and test for end of line
If not end of line, keep looking for a character other
Than a space. If reach end of line first, then error

When find a character see if it is numeric.
If not numeric, then should have a new type of
Statement. If numeric, then should have a line number.
So process as though have a GOTO statement!

Load L with addr of start of line input buffer.
Fetch the (cc) byte to get length of line value.
Change L to current value of THEN pointer (where first
Non-space char. found after THEN or GOTO). Subtract
This value from length of line to get remainder. Now
Have length of second statement portion. Add one for
(cc) count. Save THEN pointer value in register C.
Reset L to start of line input buffer. N ow put length of
Second statement into (cc) position of input buffer.

6 - 20

LLC
LDI026
LEI 001
CAL MOVEIT
LLI202
LMIOOI
CALSYNTX4
JMP DIRECT

Set L to where second statement starts.
** Set D to page of line input buffer.
Set E to first character position of line input buffer.
Move the second statement up in line to become first!
Load L with address of new SCAN pointer. Load
It with starting position for SYNT AX scan.
Use special entry to SYNTAX to get new TOKEN value.
Process the second statement in the original line.

THE GOSUB STATEMENT ROUTINE

The GOSUB statement routine creates a
software STACK so that the high level pro-
gram can return, after executing the sub-
routine, to the next line in the user program
buffer following the GOSUB statement. The
software stack created is merely a group of
locations in memory where addresses are
stored and a stade pointer system that indi-
cates what position in the stack is in use.
The software stack utilized for GOSUB
statements has enough room reserved in it
to nest GOSUB statements up to eight levels.

The GOSUB software stack operates in a
push-down manner. Each time a GOSUB
statement is encountered, the current ad-
dress of the user program buffer line pointer
is placed on the top of the stack, with any

previous addresses on the stack being pushed
down. The RETURN statement, to be dis-
cussed shortly, causes the reverse to occur.
The address on the top of the stack is re-
moved (as the returning address) and any
remaining addresses on the stack are popped
up.

The GOSUB flow chart on the following
page illustrates the procedure followed when
a GOSUB statement is encountered. Once the
current user program buffer line pointer has
been placed on the GOSUB stack, the GOSUB
directive is handled as an effective GO TO
statement. This use of the GOTO routine al-
ready presented, to complete the GOSUB pro-
cess, makes the source listing for the GOSUB
routine quite short as illustrated below.

GOSUB, LLI 340
LHI026
LDM
IND
DCD

Load L with start of LINE NUMBER BUFFER

JTZ GOSUBI
LLI360
LDM
INL
LEM

GOSUBl, LLI 073
LHI 027
LAM
ADI002
CPI021

** Load H with page of LINE NUMBER BUFFER
Fetch (cc) of current line number into register D
Test contents of register by first incrementing
And then decrementing the value in the register
If no line number, then processing a DIRECT statement
Else, load L with address of user pgm buff line pointer
Fetch high value (page) of pgm line pointer to D
Advance the memory pointer
Fetch the low part of pgm line pointer to E

Set L to address of GOSUB STACK POINTER
** Set H to page of GOSUB STACK POINTER
Fetch value in GOSUB stack pointer to ACC
Add two to current stack pointer for new data to be
Placed on the stack and see if stack overflows

6 - 21

HA VE A DIRECT STATEMENT
SO SET UP A ZERO BYTE
FOR RETURN ADDRESS

/ " GOSUB

SEE IF THERE IS A LINE NUMBER
AT THE ST ART OF THE LINE

NO YES
? •

GET GOSUB STACK POINTER
AND SEE IF THERE IS ROOM
A V AILABLE ON THE STACK

NO YES
;------_ ? •

. ..

PUSH RETURN ADDRESS
ONTO THE TOP OF THE

GOSUB STACK

CAN NOW PROCESS THE
STATEMENT AS THOUGH

IT WAS A "GOTO" DIRECTIVE

GOTO

6 - 22

SET UP CURRENT ADDRESS
OF USER PROGRAM BUFFER

POINTER AS RETURN ADDRESS

JFS GOSERR
LMA
LLI076
ADL
LLA
LMD
INL
LME
JMP GOTO

If stack filled, have an error condition
Else, store updated stack pointer
Load L with address of start of stack less offset (2)
Add GOSUB stack pointer to base address
To get pointer to top of stack (page byte)
Store page part of pgm buffer line pointer in stack
Advance pointer to next byte in stack
Store low part of pgm buffer line pointer in stack
Proceed from here as though processing a GOTO

THE RETURN STATEMENT ROUTINE

The RETURN statement routine takes the
address residing on the top of the GOSUB
stack just discussed and places it in the user
program buffer line pointer. This operation
will cause the high level program to continue
with the next statement following the origi-
nal GOSUB directive. Any remaining addres-
ses on the GOSUB stack are popped up, as

mentioned in the discussion of the GOSUB
statement, so that nested subroutines may be
properly handled.

The flow chart provided on the next page
illustrates the RETURN statement execution
process. The source listing for this short
routine is presented below.

RETURN, LLI 073
LHI 027
LAM
SUI 002
JTS RETERR
LMA
ADI002
LLI076
ADL
LLA
LDM
IND
DCD
,]TZ EXEC
INL
LEM
LLI360
LHI 026
LMD
INL
LME
JMP NXTLIN

Set L to address of GOSUB STACK POINTER
** Set H to page of GOSUB STACK POINTER
Fetch the value of GOSUB stack pointer to ACC
Subtract two for data to be removed from stack
If stack underflow, then have an error condition
Restore new stack pointer to memory
Add two to point to previous top of stack
Load L with address of start of GOSUB stack less two
Add address of previous top of stack to base value
Set pointer to high address value in the stack
Fetch the high address value from stack to register D
Exercise the register contents to see if high address
Obtained is zero. If so, original GOSUB statement was
A DIRECT statement. Must return to Executive!
Else, advance pointer to get low address value from the
Stack into CPU register E.
Load L with address of user pgm line pointer storage
** Location. Load H with page of user pgm line pntr.
Put high address from stack into pgm line pointer.
Advance the memory pointer
Put low address from stack into pgm line pointer.
Execute the next line after originating GOSUB line!

(Two short error routines used by the GOSUB and
RETURN routines are shown following the flow chart.)

6-23

RETURN

FETCH THE GOSUB STACK
POINTER AND SEE IF ANY-

THING IS ON THE STACK

NO YES
ERROR,I------< '-------- ?

GET THE ADDRESS ON
THE TOP OF THE STACK

SEE IF THE HIGH ORDER
BYTE OF THE ADDRESS

OBTAINED IS ZERO

NO YES
? •

PLACE ADDRESS OBTAINED
FROM THE STACK INTO THE

USER PROGRAM BUFFER
POINTER STORAGE LOCATION

THE PROGRAM WILL NOW
CONTINUE OPERATIONS

WITH THE LINE POINTED TO
BY THE CONTENTS OF THE

USER PGM BUFFER POINTER

NXTLIN

6 - 24

CALLING DIRECTIVE
WAS ISSUED BY A

DIRECT STATEMENT

EXEC

GOSERR, LAI307
LCI323

Load ASCII code for letter G into accumulator
Load ASCII code for letter S into register C

JMP ERROR Go display GoSub (GS) error message.

RETERR, LAI 322
LCI324
JMP ERROR

Load ASCII code for letter R into accumulator
Load ASCII code for letter T into register C
Go display ReTurn (RT) error message.

THE INPUT STATEMENT ROUTINE

The INPUT statement routine is used to
input the values for user defined variables dur-
ing the operation of a high level program from
the system's input device such as a keyboard.
The values that are inputted from the opera-
tor are then stored in the variables symbol
table.

The flow chart on the following page il-
lustrates the essential operation of the state-
ment routine. However, not illustrated in the
flow chart is the fact that the INPUT state-
ment routine has a special capability that is
essentially the reverse of the CHR function.
The CHR function was mentioned in the dis-
cussion of the PRINT statement and will be
detailed in a later chapter.

The reverse of the CHR function is the
capability to accept a character from an input
device and convert the character to a numeri-
cal value corresponding to its ASCII code (in
decimal for SCELBAL).

When a programmer using SCELBAL wants
to have the operator enter a character as an
input for a variable value, a dollar sign ($)
must be placed immediately after the variable
in the statement directive. Thus:

INPUT A$,B,C,D$

as an INPUT statement would mean that the
variables Band C were to be entered as num-
erical values, while variables A and D were to
entered as alphanumeric characters (which
will then be converted to numerical values ac-
cording to their ASCII code equivalents).

When the INPUT statement routine is
processing the statement line, it checks to
see if the last character of each variable is a
dollar sign. If so, the routine converts the
character inputted by the operator for the
variable value to its decimal ASCII code
numerical value. That numerical value thus
becomes the value assigned to the variable.
If the dollar sign is not present as the last
character of a variable, then the operator
input is assumed to represent the actual
numerical value entered.

This special capability is provided in the
portion of the INPUT statement routine
labeled INPUTX. The source listing which
follows illustrates that the capability is
a small subset of the fundamental INPUT
statement routine. Hence, it is not high-
lighted in the flow chart.

INPUT, CAL CLESYM
LLI202

Clear the SYMBOL BUFFER

LBM
INB
LLI203
LMB

Load L with address of SCAN pointer storage location
Fetch value of SCAN pointer to register B
Increment value to point to next character
Change L to point to INPUT pointer (formerly TOKEN)
Updated SCAN pointer becomes INPUT pointer

6 - 25

,

SET UP FOR
SUBSCRIPTED

VARIABLE

INPUT

INITIALIZING PROCEDURES I

FETCH A CHARACTER FROM
LINE BUFFER AND SEE IF
CHARACTER IS A COMMA

NO YES
? •

SEE IF CHARACTER
IS A LEFT P AREN

YES NO
? •

APPEND CHARACTER
TO SYMBOL BUFFER

ADV ANCE POINTER IN
INPUT LINE BUFFER

NO

SEE IF END OF
STATEMENT LINE

YES
? •

6 - 26

ACCEPT INPUT FROM USER
STORE INCOMING VALUE IN
VARIABLES SYMBOL TABLE

ACCEPT INPUT FROM USER
STORE INCOMING VALUE IN
VARIABLES SYMBOL TABLE

NXTLIN

INPUT1, LLI203
CALGETCHR
JTZ INPUT3
CPI254
JTZ INPUT4
CPI250
JFZ INPUT2
CALARRAY2
LLI206
LHI026
LBM
LLI203
LMB
JMPINPUT3

INPUT2, CAL CONCTS

INPUT3, LLI203
CAL LOOP
JFZ INPUT1
CALINPUTX
CAL STOSYM
JMP NXTLIN

INPUT4, CALINPUTX
CAL STOSYM
LHI 026
LLI203
LBM
LLI202
LMB
JMPINPUT

INPUTX, LLI 120
LAM
ADL
LLA
LAM
cpr 244
JFZINPUTN
LLI120
LBM
DCB
LMB
CAL FPO
CAL CINPUT
LLI124
LMA
JMP FPFLT

Load L with address of INPUT pointer
Fetch a character from the line input buffer
If character is a space, ignore it. Else,
See if character is a comma. If so, process the
Variable that preceeds the comma.
If not, see if character is a left parenthesis.
If not, continue processing to build up symbolic variable
@@ If so, call array subscripting subroutine
@@ Load L with address of array set up pointer
@@ ** Load H with page of array set up pointer
@@ Fetch pointer value (point to ")" of subscript)
@@ Change pointer to address of INPUT pointer
@@ Update INPUT pointer
@@ Jump over concatenate instruction below

Concatenate character to SYMBOL BUFFER

Load L with address of INPUT pointer
Increment INPUT pointer and test for end of line
If not end of line, go get next character
If end of buffer, get input for variable in the SYMBOL
BUFFER and store the value in the VARIABLES table
Then continue to interpret next statement line

Get input from user for variable in SYMBOL BUFFER
Store the inputted value in the VARIABLES table
** Set H to page of INPUT pointer
Set L to location of INPUT pointer
Fetch pointer value for last character examined
Change L to point to SCAN pointer storage location
Update the SCAN pointer
Continue processing statement line for next variable

Load L with start of SYMBOL BUFFER (contains cc)
Fetch the (cc) (length of symbol in the buffer) to ACC
Add (cc) to base address to set up
Pointer to last character in the SYMBOL BUFFER
Fetch the last character in the SYMBOL BUFFER
See if the last character was a $ sign
If not a $ sign, get variable value as a numerical entry
If $ sign, reset L to start of the SYMBOL BUFFER
Fetch the (cc) for the variable in the SYMBOL BUFF
Subtract one from (cc) to chop off the $ sign
Restore the new (cc) for the SYMBOL BUFFER
Call subroutine to zero the floating point accumulator
Input one character from system input device
Load L with address of the LSW of the FP ACC
Place the ASCII code for the character inputted there
Convert value to floating point format in FPACC

6 - 27

INPUTN, LLI 144
LHI026
LAI277

Load L with address of start of AUX SYMBOL BUFF
** Load H with page of AUX SYMBOL BUFFER
Load accumulator with ASCII code for? mark

CAL ECHO
CAL STRIN
JMP DINPUT

Call output subroutine to display the? mark
Input string of characters (number) fm input device'
Convert decimal string into binary floating point nr.

FPO, LHI 001
JMP CFALSE

** Load H with floating point working registers page
Zero the floating point accumulator & exit to caller

THE FOR STATEMENT ROUTINE

The FOR statement routine actually only
performs part of the tasks related to the state-
ment. The NEXT statement routine, which
will be described in the following section,
performs the major portion of the operations
using the data entered on the FOR statement
line.

The use of the combination of the FOR
and NEXT statements permits the high level
language programmer to form iterative pro-
gramming loops. These statements must al-
ways be used in pairs. The FOR statement
initiates an iterative loop. The NEXT state-
ment ends the loop. Statements in between
a FOR and a NEXT statement may be used to
perform desired operations.

FOR/NEXT loops may be nested one in-
side another provided that the nesting occurs
in the following fashion.

...--- FOR X = 1 TO 5
•

•

r-- FOR Y = 1 TO 3
•

•

r FOR Z = 1 TO 10
•

•

'- NEXT Z
'-- NEXT Y

L---NEXT X

In other words, the deepest loop must

6 - 28

be closed out by a NEXT statement first!
Attempting to nest loops in the following
manner:

FOR X = 1 TO 5
•

•

r-+ FOR Y = 1 TO 3
•

•

NEXT X
--- NEXT Y

will result in an error condition.

In order to allow for the nesting of FOR/
NEXT loops, a FOR/NEXT STACK imple-
mented by software is maintained similar in
operation (push-down, pop-up) to the soft-
ware stack established for GOSUB/RETURN
statements. However, the FOR/NEXT stack
requires four bytes for each nested loop. Two
bytes are used to store the address of the user
program buffer line pointer when a FOR
statement is encountered, and two are used to
store the symbolic name of the variable which
is iterated. (Remember, the GOSUB/RE-
TURN stack just required two bytes per
statement. These were used to store the ad-
dress of the GOSUB statement that initiated
the subroutine call operation.)

Room has been provided in one of the
special pointer/counters/look-up table pages
used in SCELBAL for a FOR/NEXT stack
area that will allow nesting of FOR/NEXT

loops up to eight levels. A stack pointer is
used to point to the proper locations in the
stack area as a function of the nesting level at
any given time.

page illustrates that the major function of the
FOR statement routine is to place the appro-
priate information on the FOR/NEXT stack.

The flow chart presented on the following
The source listing for the routine starts

below.

FOR, LLI144
LHI026
LMIOOO
LLI146
LMIOOO
LL1205
LHI027
LBM
INB
LMB
LLI 360
LHI026
LDM
INL
LEM
LAB
RLC
RLC
ADI134
LLA
LHI027
LMD
INL
LME
LLI325
LHI001
CAL INSTR
LAE
NDA
JFZ FORI

FORERR, LAI 306
LCI305
JMP ERROR

FORI, LLI 202
LHI026
LBM
INB
LLI 204
LMB
LLI 203
LME

Load L with address of AUX SYMBOL BUFFER
** Load H with page of AUX SYMBOL BUFFER
Initialize buffer by clearing first byte
Load L with location of second character in buffer
Clear that location in case of single character variable
Load L with address of FOR/NEXT STACK pointer
** Load H with page of FOR/NEXT STACK pointer
Fetch the FOR/NEXT STACK pointer
Increment it in preparation for pushing operation
Restore it back to its storage location
Load L with address of user pgm buffer line pointer
** Set H to page of line pointer
Fetch page address of pgm buffer line pntr into D
Advance the memory pointer to pick up low part
Fetch low address of pgm buffer line pntr into E
Restore updated FOR/NEXT STACK pointer to ACC
Rotate it left to multiply by two, then rotate it again to
Multiply by four. Add this value to the base address of
The FOR/NEXT STACK to point to the new top of
The FOR/NEXT STACK and set up to point to stack
** Set H for page of the FOR/NEXT STACK
Store the page portion of the user pgm buffer line pntr
In the FOR/NEXT STACK, advance register L, then
Store the low portion of the pgm line pntr on the stack
Change L to point to start of TO string which is stored
** In a text strings storage area on this page
Search the statement line for the occurrence of TO
Register E will be zero if TO not found. Move E to ACC
To make a test
If TO found then proceed with FOR statement

Else have a For Error. Load ACC with ASCII code for
Letter F and register C with code for letter E.
Then go display the FE message.

Load L with address of SCAN pointer storage location
** Set H to page of the SCAN pointer
Fetch pointer value to ACC (points to letter R in the
For directive). Increment it to point to next character
In the line. Change register L and set this value up
As an updated FOR pointer.
Set L to address of TO pointer (formerly TOKEN)
Save pointer to TO in the TO pointer!

6 - 29

RUN, LLI 073
LHI027
LMIOOO
LLI205
LMIOOO
LLI 360
LHI 026
LMI033
INL
LMIOOO
JMP SAMLIN

NXTLIN, LLI 360
LHI026
LDM
INL
LEM
LHD
LLE
LBM
INB
CAL ADBDE
LLI360
LHI 026
LMD
INL
LME
LLI340
LHI026
LAM
NDA
JTZ EXEC
LAA
LAA

SAMLIN, LLI 360
LHI026
LCM
INL
LLM
LHC
LDI026
LEI 000
CAL MOVEC
LLIOOO
LHI026
LAM
NDA
JTZ EXEC
CAL SYNTAX

Load L with addr of GOSUB/RETURN stack pointer
** Load H with page of same pointer
Initialize the GOSUB/RETURN stack pointer to zero
Load L with addr of FOR/NEXT stack pointer
Initialize the FOR/NEXT stack pointer to zero
Load L with addr of user pgm buffer line pointer
** Load H with page of user pgm buffer line pointer
tt Initialize pointer (may be altered by user)
Advance memory pointer to low portion of user pgm
Buffer pointer and initialize to start of buffer
Start executing user program with first line in buffer

Load L with addr of user program buffer line pointer
** Load H with page of user pgm buffer line pointer
Place page addr of pgm buffer line pointer in D
Advance the memory pointer
Place low addr of pgm buffer line pointer in E
Also put page addr of pgm buffer line pointer in H
And low addr of pgm buffer line pointer in L
N ow fetch the (cc) of current line into register B
Add one to account for (cc) byte itself
Add value in B to D&E to point to next line in
User program buffer. Reset L to addr of user ogm
** Buffer pointer storage location. Store the new
Updated user pgm line pointer in pointer storage
Location. Store both the high portion
And low portion. (Now points to next line to be
Processed from user program buffer.) Change pointer
** To address of line number buffer. Fetch the last
Line number (length) processed. Test to see if it was
Blank. If it was blank
Then stop processing and return to the Executive
Insert two effective Naps here
In case of patching

Load L with addr of user program buffer line pointer
** Load H with page of same pointer
Fetch the high portion of the pointer into register C
Advance the memory pointer
Fetch the low portion of the pointer into register L
Now move the high portion into register H
** Set D to page of line input buffer
Set E to address of start of line input buffer
Move the line from the user program buffer into the
Line input buffer. Now reset the pointer to the start
** Of the line input buffer.
Fetch the first byte of the line input buffer (cc)
Test (cc) value to see if fetched a blank line
If fetched a blank line, return to the Executive
Else call subrtn to strip off line nr & set statement token

6-3

/'
FOR

"-

INITIALIZING PROCEDURES

PLACE USER PROGRAM BUFFER
LINE POINTER ON TOP OF STACK

SCAN INPUT LINE BUFFER
FOR PRESENCE OF THE

"TO" DIRECTIVE

NO YES
ERROR <if FIND IT?

RESET POINTER BACK TO
THE FIRST CHARACTER

IN THE ST ATEMENT LINE
IMMEDIATEL Y FOLLOWING

THE "FOR" DIRECTIVE

FETCH CHARACTER FROM
THE LINE INPUT BUFFER

IS CHARACTER AN "=" SIGN

NO YES
?
•

"V

CONCATENATE THE EVALUATE EXPRESSION
CHARACTER ONTO AFTER THE "=" SIGN

AUX SYMBOL BUFFER
PLACE VARIABLE NAME IN

THE VARIABLES TABLE
ADV ANCE THE INPUT

LINE BUFFER POINTER PLACE VARIABLE SYMBOL
(NAME) IN FOR/NEXT STACK

SEE IF END OF LINE
PLACE THE INITIAL VARIABLE
VALUE OBTAINED WHEN THE

EXPRESSION WAS EVALUATED
NO YES IN THE VARIABLES TABLE

?
•

"V

ERROR NXTLIN

6 - 30

FOR2, LLI 204
CAL GETCHR
JTZ FOR3
CPI275
JTZ FOR4
LLI144
CAL CONCTI

FOR3, LLI204
CAL LOOP
JFZ FOR2
JMP FORERR

FOR4, LLI 204
LBM
INB
LLI 276
LMB
LLI203
LBM
DCB
LLI 277
LMB
CAL EVAL
CAL RESTSY
LLI144
LHI026
LAM
CPIOOI
JFZ FOR5
LLI146
LMIOOO
JMP FOR5

FOR5, LLI 205
LHI027
LAM
RLC
RLC
ADI136
LEA
LDH
LLI145
LHI026
LBI002
CAL MOVEIT
CAL STOSYM
JMP NXTLIN

Load L with address of the FOR pointer
Fetch a character from the statement line
If it is a space, ignore it
Test to see if character is the "=" sign
If so, variable name is in the AUX SYMBOL BUFFER
If not, then set L to point to start of the AUX SYMBOL
BUFFER and concatenate the character onto the buffer

Reset L to address of the FOR pointer
Increment the pointer and see if end of line
If not end of line, continue looking for the "=" sign
If reach end of line before "=" sign, then have error

Set L with address of the FOR pointer
Fetch pointer value to ACC (pointing to "=" sign)
Increment it to skip over the "=" sign
Set L to address of the EV AL pointer
Restore the updated pointer to storage
Set L to the address of the TO pointer
Fetch pointer value to ACC (pointing to letter T in TO)
Decrement it to point to character before the T in TO
Set L to EV AL FINISH pointer storage location
Store the EV AL FINISH pointer value
Evaluate the expression between the "=" sign and TO
Directive. Place the variable name in the variables table.
Load L with starting address of the AUX SYMBOL BF
** Load H with the page of the AUX SYMBOL BUFF
Fetch the (cc) for the name in the buffer
See if the symbol (name) length is just one character
If not, go directly to place name in FOR/NEXT STACK
If so, set L to point to second character location in the
AUX SYMBOL BUFFER and set it equal to zero.
This jump directs program over pntrs/cntrs/table area

Load L with address of the FOR/NEXT ST ACK pointer
** Load H with page of the FOR/NEXT STACK pntr
Fetch the stack pointer to the ACC.
Rotate it left to multiply by two, then rotate it again to
Multiply by four. Add this value to the base address
Plus two of the base address to point to the next part of
The FOR/NEXT STACK. Place this value in register E.
Set D to the FOR/NEXT STACK area page.
Load L with the address of the first character in the
** AUX SYMBOL BUFFER and set up H to this page.
Set up register B as a number of bytes to move counter.
Move the variable name into the FOR/NEXT STACK.
Store initial variable value in the VARIABLES TABLE.
Continue with next line in user program buffer.

6 - 31

THE NEXT STATEMENT ROUTINE

The NEXT statement routine is the work
horse portion of the FOR/NEXT combi-
nation. As indicated in the preceeding sec-
tion, the statement types must always appear
in pairs in a high level program. When a NEXT
statement is used it must be followed (in the
statement line) by the identifying variable
that associates it with an originating FOR
statement.

The flow chart on the next several pages
illustrates the essential operations of the
NEXT statement. This flow chart is amplified
by the following discussion.

The first thing the NEXT statement routine
accomplishes is to go to the FOR/NEXT stack
to obtain the starting address of the assoc-
iated FOR statement line in the user program
buffer. As a check for proper FOR/NEXT
nesting, a test is made to see if the variable
in the FOR statement line pointed to by the
entry in the FOR/NEXT stack is the same as
that specified in the NEXT statement being
processed. If not, improper FOR/NEXT nest-
ing has been attempted.

The NEXT statement routine then pro-
ceeds to process the information on the origi-
nating FOR statement line. Remember, the
originating FOR statement line contains the
the variable range (limit) and step size for the
FOR/NEXT loop being processed.

A FOR statement may be formatted in one
of two possible ways. The statement:

FOR X = 1 TO 5

represents an IMPLIED STEP SIZE. That is,
since no STEP size is specified, the statement
is to be interpreted as having an implied value
of 1.0.

6 - 32

If desired, the high level language pro-
grammer may specify a STEP size in a FOR
statement such as in the example:

FOR X = 1 TO 5 STEP (2)

In this case, the STEP size will be whatever
value is dictated by the programmer in the
term that follows the STEP directive.

Thus, the NEXT statement routine must
determine whether an implied or
specific STEP size is involved. When this
has been accomplished, the STEP size is
added to the current value of the associated
variable specified in the FOR/NEXT loop.
A test is made to see if the new variable
value thus obtained is within the range
limit specified in the FOR statement line.
If the new value causes the variable to ex-
ceed the limit value, then the FOR/NEXT
loop must be terminated. This is accom-
plished by removing the associated data
from the top of the FOR/NEXT stack and
then directing program operation to con-
tinue with the statement that follows the
NEXT statement. (And NOT the statement
following the FOR statement line!) If, on
the other hand, the new variable value is
still within the specified limit range, then
the FOR/NEXT loop must be executed
again. In this case, the updated variable
value is stored for future use and the state-
ment following the FOR statement will be
the next program line executed by the in-
terpreter.

This flow of operations is apparent in
the accompanying flow chart. The details of
the routine's execution are presented in the
source listing which follows the flow chart.

NEXT

INITIALIZING PROCEDURES

FETCH CHARACTER STRING
FOLLOWING "NEXT" DIRECTIVE
INTO THE AUXILIARY SYMBOL

BUFFER AS THE SYMBOLIC
V ARIABLE NAME

SEE IF VARIABLE NAME IS THE
SAME ONE AS ON THE TOP OF

THE FOR/NEXT STACK

NO YES
ERROR ? •

"V

SA VE CURRENT USER PROGRAM
BUFFER LINE POINTER IN A UX
LINE POINTER STORAGE AREA

PULL LINE POINTER VALUE
FROM THE TOP OF THE FOR/

NEXT STACK AND PLACE IN THE
USER PROGRAM BUFFER LINE

POINTER STORAGE LOCATIONS

SEARCH CORRESPONDING "FOR"
STATEMENT LINE FOR THE

OCCURRENCE OF "TO" STRING

NO YES
ERROR FIND IT?

LOOK FOR PRESENCE OF THE
"STEP" DIRECTIVE IN THE RE-

MAINDER OF THE "FOR"
ST ATEMENT LINE

.....

6 - 33

NO YES
FIND IT?

LOAD FOR/NEXT STEP EVALUATE EXPRESSION AFTER
REGISTER WITH VALUE "TO" DIRECTIVE TO OBTAIN
1.0 (FLOATING POINT) FOR/NEXT LIMIT VALUE

EVALUATE THE EXPRESSION STORE LIMIT VALUE OBTAINED
AFTER "TO" DIRECTIVE TO IN FOR/NEXT LIMIT REGISTERS

OBT AIN FOR/NEXT LIMIT VALUE

EVALUATE THE EXPRESSION
STORE LIMIT VALUE OBTAINED AFTER "STEP" DIRECTIVE TO
IN FOR/NEXT LIMIT REGISTERS OBTAIN FOR/NEXT STEP SIZE

LOAD FOR/NEXT STEP SIZE
REG ISTERS WITH STEP VALUE

RESCAN LINE TO LOCATE
THE "FOR" DIRECTIVE

PICK UP THE VARIABLE NAME
THAT IMMEDIATELY FOLLOWS

THE "FOR" DIRECTIVE AND
STORE IT IN THE AUXILIARY

SYMBOL BUFFER

EVALUATE THE VARIABLE

ADD THE STEP VALUE TO THE
CURRENT VARIABLE VALUE

SUBTRACT THE NEW VARIABLE
V ALUE FROM THE VALUE IN THE

FOR/NEXT LIMIT REGISTERS

SEE IF THE STEP VALUE WAS
SPECIFIED TO BE ZERO

NO YES
? ERROR •

SEE IF THE STEP VALUE WAS
SPECIFIED AS LESS THAN ZERO

v

6 - 34

SEE IF NEW VARIABLE VALUE
LESS THAN OR EQUAL

TO THE SPECIFIED LIMIT

NEXT, LLI 144
LHI026
LMIOOO
LLI202
LBM
INB
LLI201
LMB

NEXT1, LLI 201

NO
? •

NO
? •

YES

YES

SEE IF NEW VARIABLE VALUE
GREATER THAN OR EQUAL

TO THE SPECIFIED LIMIT

STORE UPDATED VALUE FOR
THE VARIABLE BACK IN THE
VARIABLES LOOK-UP TABLE

SET USER PROGRAM BUFFER
LINE POINTER BACK TO THE

LINE CONTAINING
THE "NEXT" STATEMENT

POP UP THE FOR/NEXT
ST ACK TO RID THE STACK
OF THE FOR/NEXT LOOP

NXTLIN

PROCEED TO INTERPRET THE
STATEMENT IN THE LINE THAT

FOLLOWS THE "FOR" DIRECTIVE

Load L with start of AUX SYMBOL BUFFER
** Set H to page of AUX SYMBOL BUFFER
Initialize AUX SYMBOL BUFFER by clearing first byte
Change L to address of SCAN pointer
Fetch pointer value to CPU register B
Add one to the current pointer value
Load L with address of NEXT pointer storage location
Place the updated SCAN pointer as the NEXT pointer

CAL GETCHR
JTZ NEXT2
LLI 144

Reset L to address of NEXT pointer storage location
Fetch the character pointed to by the NEXT pointer
If the character is a space, ignore it
Else, load L with start of AUX SYMBOL BUFFER
Concatenate the character onto the AUX SYMBOL BF CAL CONCT1

6 - 35

NEXT2, LLI 201
CAL LOOP
JFZ NEXTI
LLI 144
LAM
CPIOOI
JFZ NEXT3
LLI146
LMIOOO

NEXT3, LLI 205
LHI027
LAM
RLC
RLC
ADI136
LHI027
LLA
LDI026
LEI 145
LBI 002
CAL STRCPC
JTZ NEXT4

FORNXT, LAI 306
LCI316
JMP ERROR

NEXT4, LLI 360
LHI 026
LDM
INL
LEM
INL
LMD
INL
LME
LLI 205
LHI027
LAM
RLC
RLC
ADI134
LLA
LDM
INL
LEM
LLI360
LHI 026
LMD
INL

Reset L to address of NEXT pointer storage location
Advance the NEXT pointer and see if end of line
Fetch next character in line if not end of line
When reach end of line, should have variable name
In the AUX SYMBOL BUFFER. Fetch the (cc) for
The buffer and see if variable name is just one letter
If more than one proceed directly to look for name
In FOR/NEXT STACK. If have just a one letter name
Then set second character in buffer to zero

Load L with address of FOR/NEXT STACK pointer
** Set H to page of FOR/NEXT STACK pointer
Fetch the FOR/NEXT STACK pointer value to ACC
Rotate value left to multiply by two. Then rotate it
Left again to multiply by four. Add base address plus
Two to form pointer to variable name in top of stack
** Set H to page of FOR/NEXT STACK
Move pointer value from ACC to CPU register L
** Set register D to page of AUX SYMBOL BUFFER
Set register E to first character in the buffer
Set B to serve as a character counter
See if variable name in the NEXT statement same as
That stored in the top of the FOR/NEXT STACK

Load ACC with ASCII code for letter F
Load register C with ASCII code for letter N
Display For/Next (FN) error message ifrequired

Load L with address of user program line pointer
** Load H with page of user pgm line pntr storage lac.
Fetch the page portion of the line pointer into D
Advance the memory pointer
Fetch the low portion of the line pointer into E
Advance pntr to AUXILIARY LINE POINTER storage
Location and store value of line pointer there too (page)
Advance pointer to second byte of AUXILIARY line
Pointer and store value of line pointer (low portion)
Load L with address of FOR/NEXT STACK pointer
** Set H to page of FOR/NEXT ST ACK pointer
Fetch the FOR/NEXT STACK pointer value to ACC
Rotate value left to multiply by two. Then rotate it
Left again to multiply by four. Add base address to
Form pointer to top of FOR/NEXT STACK and place
The pointer value into CPU register L. Fetch the page
Address of the associated FOR statement line pointer
Into register D. Advance the pointer and fetch the low
Address value into register E. Prepare to change user
Program line pointer to the FOR statement line by
** Setting H & L to the user pgm line pntr storage lac.
Place the page value in the pointer storage location
Advance the memory pointer

6 - 36

LME
LHD
LLE
LDI026
LEI 000
CAL MOVEC
LLI325
LHI001
CALINSTR
LAE
NDA
JTZ FORNXT
ADI002
LLI276
LHI026
LMA
LLI 330
LHI001
CAL INSTR
LAE
NDA
JFZ NEXT5
LLI004
LHI 001
CALFLOAD
LLI 304
CAL FSTORE
LLIOOO
LHI026
LBM
LLI277
LMB
CAL EVAL
LLI310
LHI001
CAL FSTORE
JMP NEXT6

NEXT5, DCE
LLI277
LHI026
LME
CAL EVAL
LLI310
LHI 001
CAL FSTORE
LLI277
LHI 026
LAM
ADI005
DCL

Place the low value in the pointer storage location
Now set up Hand L to point to the start of the
Associated FOR statement line in the user pgm buffer
** Change D to point to the line input buffer
And set L to the start of the line input buffer
Move the associated FOR statement line into the input
Line buffer. Set L to point to start of TO string which is
** Stored in a text strings storage area on this page
Search the statement line for the occurrence of TO
Register E will be zero if TO not found. Move E to ACC
To make a test. If TO found then proceed to set up for
Evaluation. If TO not found, then have error condition.
Advance the pointer over the characters in TO string
Change L to point to EV AL pointer storage location
** Set H to page of EV AL pointer. Set up the starting
Position for the EV AL subroutine (after TO string)
Set L to point to start of STEP string which is stored
** In text strings storage area on this page. Search the
Statement line for the occurrence of STEP
Register E will be zero if STEP not found. Move E to
The accumulator to make a test. If STEP found must
Evaluate expression after STEP to get STEP SIZE.
Else, have an IMPLIED STEP SIZE of 1.0. Set pointer
** To start of storage area for 1.0 in floating point
Format and call subroutine to load FPACC with 1.0
Set L to start of FOR/NEXT STEP SIZE storage loco
Store the value 1.0 in the F /N STEP SIZE registers
Change L to the start of the input line buffer
** Set H to the page of the input line buffer
Fetch the (cc) into CPU register B (length of FOR line)
Change L to EV AL FINISH pointer storage location
Set the EV AL FINISH pointer to the end of the line
Evaluate the LIMIT expression to obtain FOR LIMIT
Load L with address of start of F /N LIMIT registers
** Load H with page of FOR/NEXT LIMIT registers
Store the FOR/NEXT LIMIT value
Since have IMPLIED STEP jump ahead

When have STEP directive, subtract one from pointer
To get to character before S in STEP. Save this value in
** The EV AL FINISH pointer storage location to serve
As evaluation end location when obtaining TO limit
Evaluate the LIMIT expression to obtain FOR LIMIT
Load L with address of start of F /N LIMIT registers
** Load H with page of FOR/NEXT LIMIT registers
Store the FOR/NEXT LIMIT value
Reset L to EV AL FINISH pointer storage location
** Set H to page of EV AL FINISH pointer storage loco
Fetch the pointer value (character before S in STEP)
Add five to change pointer to character after P in STEP
Decrement L to point to EV AL (start) pointer

6 - 37

LMA
LLI 000
LBM
LLI277
LMB
CAL EVAL
LLI 304
LHI001
CAL FSTORE

NEXT6, LLI 144
LHI026
LMIOOO
LLI 034
LHI 027
CALINSTR
LAE
NDA
LLI202
LHI026
LMA
JTZ FORNXT
ADI003
LLI203
LMA

NEXT7, LLI 203
CALGETCHR
JTZ NEXT8
CPI275
JTZ NEXT9
LLI144
CAL CONCT1

NEXT8, LLI 203
CAL LOOP
JFZ NEXT7
JMP FORNXT

NEXT9, LLI202
LHI 026
LAM
ADI003
LLI276
LMA
LLI203
LBM
DCB
LLI 277
LMB
CAL EVAL

Set up the starting position for the EV AL subroutine
Load L with starting address of the line input buffer
Fetch the (cc) for the line input buffer (line length)
Change L to the EV AL FINISH storage location
Set the EV AL FINISH pointer
Evaluate the STEP SIZE expression
Load L with address of start of FIN STEP registers
* * Set H to page of FIN STEP registers
Store the FOR/NEXT STEP SIZE value

Load L with address of AUX SYMBOL BUFFER
** Set H to page of the AUX SYMBOL BUFFER
Initialize AUX SUMBOL BUFFER with a zero byte
Set L to start of FOR string which is stored in the
** KEYWORD look-up table on this page
Search the statement line for the FOR directive
Register E will be zero if FOR not found. Move E to
ACC and make test to see if FOR directive located
Load L with address of SCAN pointer
** Load H with page of SCAN pointer
Set up pointer to occurrence of FOR directive in line
If FOR not found, have an error condition
If have FOR, add three to advance pointer over FOR
Set L to point to FIN pointer storage location
Set FIN pointer to character after FOR directive

Set L to point to FIN pointer storage location
Fetch a character from position pointed to by FIN pntr
If character is a space, ignore it
Else, test to see if character is "=" sign
If yes, have picked up variable name, jump ahead
If not, set L to the start of the AUX SYMBOL BUFFER
And store the character in the AUX SYMBOL BUFFER

Load L with address of the FIN pointer
Increment the pointer and see if end of the line
If not, continue fetching characters
If end of line before "=" sign then have error condx

Load L with address of SCAN pointer
** Load H with page of SCAN pointer
Fetch pointer value to ACC (points to start of FOR
Directive) and add three to move pointer over FOR
Directive. Change L to EV AL pointer storage location
Set EV AL pointer to character after FOR in line
Load L with address of FIN pointer storage location
Fetch pointer to register B (points to "=" sign) and
Decrement the pointer (to character before "=" sign)
Load L with address of EVAL FINISH pointer
Set EV AL FINISH pointer
Call subroutine to obtain current value of the variable

6 - 38

LLI 304
LHI 001
CAL FACXOP
CAL FPADD
LLI 314
LHI001
CAL FSTORE
LLI 310
CAL FACXOP
CAL FPSUB
LLI306
LAM
NDA
LLI126
LAM
JTZ FORNXT
JTS NEXT11
NDA
JTS NEXT12
JTZ NEXT12

NEXT10, LLI 363
LHI026
LEM
DCL
LDM
DCL
LME
DCL
LMD
LLI 205
LHI027
LBM
DCB
LMB
JMP NXTLIN

NEXTll, NDA
JFS NEXT12
JMP NEXT10

NEXT12, LLI314
LHI001
CAL FLOAD
CAL RESTSY
CAL STOSYM
JMP NXTLIN

Load L with address of start of F /N STEP registers
** Set H to page of F/N STEP registers
Call subroutine to set up FP registers for addition
Add F /N STEP size to current VARIABLE value
Load L with address of F /N TEMP storage registers
**Set H to page of F/N TEMP storage registers
Save the result of the addition in F /N TEMP registers
Load L with starting address of F /N LIMIT registers
Call subroutine to set up FP registers for subtraction
Subtract F /N LIMIT value from VARIABLE value
Set pointer to MSW of F /N STEP registers
Fetch this value into the ACC
Test to see if STEP value might be zero
Load L with address of MSW of FP ACC
Fetch this value into the ACC
If STEP size was zero, then endless loop, an error condx
If STEP size less than zero make alternate test on limit
Test the contents of the MSW of the FP ACC
Continue FOR/NEXT loop if current variable value is
Less than or equal to the F /N LIMIT value

If out of LIMIT range, load L with address of the AUX
** PGM LINE pointer. (Contains pointer to the NEXT
Statement line that initiated this routine.) Fetch the
Low part of the address into E, decrement the memory
And get the page part of the address into CPU register
Decrement memory pointer to the low portion of the
User pgm buffer line pointer (regular pointer) and set it
With the value from the AUX line pntr, decrement the
Pointer and do the same for the page portion
Set L to address of FOR/NEXT STACK pointer
** Set H to page of FOR/NEXT STACK pointer
Fetch and decrement the
FOR/NEXT STACK pointer value
To perform effective popping operation
Statement line after NEXT statement is done next

When FIN STEP is negative, reverse test so that if the
Variable value is greater than or equal to the F/N LIMIT
The FOR/NEXT loop continues. Else it is finished.

Load L with address of F /N TEMP storage registers
** Set H to F/N TEMP storage registers page
Transfer the updated variable value to the FP ACC
Restore the variable name and value
In the VARIABLES table. Exit routine so that
Statement line after FOR statement is done next

6 - 39

DIRECT, LLI203
LHI026
LAM
CPI001
JTZ NXTLIN
CPI002
JTZ IF
CPI003
JTZ LET
cpr 004
JTZ GOTO
CPI005
JTZ PRINT
CPI006
JTZINPUT
CPI007
JTZ FOR
CPI010
JTZ NEXT
CPI011
JTZ GOSUB
CPI012
JTZ RETURN
CPI013
JTZ DIM
CPI014
JTZ EXEC
CPI015
JTZ LETO
CPI016
JFZ SYNERR
CAL ARRAY1
LLI206
LHI 026
LBM
LLI202
LMB
CAL SAVSYM
JMP LET1

Load L with address of syntax TOKEN storage location
** Load H with page of syntax TOKEN location
Fetch the TOKEN value into the accumulator
Is it token value for REM statement? If so, ignore the
Current line and go on to the next line in pgm buffer.
Is it token value for IF statement?
If yes, then go to the IF statement routine.
Is it token value for LET statement? (Using keyword)
If yes, then go to the LET statement routine.
Is it token value for GOTO statement?
If yes, then go to the GOTO statement routine.
Is it token value for PRINT statement?
If yes, then go to the PRINT statement routine.
Is it token value for INPUT statement?
If yes, then go to the INPUT statement routine.
Is it token value for FOR statement?
If yes, then go to the FOR statement routine.
Is it token value for NEXT statement?
If yes, then go to the NEXT statement routine.
Is it token value for GOSUB statement?
If yes, then go to the GOSUB statement routine.
Is it token value for RETURN statement?
If yes, then go to the RETURN statement routine.
Is it token value for DIM statement?
If yes, then go to the DIM statement routine.
Is it token value for END statement?
If yes, then go back to the Executive, user pgm finished!
Is it token value for IMPLIED LET statement?
If yes, then go to special LET entry point.
@@ Is it token value for ARRAY IMPLIED LET?
If not, then assume a syntax error condition.
@@ Else, perform array storage set up subroutine.
@@ Set L to array pointer storage location.
@@ ** Set H to array pointer storage location.
@@ Fetch array pointer to register B.
@@ Change memory pointer to syntax pntr storage loco
@@ Save array pointer value there.
@@ Save array name in auxiliary symbol buffer
@@ Go to special array implied LET entry point.

THE PRINT STATEMENT ROUTINE

The PRINT statement routine is used to
output data as directed by the creator of a
SCELBAL program. There are several types
of information that the PRINT statement
can display. It can display text messages
that have been enclosed by single ('') or

6 - 4

double (" ") quotation marks on the line
containing the PRINT statement. It is also
used to display the numerical values of
variables or expressions referred to in the
line containing the PRINT directive. Fin-
ally, the PRINT statement may be used to

THE OPTIONAL DIM STATEMENT ROUTINE

The DIM statement routine is an optional
statement routine that may be included in
SCELBAL depending on whether the user de-
sires to utilize its capabilities and sacrifice
the memory space that it and routines asso-
ciated with it utilize.

The purpose of the DIM statement routine
is to allow the defining of single character
ARRAY VARIABLES and to reserve space
in an ARRAY VALUES TABLE for the
specified number of entries that the array
will occupy.

The DIM statement capability in SCELBAL
is restricted to single dimension arrays. To
conserve memory space, the DIM routine to
be presented restricts the total amount of
memory used to store the values at points
in an array to 256 bytes (one page). The
storage of floating point numbers in the
format used in SCELBAL requires four bytes
of memory to store a value. Thus, the total
number of array points that may be set aside
in one program is 256 divided by 4 or 64
(decimal).

To keep the DIM capability in line with
the storage space allotted for array values, the
number of arrays that may be created in a
program is restricted to four. However, re-
gardless of whether one, two, three or four
array variables are defined, the total number
of array subscripts for all the variables must
not exceed 64 because of the limitation dis-
cussed in the previous paragraph.

Thus, one could DIMension a single array
to have 64 locations. One could specify two
arrays, each using 32 entries. One could
create four array variables and DIMension
16 locations for each. Or, any other combi-
nation may be specified as long as the total
number of array variable names does not ex-
ceed four, and the total number of subscrip-
ted array points does not exceed 64!

The reader must remember that an array

6 - 40

variable name may only consist of one letter
followed by a subscript. Thus, a four element
array having the symbolic variable name A
would consist of the elements:

A(I)
A(2)
A(3)
A(4)

Since the above array would need to have
four locations reserved for it in the ARRAY
VALUES TABLE, the DIMension state-
ment for it would appear as:

DIM A(4)

The reader must note too, that the array size
in a DIMension statement must always be
given in the form of an integer value (less than
or equal to 64) and may not be another
variable.

Associated with the ARRA Y VALUES
TABLE is another table called the ARRAY
VARIABLES TABLE. This short table, hav-
ing room for a maximum of four entries, con-
tains the array name(s) and the starting loca-
tion(s) in the ARRAY VALUES TABLE for
the first array value associated with an array
name. The ARRAY VARIABLES TABLE
reserves four bytes for each array specified
in a program. Two are used to store the array
name. (This is done using string format, thus
the first byte will always be 001 to indicate a
one byte character string and the second byte
will be the alphabetical character designated
as the name of the array.) The third byte in
an ARRAY VARIABLES TABLE entry is
used to store the starting location for the
first element in the associated ARRA Y
VALUES TABLE. The fourth byte is reserved
for possible use by the user who might desire
to modify and expand the array capability of
SCELBAL. It could be used to store the page
address value in the ARRAY VALUES
T ABLE if that table crossed page boundaries.

ARRA Y VARIABLES TABLE

001
A

000

001
B

020

001
C

060
-- -

001
D

200

ARRA Y VALUES TABLE

addr
000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027

060
061
062
063

200

FP VALUE
FOR ARRAY

POSITION
A(l)

FP VALUE
FOR ARRAY

POSITION

F

F

A(2)
FPVALUE
OR ARRAY
POSITION

A(3)
FP VALUE
OR ARRAY
POSITION

A(4)

F
FP VALUE
OR ARRAY
POSITION

B(l)

F
FP VALUE
OR ARRAY
POSITION

B(2)

F
FP VALUE
OR ARRAY
POSITION

C(1)

FP VALUE
201 FOR ARRAY
202 POSITION
203 D(l)
--- --

6 - 41

The ARRA Y VARIABLES
TABLE holds the array vari-
able names and points to the
starting location for each
series of subscripted array
entries associated with an
array name. In this example
the array named A has had
room for four entries re-
served for it. The array
named B has had eight
value locations reserved.
C has 16 and D has 32.

The ARRA Y VALUES
TABLE is used to hold the
numerical value for each
position in the array. Numeri-
cal values are stored in float-
ing point format and require
four bytes each. Note that
the starting address for each
series of values associated
with an array name is that
address pointed to in the
ARRAY VARIABLES
TABLE. The address for a
particular point in an array
is calculated as a function of
the subscript specified.

The relationship between the ARRAY
VARIABLES T ABLE and the ARRA Y
VALUES TABLE may be seen a little more
clearly by examining the pictorial illustra-
tion presented on the preceeding page.

Remember, this routine is an optional
routine. If array capability is not desired
this routine may be left out of SCELBAL
(along with related routines which will be
presented later). If the routine is not in-
corporated in the reader's individual version
of SCELBAL the various locations through-
out the program identified by an @@ mark
should be changed to effective no-operation
instructions (such as LAA) as previously ex-
plained.

The flow chart on the next several pages
summarizes the operation of the DIM routine
as just discussed. The commented source
listing for the routine starts below.

DIM, CAL CLESYM
LLI 202
LBM
INB
LLI203
LMB

DIM1, LLI203
CALGETCHR
JTZ DIM2
CPI250
JTZ DIM3
CAL CONCTS

DIM2, LLI 203
CAL LOOP
JFZ DIM1
JMP DIMERR

DIM3, LLI 206
LMIOOO

DIM4, LLI206
LHI026
LAM
RLC
RLC
ADI114
LHI027
LLA
LEI 120
LDI026
CAL STRCP
JTZ DIM9
LLI206
LHI026
LBM

Initialize the SYMBOL BUFFER to cleared condition
Load L with address of SCAN pointer
Fetch SCAN pointer value into register B
Add one to the SCAN pointer value
Change L to DIM pointer (formerly TOKEN) storage
Store the updated SCAN pointer as the DIM pointer

Load L with the address of DIM pointer storage location
Fetch a character from the line input buffer
If character fetched is a space, ignore it
Else see if character is "(" left parenthesis
If so, should have ARRAY VARIABLE name in buffer
If not, append the character to the SYMBOL BUFFER

Load L with the address of DIM pointer storage location
Increment the pointer and see if end of line
If not end of line, fetch next character
Else have a DIMension error condition

Load L with address of ARRAY pointer storage loc
Initialize ARRAY pointer to starting value of zero

Load L with address of ARRAY pointer storage loc
** Set H to page of ARRAY pointer storage location
Fetch value in ARRAY pointer to ACC (effectively
Represents number of arrays defined in pgm). Rotate
Left twice to multiply by four (number of bytes per
entry in ARRAY VARIABLES table). Add to base
** Address to form pointer to ARRAY VARIABLES
Table and set up H & L as the memory pointer.
Load E with starting address of the SYMBOL BUFFER
** Load D with the page address of the SYMBOL BUFF
Compare cont2nts of SYMBOL BF to entry in ARRAY
V ARIABLES table. If same, have duplicate array name.
Else, load L with address of ARRAY pointer storage
** Load H with page of ARRAY pointer storage
Fetch the ARRA Y pointer value to register B

6 - 42

,

ADD ARRAY SYMBOLIC NAME
TO ARRA Y VARIABLES TABLE

/
DIM

"- ./

INITIALIZING PROCEDURES

FETCH CHARACTER FROM LINE
INPUT BUFFER AND SEE IF IT
IS A LEFT PARENTHESIS ("(")

NO YES
.

'V

CONCATENATE CHARACTER
ONTO THE SYMBOL BUFFER

ADVANCE THE POINTER

SEE IF END OF LINE

NO YES
? •

HA VE SYMBOLIC NAME FOR
AN ARRAY IN SYMBOL BUFFER

SEE IF ARRAY NAME ALREADY
IN ARRAY VARIABLES TABLE

NO YES

CONTINUE PROCESSING LINE
TO OBTAIN DIMENSION

CLEAR THE SYMBOL BUFFER

6 - 43

/ '\
B

.

.

ERROR

ALREADY HAVE ARRAY BY
THAT NAME. LOOK FOR NEXT

ARRA Y NAME IN THE LINE

""\

FETCH CHARACTER FROM LINE
INPUT BUFFER AND SEE IF IT

IS A RIGHT PARENTHESIS (")")

NO YES
? •

SEE IF CHARACTER IS A
VALID DECIMAL DIGIT

NO YES
,----------c ? •

CONCATENATE CHARACTER
ONTO THE SYMBOL BUFFER

ADV ANCE THE POINTER

SEE IF END OF LINE

NO YES
? •

PLACE ST ARTING ADDRESS OF
THE ARRAY VALUES TABLE IN
THE ARRAY VARIABLES TABLE

6 - 44

ADVANCE THE POINTER f 1---------. ;----------{ A

FETCH CHARACTER FROM LINE
INPUT BUFFER AND SEE IF IT

IS A COMMA SIGN (",")

INB
LMB
LLI075
LHI027
LAM
DCB
CPB
JFZ DIM4
LLI075
LHI 027
LBM
INB
LMB
LLI 076
LMB
LLI 206
LHI026
LMB

NO

NO

A YES
?
•

SEE IF END OF
ST ATEMENT LINE

YES
? •

NXTLIN

Increment the value

HA VE ANOTHER DIM DIRECTIVE
ON THE STATEMENT LINE

'\
B

Restore it to ARRAY pointer storage location
Change L to number of arrays storage location
** Set H to page of the number of arrays storage loc
Fetch the number of arrays value to the ACC
Restore B to previous count
Compare number of arrays tested against nr defined
If not equal, continue searching ARRAY VARIABLE S
Table. When table searched with no match, then must
** Append name to table. First set pointer to number
Of arrays storage location. Fetch that value and
Add one to account for new name being added.
Restore the updated value back to memory.
Change pointer to ARRAY TEMP pointer storage
Store pointer to current array in ARRAY TEMP too.
Load L with address of ARRAY pointer storage loco
** Set H to page of ARRAY pointer storage location
And update it also for new array being added.

6 - 45

LAM
RLC
RLC
ADI114
LEA
LDI027
LLI120
LHI026
CAL MOVEC
CAL CLESYM
LLI203
LHI026
LBM
INB
LLI204
LMB

DIM5, LLI204
CAL GETCHR
JTZ DIM6
CPI251
JTZ DIM7
CPI260
JTS DIMERR
CPI272
JFS DIMERR
CAL CONCTS

DIM6, LLI204
CAL LOOP
JFZ DIM5
JMP DIMERR

DIM7, LLI120
LHI026
CALDINPUT
CAL FPFIX
LLI124
LAM
RLC
RLC
LCA
LLI076
LHI027
LAM
SUI 001
RLC
RLC
ADI122
LLA
LHI027

Fetch the current ARRAY pointer value to the ACC
Multiply it times four by performing two rotate left
Operations and add it to base value to form address in
The ARRAY VARIABLES table. Place the low part
Of this calculated address value into register E.
** Set register D to the page of the table.
Load L with the start of the SYMBOL BUFFER
** Load H with the page of the SYMBOL BUFFER
Move the array name from the SYMBOL BUFFER to
The ARRAY VARIABLE S table. Then clear the
SYMBOL BUFFER. Reset L to the DIM pointer storage
** Location. Set H to the DIM pointer page.
Fetch the pointer value (points to "(" part of DIM
Statement). Increment the pointer to next character in
The line input buffer. Change L to DIMEN pointer.
Store the updated DIM pointer in DIMEN storage loco

Set L to DIMEN pointer storage location
Fetch character in line input buffer
Ignore character for space
If not space, see if character is right parenthesis (")").
If yes, process DIMension size (array length)
If not, see if character is a valid decimal number
If not valid number, have DIMension error condition
Continue testing for valid decimal number
If not valid number, then DIMension error condition
If valid decimal number, append digit to SYMBOL BF

Set L to DIMEN pointer storage location
Advance the pointer value and check for end of the line
If not end of line, continue fetching DIMension size
If end of line before right parenthesis, have error condx.

Load L with address of start of SYMBOL BUFFER
** Load H with page of SYMBOL BUFFER. (Now
Contains DIMension size.) Convert buffer to floating
Point number and then reformat to fixed point.
Load L with address of LSW of fixed point number
And fetch the low order byte of the nr into the ACC
Rotate it left two times to multiply it by four (the
Number of bytes required to store a floating point nr).
Store this value in CPU register C temporarily.
Set L to ARRAY TEMP storage location.
** Set H to ARRAY TEMP pointer page.
Fetch the value in ARRAY TEMP (points to ARRAY
VARIABLES table). Subtract one from the pointer
Value and multiply the result by four using rotate left
Instructions. Add this value to a base address
(Augmented by two) to point to ARRAY VALUES
Pointer storage location in the ARRAY VARIABLES
** Table and set the pointer up in registers H & L.

6 - 46

LBM
ADI004
LLA
LAB
ADC
LMA

DIMS, LLI204
LHI026
LBM
LLI 203
LMB

DIM9, LLI203
CAL GETCHR
CPI254
JTZ DIMIO
LLI203
CAL LOOP
JFZ DIM9
JMP NXTLIN

DIMIO, LLI 203
LBM
LLI202
LMB
JMP DIM

DIMERR, LAI 304
LCI305
JMP ERROR

Fetch the starting address in the ARRAY VALUES
Table for the previous array into register B. Now add
Four to the ARRAY VARIABLES table pointer to
Point to current ARRAY VALUES starting address.
Add the previous array starting address plus number of
Bytes required and store as starting loc for next array

Set L to address of DIMEN pointer storage location
** Set H to page of DIMEN pointer
Fetch pointer value (points to ")" in line)
Change L to DIM pointer storage location
Store former DIMEN value back in DIM pointer

Load L with address of DIM pointer storage location
Fetch a character from the line input buffer
See if character is a comma (,) sign
If yes, have another array being defined on the line
If not, reset L to the DIM pointer
Increment the pointer and see if end of the line
If not end of the line, keep looking for a comma
Else exit the DIM statement routine to continue pgm

Set L to DIM pointer storage location
Fetch pointer value (points to comma sign just found)
Load L with address of SCAN pointer storage location
Place DIM pointer into the SCAN pointer
Continue processing DIM statement line for next array

On error condition, load ASCII code for letter D in ACC
And ASCII code for letter E in CPU register C
Go display the Dimension Error (DE) message.

The final routine to be discussed in this
chapter is used by several of the statement
routines such as the LET and INPUT routines.
This routine is used to store the name of a
variable and its numerical value in a table
called the VARIABLES LOOK-UP TABLE.
(A portion of the routine is also used to
handle the storing of values assigned to
array variables (which are stored in a sepa-
rate table) if the user elects to utilize the
single DIMension array handling capability
of SCELBAL. The array handling routines
themselves are discussed in a later chapter.)

The VARIABLES LOOK-UP TABLE is
organized to hold the variable names and

the current values assigned to those names
in the following format. The first two
bytes of an entry are used to hold the one
or two letter NAME for the variable. (If the
variable name only consist of one letter, the
second byte of the entry will be zero.) The
next four bytes in an entry are used to store
the current value of the variable in floating
point format. (This format for storing mathe-
matical values will be presented in a later
chapter.) Thus, each entry in the table re-
quires six bytes of storage. Sufficient room
has been provided in the assembled version of
SCELBAL presented in this book for storage
of up to 20 variable names at one time during
the execution of a higher level program.

6 - 47

The general operation of the routine is il-
lustrated in the flow chart which starts below.

The source listing for the subroutine is presented
following the flow chart.

STOSYM

IS VALUE BEING PROCESSED
ASSOCIATED WITH AN ARRAY

NO YES
? •

IS VARIABLE NAME
JUST ONE CHARACTER

NO YES .A

? •

MAXIMUM SYMBOLIC NAME
LENGTH IS TWO CHARACTERS

ADVANCE TABLE POINTER
TO NEXT ENTRY POSITION

CHECK NEXT ENTRY IN THE
VARIABLES LOOK-UP TABLE
FOR MATCH WITH SYMBOL
NAME IN SYMBOL BUFFER

NO

NO

FIND
MATCH

? •

END
OF

TABLE?

6 - 48

YES

YES

STO RE THE VALUE IN
THE ARRAY VALUES TABLE

/ ""\
EXIT

MAKE SECOND CHARACTER IN
SYMBOL BUFFER A ZERO

STORE NEW VALUE FOR THE
V ARIABLE IN THE TABLE

EXIT

V

IS THERE ROOM STILL
A V AILABLE IN THE TABLE

NO YES
ERROR ? •

PLACE VARIABLE NAME IN
NEXT POSITION IN TABLE

STORE VALUE FOR THE
V ARIABLE IN THE TABLE

STOSYM, LLI 201
LHI027
LAM
NDA
JTZ STOSY1
LMIOOO
LLI204
LLM
LHI057
JMP FSTORE

STOSY1, LLI 370
LHI026
LMIOOO
LLI 120
LDI027
LEI 210
LAM
CPI001
JFZ STOSY2
LLI 122
LMIOOO

,/ "'\
EXIT

Load L with address of ARRAY FLAG
** Load H with page of ARRAY FLAG
Fetch the value of the ARRAY FLAG into the ACC
Check to see if the flag is set indicating processing an
Array variable value. Jump ahead if flag not set.
If ARRAY FLAG was set, clear it for next time.
Then load L with address of array address storage loc
Fetch the array storage address as new pointer
tt Set H to ARRAY VALUES page
Store the array variable value and exit to caller.

Load L with address of TEMP CNTR
** Load H with page of TEMP CNTR
Initialize the TEMP CNTR by clearing it
Load L with starting address of SYMBOL BUFFER
** Load D with page of VARIABLES LOOK-UP table
Load E with starting addr of VARIABLES LOOK-UP
Table. Fetch the (cc) for the SYMBOL BUFFER into
The ACC and see if length of variable name is just one
Character. If not, skip next couple of instructions.
Else, set pointer to second character location in the
SYMBOL BUFFER and set it to zero

6 - 49

TAB (space over) to a TABBING POSITION
(every sixteenth column) and control the
occurrence of a line-feed and carriage-return
com bination after the displaying of infor-
mation. (The PRINT statement may also be
used to perform two special functions that
will be explained in a later chapter. These
relate to the capability to TAB to a specific
column position specified by the user, and
the capability to display a certain range of
numbers as an alphanumeric character
through the use of the CHR function.)

The PRINT routine is split into two major
sections. The first section is primarily con-
cerned with determining whether the state-
ment line requires the outputting of text in-
formation (enclosed in single or double
quotation marks) or the displaying of the
value of an expression. If the value of an ex-
pression is to be displayed, the program calls
on relevant portions of SCELBAL to obtain
the value to be outputted and then displays
the value. The second section of the PRINT
routine starts with the label QUOTE. It is
used to display text information enclosed by
quotation marks in the PRINT statement
line.

Since a PRINT statement line can contain
both expressions and text strings, the routine
essentially operates by splitting the line into
appropriate fields and processing each field
independently, either outputting the value
of an expression, or a text string as required.

The flow chart on the next two pages il-
lustrates the key portions of the first section
of the PRINT routine. The source listing for
this section starts below. The I:tUOTE portion
of the routine is then presented along with it
flow chart. The reader may note that the
QUOTE portion of the routine may direct
program operation back to the first section
when it is finished processing a text field.
This is indicated in the QUOTE flow chart
by the exit point marked A which refers to
the A entry point in the PRINT flow chart.

The PRINT routine may at first appear
somewhat complicated because a good deal
of pointer manipulation is required by the
routine as it analyzes fields within a line.
Reference to the flow charts will show,
though, that its operation is really quite
straightforward in concept.

PRINT, LLI 202
LHI026
LAM
LLI 000
CPM

Load L with address of SCAN pointer storage location
** Load H with page of SCAN pointer

JTS PRINTl
CAL CRLF
JMP NXTLIN

PRINT1, CAL CLESYM
LLI202
LHI026
LBM
INB
LLI203
LMB

PRINT2, LLI203
CAL GETCHR
CPI 247'

Fetch the pointer value (last character scanned by the
SYNTAX routine). Change pointer to line buffer (cc).
Compare pointer value to buffer length. If not equal
Then line contains more than stand alone PRINT state-
Ment. However, if just have PRINT statement then issue
A carriage-return & line-feed combination, then exit.

Initialize the SYMBOL buffer for new entry.
Load L with address of SCAN buffer pointer
** Load H with page of SCAN pointer
Pointer points to last char scanned by SYNTAX. Need
To increment it to point to next char in statement line.
Load L with address of former TOKEN value. Use it as
Storage location for a PRINT statement pointer.

Set memory pointer to PRINT pointer storage location
Fetch character in input buffer pointed to by PRINT
Pointer. See if it is ASCII code for single quote mark.

6-5

STOSY2, LLI121
LHI026
CAL SWITCH
LAM
INL
LBM
INL

,

CAL SWITCH
CPM
JFZ STOSY3
INL
LAB
CPM
JTZ STOSY5

STOSY3, CAL AD4DE
LLI370
LHI026
LBM
INB
LMB
LLI077
LHI027
LAB
CPM
JFZ STOSY2
LLI077
LHI027
LBM
INB
LMB
LAB
cpr 025
JFS BIGERR
LLI121
LHI026
LEI 002
CAL MOVEIT

STOSY5, CAL SWITCH
CAL FSTORE
JMP CLESYM

SAVESY, LLI120
LHI026
LDH
LEI 144
JMP MOVECP

Load L with address of first character in the SYMBOL
** BUFFER. Load H with page of the buffer.
Exchange pointer to buffer for pointer to VARIABLES
LOOK-UP table. Fetch first char in a name from the
Table. Advance the pointer to second char in a name.
Fetch the second character into register B.
Advance the pointer to first byte of a value in the table.
Exchange table pointer for pointer to SYMBOL BUFF
Compare first character in buffer against first character
In table entry. If no match, try next entry in the table.
If match, advance pointer to second character in buffer.
Move second character obtained from table into ACC.
Compare second characters in table and buffer.
If same, have found the variable name in the table.

Add four to pointer in registers D&E to skip over value
Portion of entry in table. Load L with address of TEMP
** CNTR. Load H with page of TEMP CNTR.
Fetch the counter
Increment the counter
Restore it to storage
Set L to address of VARIABLES CNTR (indicates
* * Number of variables currently in table.) Set H too.
Move the TEMP CNTR value into the ACC. (Number of
Entries checked.) Compare with number of entries in
The table. If have not checked all entries, try next one.
If have checked all entries, load L with address of the
** VARIABLES CNTR. Set H too. Fetch the counter
Value and increment it to account for
New variable name that will now be
Added to the table. Save the new value.
Place the new counter value into the accumulator
And check to see that adding new variable name to the
Table will not cause table overflow. Big Error if it does!
If room available in table, set L to address of first
** Character in the SYMBOL BUFFER. Set H too.
Set a counter for number of characters to transfer.
Move the variable name from buffer to table.

Exchange buffer pointer for table pointer.
Transfer new mathematical value into the table.
Clear the SYMBOL BUFFER and exit to calling routine.

The subroutines below are used by some of the routines
in this chapter as well as other parts of the program.

Load L with the address of the start of the SYMBOL
* * BUFFER. Load H with the page of the buffer.
Load register D with the page of the AUX SYMBOL
BUFFER and set register E to start of that buffer.
Transfer SYMBOL BF contents to AUX SYMBOL BF

6 - 50

RESTSY, LLI 144
LHI026
LDH
LE1120

MOVECP. LBl\l •

INB
JMP :vl0VEIT

Load L with address of stali of AUX SYlVlBOL BUFF
** Load H with page of A.L;X SYMBOL BUFFER
Set D to page of SY:\lBOL BUFFER (same as H)
Load E with start of SYl\lBOL BUFFER

Load (cc) for source string (first byte in source buffer)
Add one to (cc) to include (cc) byte itself
1Vlove the source string to destination buffer

6 - 51

NO

A

NO

NO

NO

NO

DISPLA Y VALUE OF THE

IS IT
, OR "

?

IS T'T'''''-

, OR ;
?
•

END OF
LINE

BUFF?

6-6

YES

NXTLIN

YES

YES

YES

YES

TAB OR CHR
D YE

A
\. ./

DISPLA Y CR & LF

SEE IF LAST CHARACTER
SCANNED WAS A COMMA

NO A

?
•

YES

PROVIDE SPACES TO NEXT
TABBING POSITION IN LINE

SEE IF HA VE FINISHED
PROCESSING THE
STATEMENT LINE

NO YES

SEE IF LAST CHARACTER
IN THE STATEMENT LINE

WAS A COMMA OR SEMI-COLON

JTZ QUOTE
CPI242

NO

JTZ QUOTE
CPI254
JTZ PRINT3
CPI273
JTZ PRINT3
LLI203
CAL LOOP
JFZ PRINT2

A YES
? •

NXTLIN

If so, go to QUOTE section to process text string.
If not, see if it is ASCII code for double quote mark.
If so, go to QUOTE section to process text string.
If not, see if it is ASCII code for comma sign.
If so, go evaluate expression.
If not, see if it is ASCII code for semi-colon sign.
If so, go evaluate expression.
Load L with address of PRINT pointer storage location.
Increment pointer and test for end of line.
If not end of line, fetch the next character.

6-7

PRINT3, LLI 202
LBM
INB
LLI 276
LMB
LLI203
LBM
DCB
LLI277
LMB
LLI367
LAM
NDA
JTZ PRINT4
LMIOOO
JMP PRINT6

PRINT4, CAL EVAL
LLI 177
LHI026
LAM
NDA
LLI110
LHI 001
LMI377

PRINT5, CTZ PFPOUT
LLI 177
LHI 026
LMIOOO

PRINT6, LLI 203
CAL GETCHR
cpr 254
CTZ PCOMMA
LLI203
LHI 026
LBM
LLI 202
LMB
LLIOOO
LAB
CPM
JTS PRINTI
LLI 000
CAL GETCHR
CPI254
JTZ NXTLIN
CPI273
JTZ NXTLIN
CAL CRLF
JMP NXTLIN

Load L with address of SCAN pointer storage location
Fetch value of the pointer (last letter of KEYWORD)
Add one to point to first character of expression
Load L with addr of EV AL pointer storage location
Store addr at which EV AL should start scanning
Load L with address of PRINT pointer
Which points to field terminator
Decrement pointer value to last character of expression
Load L with address of EV AL FINISH pntr storage loco
Place address value of last char in PRINT field there
Load L with address of QUOTE flag
Fetch the value of the QUOTE flag into the ACC
Test the QUOTE flag status
If field not quoted, proceed to evaluate expression
If field quoted, then clear the QUOTE flag for next field
And skip the evaluation procedure

Evaluate the current PRINT field
Then load L with address of the TAB flag
** Load H with the page of the TAB flag
Fetch the value of the TAB flag into the accumulator
Test the TAB flag
Change L to the FIXED/FLOAT flag location
** Change H to the FIXED/FLOAT flag page
Set FIXED/FLOAT flag to fixed point
If TAB flag not set, display value of expression
Load L with address of TAB flag
** Load H with page of TAB flag
Reset TAB flag for next PRINT field

Load L with address of PRINT pointer storage location
Fetch the character pointed to by the PRINT pointer
See if the last character scanned was a comma sign
If so, then display spaces to next TAB location
Reset L to address of PRINT pointer storage location
** Reset H to page of PRINT pointer storage location
Fetch the value of the pointer into register B
Change L to SCAN pointer storage location
Place end of last field processed into SCAN pointer
Change pointer to start of line input buffer
Place pntr to last char scanned into the accumulator
Compare this value to the (cc) for the line buffer
If not end of line, continue to process next field
If end of line, fetch the last character in the line
And check to see if it
Was a comma. If it was, go on to the next line in the
User program buffer without displaying a CR & LF.
If not a comma, check to see if it was a semi-colon.
If so, do not provide a CR & LF combination.
If not comma or semi-colon, provide CR & LF at end
Of a PRINT statement. Go process next line of pgm.

6-8

QUOTE

INITIALIZING PROCEDURES

FETCH A CHARACTER FROM
BUFFER AND SEE IF IT IS A
, OR " FOR END OF QUOTE

NO YES
?

DISPLAY THE
CHARACTER

/ '\

ADV ANCE POINTER TO NEXT
CHARACTER IN THE LINE

SEE IF AT END OF THE LINE

NO YES
? •

SEE IF ' OR" ISAT
THE END OF THE LINE

NO YES
A ? •

NXTLIN

6-9

EVALUATING MATHEMATICAL EXPRESSIONS

This and the next several chapters will pre-
sent the routines associated with EVAL UAT-
ING mathematical expressions. While it will
take a considerable number of pages of text
to present the details and source listings of
the routines, the essential concepts of this
process remain quite simple and straightfor-
ward.

The reader who has studied the preceeding
chapter may recall that when a portion of a
statement line contained a mathematical ex-
pression that needed to be evaluated, the
routine would set up pointers to the starting
and ending characters of the expression and
then call a subroutine labeled EVAL. The
EV AL routine, which is presented in this
chapter, is able to process the string of charac-
ters making up a mathematical expression. In
doing so, it calls on several other subroutines
that will have separate chapters devoted to
their details. However, the EV AL routine is
the primary expression processing routine
that ties the supportive subroutines for this
process together.

Mathematical expressions that are to be
evaluated by SCELBAL are assumed to con-
sist of strings of characters that represent
symbols joined by operators. Symbols in this
context mean either actual numerical values
such as 123.456 or 995 or 1.14159E+15; or
they may be characters representing a vari-
able name such as X. Operators are mathe-
matical operating signs such as "+" (addi-
tion). "-" (subtraction or minus), "*,, (multi-
plication), "/" (division), " f " (exponentia-
tion), and such signs as "=" (equal), "<" (less
than) and" > " (greater than). Two special
operator signs are the right and left paren-
thesis "0" which may be used to group at
nest portions of mathematical expressions,
denote the argument part of a function, or be
used to indicate a subscripted variable.

A typical mathematical expression that
might appear in a SCELBAL program is il-
lustrated here:

7 - 1

X l' 2 + 4 * X - 16

In this expression, X is a symbol (name of a
variable) as are 2, 4 and 16 (actual numerical
values). Four mathematical operators are used
in the above expression, t, *, + and - in that
order.

The process of evaluating an expression
to obtain a mathematical (numerical) value
consists of scanning the expression to break
it up into symbols and operators, and then
performing the required operations in the pro-
per order. The requirement of performing the
operations IN THE PROPER ORDER is
essential. The proper evaluation of mathe-
matical expressions requires the following of
precise rules for performing certain opera-
tions. For instance, the exam pIe expression
just presented is meant to be read as, and
evaluated in the following fashion.

"Raise the value represented by X to the
second power. To this quantity add four
times the quantity X. From this new total
subtract the value 16."

A person who did not know the order in
which operations were to be performed ac-
cording to custom, or a computer that was
not instructed otherwise, might just as easily
interpret the example expression to mean.

"Raise X to the power of 2 plus four times
X minus 16."

The order in which to perform various
types of operations is defined by establishing
a heirarchy for the various types of mathe-
matical operators. The portion of SCELBAL
that establishes the heirarchy and actually
determines when various mathematical opera-
tions are to be performed has been given the
label PARSER in accordance with the task it
performs. This routine will be discussed and
described in detail in the next chapter.

The EVALuating routine presented in this

chapter essentially serves to perform the fol-
lowing tasks. It breaks the mathematical ex-
pression being processed up into component
parts consisting of symbols (whether a vari-
able name or a numerical value) and mathe-
matical operators. Characters making up a
symbol are stored in the SYMBOL BUFFER.
'Whenever a mathematical operator is detec-
ted, a TOKEN VALUE is assigned to repre-
sent the operator similar to the manner in
which a token value was assigned when the
SYNT AX subroutine identified a 8T ATE-
:vIENT KEYWORD. This TOKEN VALUE
assigned for the mathematical operator is
passed on to another subroutine called the
PARSER (to be described in the next chap-
ter) which will either store the symbol and
operator for future use or perform the indi-
cated operations depending on the prece-
dence of the operator being processed. This
process of obtaining symbols and operators
continues until the entire expression has been
scanned.

For reference purposes, a list of the
TOKEN VALUES assigned to the various
mathematical operators is presented below.
Note that the first part of the table assigns
a TOKEN VALUE to single operators. The
latter part of the table assigns values to some
special combinations of operators which may
occur in IF statements. Later chapters will il-
lustrate how these TOKEN VALUES are used
to direct the operations of other SCELBAL
expression handling routines.

OPERATOR TOKEN VALUE

EOS 000
+ 001
- 002
* 003
I 004 I

l' 005
(006
) 007

< 011
- 012 -
> 013

<= 014
=> 015
<> 016

The presence of a parenthesis in a mathe-
matical expression requires special considera-
tion. As will be detailed in following chapters,
a parenthesis may indicate grouping of terms,
or the argument portion of a function, or the
subscripted part of an array variable. When a
parenthesis is detected by the EV AL subrout-
ine, it will call on appropriate subroutines to
determine what action is to be taken as a
function of where the parenthesis occurs in an

• expreSSlOn.

The overall operation of the RV AL routine
is summarized in the flow chart shown on the
next several pages. The source listing starts
below.

EV AL, LLI 227
LHI001
LMI224
INL
LHI026
LMIOOO
CAL CLESYM
LLI210
LMIOOO
LLI276

Load L with address of ARITHMETIC STACK pointer
** Set H to page of ARITHMETIC STACK pointer
Initialize ARITH STACK pointer value to addr minus 4
Advance memory pointer to FUN/ARRAY STACK pntr
* * Set H to page of FUN! ARRA Y STACK pointer
Initialize FUN! ARRAY STACK pointer to start of stack
Initialize the SYMBOL BUFFER to empty condition
Load L with address of OPERATOR STACK pointer
Initialize OPERA TO R STACK pointer value

LBM
LLI200
LMB

Set L to address of EV AL pointer (start of expression)
Fetch the EV AL pointer value into register B
Set up a working pointer register in this location
And initialize EV AL CURRENT pointer

7 - 2

EVAL

INITIALIZING PROCEDURES

START EVALUATING
THE EXPRESSION

/'
C

"-
FETCH A CHARACTER

IN THE EXPRESSION

SEE IF IT IS A +, -, *, OR i
I I

NO YES
? •

SET CORRESPONDING
TOKEN VALUE

SEE IF CHARACTER IS "("

A
\..

NO YES
? ·

"" INCREMENT F/A
STACK POINTER

CALL FUNCTION / ARRA Y
SET UP SUBROUTINE

SET TOKEN VALUE

SEE IF CHARACTER IS ")"
/

A
\..

NO YES
'J
•

..,.
SET TOKEN VALUE

CALL PARSER SUBROUTINE

PROCESS FUNCTION/ARRAY

DECREMENT F / A
STACK POINTER

'\V
/'

B
'-

7 - 3

I
E CHARACTER CONCATENAT

ONTO THE SY MBOLBUFFER

,

B

SEE IF CHARACTER IS " "

NO YES
') .

'"

SEE IF CHARACTER .
IS "<'\ "::::::", OR ,,>,,1

I
NO YES

? > .

v

/
A
./

I
ADV ANCE POINTER AND SEE

IF AT THE END OF EXPRESSION

NO YES

I

CALL PARSER SUBROUTINE
I

EXIT WITH ANSWER IN FPACC

7-4

,

ISET TOK EN VALUE

I

I
SEE IF NEXT CHARACTER I

IS "<,, ,,- " OR ">,, I , , I I ,
!
I

I
SET TOKEN VALUE FOR I

I "< " "=" ">" "<=", I I , , , ,
1 "=>", OR "<>" , .

./

CALL PARSER SUBROUTINE'

SCANl, LLI 200
CAL GETCHR
JTZ SCANI0
CPI253
JFZ SCAN2
LLI176
LMIOOI
JMP SCANFN

SCAN2, CPI 255
JFZ SCAN4
LLI120
LAM
NDA
JFZ SCAN3
LLI176
LAM
CPI007
JTZ SCAN3
CPI003
JTZ SYNERR
CPI005
JTZ SYNERR
LLI120
LMIOOI
INL
LMI260

SCAN3, LLI 176
LMI002

SCANFN, CAL PARSER
JMP SCANI0

SCAN4, CPI 252
JFZ SCAN5
LLI176
LMI003
JMPSCANFN

SCAN5, CPI 257
JFZ SCAN6
LLI176
LMI004
JMP SCANFN

SCAN6, CPI250
JFZ SCAN7
LLI 230
LBM
INB

Load L with address of EV AL CURRENT pointer
Fetch a character in the expression being evaluated
If character is a space, jump out of this section
See if character is a "+" sign
If not, continue checking for an operator
If yes, set pointer to PARSER TOKEN storage location
Place TOKEN value for "+" sign in PARSER TOKEN
Go to PARSER subroutine entry point

See if character is a minus ("-") sign
If not, continue checking for an operator
If yes, check the length of the symbol stored in the
SYMBOL BUFFER by fetching the (cc) byte
And testing to see if (cc) is zero
If length not zero, then not a unary minus indicator
Else, check to see if last operator was a right parenthesis
By fetching the value in the PARSER TOKEN storage
Location and seeing if it is token value for ")"
If last operator was ")" then do not have a unary minus
Check to see if last operator was "*,,
If yes, then have a syntax error
Check to see if last operator was exponentiation
If yes, then have a syntax error
If none of the above, then minus sign is unary, put
Character string representing the
Value zero in the SYMBOL BUFFER in string format
(Character count (cc) followed by ASCII code for zero)

Set L to address of PARSER TOKEN storage location
Set PARSER TOKEN value for minus operator

Call the PARSER subroutine to process current symbol
And operator. Then jump to continue processing.

See if character fetched from expression is "*,,
If not, continue checking for an operator
If yes, set pointer to PARSER TOKEN storage location
Place TOKEN value for "*,, (multiplication) operator in
PARSER TOKEN and go to PARSER subroutine entry

See if character fetched from expression is "/"
If not, continue checking for an operator
If yes, set pointer to PARSER TOKEN storage location
Place TOKEN value for" I" (division) operator in
PARSER TOKEN and go to PARSER subroutine entry

See if character fetched from expression is "("
If not, continue checking for an operator
If yes, load L with address of FUN/ARRAY STACK
Pointer. Fetch the value in the stack pointer. Increment
It to indicate number of "(" operators encountered.

7-5

LMB
CAL FUNARR
LLI176
LMI006
JMP SCANFN

SCAN7, cpr 251
JFZ SCAN8
LLI 176
LMI007
CAL PARSER
CAL PRIGHT
LLI 230
LHI026
LBM
DCB
LMB
JMP seANI0

SCANS, CPI336
JFZ SCAN9
LLl176
LMI005
JMP SCANFI\

SCAN9, CPI274
JFZ SCANll
LLI200
LBM
INB
LMB
CAL GETCHR
cpr 275
JTZ SCAN13
CPI276
JTZ SCAN15
LLJ 200
LBM
DCB
LMB
LLI176
LMI011
JMP SCANFN

SCA.Nll, CPI275
JFZ SCAN12
LLI200
LBM
INB
LMB
CAL GETCHR

Restore the updated stack pointer back to memory
Call subroutine to process possible FUNCTION or
ARRA Y variable subscript. Then set pointer to
PARSER TOKEN storage and set value for "(" operator
Go to PARSER subroutine entry point.

See if character fetched from expression is ")"
If not, continue checking for an operator
If yes, load L with address of PARSER TOKEN
Set PARSER TOKEN value to reflect ")"
Call the PARSER subroutine to process current symbol
Call subroutine to handle FUNCTION or ARRA Y
Load L with address of FUN / ARRA Y STACK pointer
** Set H to page of FUN/ARRAY STACK pointer
Fetch the value in the stack pointer. Decrement it
To account for left parenthesis just processed.
Restore the updated value back to memory.
Jump to continue processing expression.

See if character fetched from expression is " t "
If not, continue checking for an operator
If yes, load L with address of PARSER TOKEN
Put in value for exponentiation
Go to PARSER subroutine entry point.

See if character fetched is the "less than" sign
If not, continue checking for an operator
If yes, set L to the EV AL CURRENT pointer
Fetch the pointer
Increment it to point to the next character
Restore the updated pointer value
Fetch the next character in the expression
Is the character the "=" sign?
If so, have "less than or equal" combination
Is the character the "greater than" sign?
If so, have "less than or greater than ,. combination
Else character is not part of the operator. Set L back
To the EV AL CURRENT pointer. Fetch the pointer
Value and decrement it back one character in the
Expression. Restore the original pointer value.
Have just the "less than" operator. Set L to the
PARSER TOKEN storage location and set the value for
The ''less than" sign then go to PARSER entry point.

See if character fetched is the "=" sign
If not, continue checking for an operator
If yes, set L to the EV AL CURRENT pointer
Fetch the pointer
Increment it to point to the next character
Restore the updated pointer valuE
Fetch the next character in the expression

7-6

CPI274
JTZ SCAN13
CPI276
JTZ SCAN14
LLI200
LBM
DCB
LMB
LLI 176
LMI012
JMP SCANFK

SCAN12, CPI 276
JFZ SCAN16
LLI200
LBM
INB
LMB
CAL GETCHR
CPI274
JTZ SCAN15
CPI275
JTZ SCAN14
LLI200
LBM
DCB
LMB
LLI176
LMI013
JMP SCANFN

SCAN13, LLI 176
LMI014
JMP SCANFN

SCAN14, LLI176
LMI015
JMP SCANFN

SCAN15, LLI 176
LMI016
JMP SCANFN

SCAN16, CAL CONCTS

SCANIO LLl200 ,
LHI026
LBM
INB
LMB
LLI277

Is the character the "less than" sign?
If so, have "less than or equal" combination
Is the character the "greater than" sign?
If so, have "equal or greater than" combination
Else character is not part of the operator. Set L back
To the EV AL CURRENT pointer. Fetch the pointer
Value and decrement it back one character in the
Expression. Restore the original pointer value.
Just have "=" operator. Set I, to the PARSER TOKEN
Storage location and set the value for the "=" sign.
Go to the PARSER entry point.

See if character fetched is the "greater than " sign
If not, go append the character to the SYMBOL BUFF
If so, set L to the EV AL CURRENT pointer
Fetch the pointer
Increment it to point to the next character
Restore the updated pointer value
Fetch the next character in the expression
Is the character the "less than" SIgn?

If so, have "less than or greater than" combination
Is the character the "=" sign?
If so, have the "equal to or greater than" combination
Else character IS not part of the operator. Set I, back
To the EV AI, CURRENT pointer. Fetch the pointer
Value and decrement it back one character in the
Expression. Restore the original pointer value.
Have just the "greater than" operator. Set L to the
PARSER TOKEN storage location and set the value for
The "greater than" sign then go to PARSER entry

When have "less than or equal" combination set L to •

PARSER TOKEN storage location and set the value.
Then go to the PARSER entry poini.

When have "equal to or greater than" combination set L
To PARSER TOKEN storage location and set the value.
Then go to the PARSER entry point.

When have "less than or greater than" combination set
L to PARSER TOKEN storage location and set value.
Then go to the PARSER entry point.

Concatenate the character to the SYMBOL BUFFER

Set I, to the EVAL CURRENT pointer storage location
** Set H to page of EV AI, CURRENT pointer
Fetch the EV AL CURRENT pointer value into B
Increment the pointer value to point to next character
In the expression and restore the updated value.
Set L to EV AL FINISH storage location.

7· r-
- I

LAM
DCB
CPB
JFZ SCAN1
JMP PARSEP
HLT

PARSEP, LLI176
LMIOOO
CAL PARSER
LLI227
LHI001
LAM
CPI230
RTZ
JMP SYNERR

Fetch the EV AL FINISH value into the accumulator.
Set B to last character processed in the expression.
See if last character was at EV AL FINISH location.
If not, continue processing the expression. Else, jump
To final evaluation procedure and test. (Directs routine
To a dislocated section.) Safety Halt in unused byte.

Load L with PARSER TOKEN storage location. Set
The value indicating end of expression. Call the
PARSER subroutine for final time for the expression.
Change L to point to the ARITH STACK pointer.
* * Set H to the page of the ARITH STACK pointer.
Fetch the ARITH STACK pointer value.
Should indicate only one value (answer) in stack.
Exit with answer in FP ACC if ARITH STACK is O.K.
Else have a syntax error!

,

7-8

THE PARSER ROUTINE

The PARSER routine is a most important
part of the mathematical expression evaluat-
ing process. The primary purpose of the
routine is to arrange numbers and operators
in an expression so that they may be per-
formed in the proper order according to a set
of rules. At appropriate times, the routine
will calIon other subroutines to perform
mathematical operations.

The rules used to evaluate an expression
are established according to standard mathe-
matical practices by establishing a heirarchy
among the various mathematical operators
and following a consistant left to right pat-
tern for evaluating expressions. In SCELBAL,
the operating sign precedence is defined as
follows.

Parenthesis, when used to enclose a group
of operators and symbols (versus being used
to separate the argument of a function or to
indicate a subscripted variable), have the
highest precedence. That is, whenever a right
hand par8nthesis is encountered, all of the
operations signified by operators between it
and the initiating left hand parenthesis, must
be performed before any further processing
is attempted.

Individual operators are assigned prece-
dence according to the following heirarchy.
Exponentiation has highest precedence. Next
are the multiplication and division operators
(having equal precedence to each other). Then
comes the plus or minus operator. The lowest
operator precedence is assigned to the equal,
less than, or greater than operators (or com-
binations).

How do the rules of precedence enable the
PARSER routine to correctly analyze mathe-
matical expressions? They enable the program
to determine whether to perform an opera-
tion between two symbols (numbers) joined
by an operator, or whether to hold the values
until more data is obtained! The process in-
volves the use of stacking operations as will

8-1

be explained now.

The reader may recall from the previous
chapter that each time the PARSER sub-
routine is called by EV AL, the routine will
have placed a symbol (either a variable name
or a number) in the SYMBOL BUFFER (un-
less the end of the expression had been
reached which is a special case). Addition-
ally, an operator TOKEN VALUE will have
been set up for use by the PARSER routine.

The contents of the SYMBOL BUFFER
are converted to a number in floating point
format (using subroutines that will be pre-
sented in a later chapter). This number (which
will reside in a special set of registers called
the FP ACC) will be considered as the top-
most entry in an ARITHMETIC STACK for
the purposes of the following discussion.
The primary task of the PARSER is to
obtain the precedence value of the operator
currently being processed and determine
whether or not an actual mathematical
operation should be performed. This sim-
ple decision of whether or not to perform
an operation is made by comparing the
precedence of the current operator against
any previous operator(s) it has received. If
the precedence of the current operator is
greater than the previous operator, then the
operator is saved on an OPERATOR STACK.
Remember, the numerical value of the sym-
bol being processed has already been placed
on the top of an ARITHMETIC STACK.
Both of these stacks are configured as push-
down, pop-up stacks (first in, last out). If the
precedence of the operator just received is
equal to or less than the previous operator
(on the top of the OPERATOR STACK),
then the operation indicated by the operator
sign on the top of the OPERATOR STACK is
performed between the two top-most num-
bers in the ARITHMETIC STACK. After this
is done, the operator is removed from the
OPERATOR STACK. The two values in the
top of the ARITHMETIC STACK are re-
placed by the answer just obtained by per-

JFZ NOEXPO
LLI200
CALGETCHR
JMP CONCTS

NOEXPO, LLI227
LHIOOI
LAM
ADI004
LMA
LLA
CAL FSTORE
LLI120
LHI026
CAL DINPUT
JMP PARSE

LOOKUP, LLI370
LHI026
LMIOOO
LLI120
LDI027
LEI210
LAM
CPIOOI
JFZ LOOKUl
LLI122
LMIOOO

LOOKUl, LLI121
LHI026
CAL SWITCH
LAM
INL
LBM
INL
CAL SWITCH
CPM
JFZ LOOKU2
INL
LAB
CPM
JTZ LOOKU4

LOOKU2, CAL AD4DE
LLI370
LHI026
LBM
INB
LMB
LLI077

If not, cannot have number with scientific notation
If yes, have part of a scientific number, set pointer to
Get the operator that follows the E and append it to
The SYMBOL BUFFER and return to EV AL routine

Load L with address of ARITHMETIC STACK pointer
** Load H with page of ARITHMETIC STACK pointer
Fetch AS pointer value to ACC and add four to account
For the number of bytes required to store a number in
Floating point format. Restore pointer to memory.
Then, change L to point to entry position in the AS
Place contents of the FP ACC onto top of the AS
Change L to point to start of the SYMBOL BUFFER
** Set H to page of the SYMBOL BUFFER
Convert number in the buffer to floating point format
In the FP ACC then jump to check operator sign.

Load L with address of LOOK-UP COUNTER
** Load H with page of the counter
Initialize the counter to zero
Load L with starting address of the SYMBOL BUFFER
** Load D with page of the VARIABLES TABLE
Load E with start of the VARIABLES TABLE
Fetch the (cc) for the string in the SYMBOL BUFFER
See if the name length is just one character. If not,
Should be two so proceed to look-up routine. Else,
Change L to second character byte in the buffer and set
It to zero to provide compatibility with entries in table

Load L with addr of first character in the SYMBOL
** BUFFER. Set H to page of the SYMBOL BUFFER.
Exchange contents of D&E with H&L so that can
Fetch the first character of a name in the VARIABLES
T ABLE. Advance the table pointer and save the
Second byte of name in B. Then advance the pointer
Again to reach first byte of floating point formatted
Number in table. Now exchange D&E with H&L and
Compare first byte in table against first char in buffer
If not the same, go try next entry in table. If same,
Advance pointer to next char in buffer. Transfer the
Character in B (second byte in table entry) to the ACC
Compare it against second character in the huffer.
If match, have found the name in the VARIABLES tbl.

Call subroutine to add four to the pointer in D&E to
Advance the table pointer over value bytes. Then set
** Up Hand L to point to LOOK-UP COUNTER.
Fetch counter value (counts number of entries tested
In the VARIABLES TABLE), increment it
And restore it back to memory
Load L with address of SYMBOL VARIABLES counter

8 - 10

LHI027
LAB
CPM
JFZ LOOKU1
LLI077
LHI027
LBM
INB
LMB
LAB
CPI025
JFS BIGERR
LLI121
LHI026
LBI002
CAL MOVEIT
LLE
LHD
XRA
LMA
INL
LMA
INL
LMA
INL
LMA
LAL
SUI 004
LEA
LDH

LOOKU4, CALSAVEHL
LLI227
LHI001
LAM
ADI004
LMA
LLA
CAL FSTORE
CAL RESTHL
CAL SWITCH
CAL FLOAD

PARSE, CAL CLESYM
LLI 176
LAM
CPI007
JTZ PARSE2
ADI240
LLA
LBM

** Do same for H. (Counts number of names in table.)
Place LOOK-UP COUNTER value in the accumulator.
Compare it with number of entries in the table.
If have not reached end of table, keep looking for name.
If reach end of table without match, need to add name
** To table. First set H & L to the SYMBOL
V ARIABLES counter. Fetch the counter value and
Increment to account for new name being added to the
Table. Restore the updated count to memory. Also,
Move the new counter value to the accumulator and
Check to see that table size is not exceeded. If try to
Go over 20 (decimal) entries then have BiG error.
Else, set L to point to first character in the SYMBOL
** BUFFER and set H to proper page. Set the number
Of bytes to be transferred into register B as a counter.
Move the symbol name from the buffer to the
VARIABLES TABLE. Now set up H & L with value
Contained in D & E after moving ops (points to first
Byte of the value to be associated with the symbol
Name.) Clear the accumulator and place zero in all four
Bytes associated with the variable name entered
In the VARIABLES TABLE
In order to
Assign an
Initial value
To the variable name
Then transfer the address in L to the accumulator
Subtract four to reset the pointer to start of zeroing ops
Restore the address in D & E to be in same state as if
Name was found in the table in the LOOKUP routine

Save current address to VARIABLES TABLE
Load L with address of ARITHMETIC STACK pointer
** Load H with page of the pointer
Fetch the AS pointer value to the accumulator
Add four to account for next floating point formatted
Number to be stored in the stack. Restore the stack
Pointer to memory and set it up in register L too.
Place the value in the FP ACC on the top of the
ARITHMETIC STACK. Restore the VARIABLES
TABLE pointer to H&L and move it to D&E. Now load
The VARIABLE value from the table to the FP ACC.

Clear the SYMBOL BUFFER
Load L with address of PARSER TOKEN VALUE
And fetch the token value into the accumulator
Is it token value for right parenthesis ")" ? If so, have
Special case where must perform ops til find a "(" !
Else, form address to HEIRARCHY IN table and
Set L to point to HEIRARCHY IN VALUE in the table
Fetch the heirarchy value from the table to register B

8 - 11

LLI210
LCM
CALINDEXC
LAM
ADI257
LLA
LAB
CPM
JTZ PARSEI
JTS PARSEI
LLI 176
LBM
LLI210
LCM
INC
LMC
CALINDEXC
LMB
RET

PARSEl, LLI210
LAM
ADL
LLA
LA1\1
NDA
RTZ
LL1210
LCM
DCC
Ll\lC
CAL FPOPER
Jl\1P PARSE

PARSE2, LL1210
LHI026
1.,\,\1
'DL .!--"\. '

LLA
LAM
NDA
JTZ PARNER
LLI 210
LCM
DCC
LMC
CPl006
RTZ
CAL FPOPER
JMP PARSE2

Set L to OPERATOR STACK pointer storage location
Fetch the OS pointer into CPU register C
Add OS pointer to address of OS pointer storage lac
Fetch the token value for the operator at top of the OS
And fonn address to HEIRARCHY OUT table
Set L to point to HEIRARCHY OUT VALUE in the
Table. Move the HEIRARCHY IN value to the ACC.
Compare the HEIRARCHY IN with the HEIRARCHY
OUT value. If heirarchy of current operator equal to or
Less than operator on top of OS stack, perform
Operation indicated in top of OS stack. Else, fetch the
Current operator token value into register B.
Load L with address of the OPERATOR STACK pntr
Fetch the stack pointer value
Increment it to account for new entrv on the stack

"
Restore the stack pointer value to memory
Fonn pointer to next entry in OPERATOR STACK
Place the cunent operator token value on top of the OS
Exit back to the EV AL routine.

Load L with address of the OPERATOR STACK pntr
Fetch the stack pointer value to the accumulator
Add in the value of the stack pointer address to form
Address that points to top entry in the OS
Fetch the token value at the top of the OS to the ACe
Check to see if the token value is zero for end of stack
Exit back to the EV AL routine if stack empty
Else, reset L to the OS pointer storage location
Fetch the pointer value
Decrement it to account for operator removed from
The OPERATOR STACK and restore the pointer vaiue
Perfonn the operation obtained from the top of the OS
Continue to compare current operator against top of OS

Load L with address of the OPERATOR STACK pntr
** Load H with page of the pointer
Fetch the stack pointer value to the accumulator
Add in the value of the stack pointer address to form
Address that points to top entry in the OS
Fetch the token value at the top of the OS to the ACC
Check to see if the token value is zero for end of stack
If end of stack, then have a parenthesis error condx
Else, reset L to the OS pointer storage location
Fetch the pointer value
Decrement it to account for operator removed from
The OPERATOR STACK and restore the pointer value
Check to see if token value is "(" to close parenthesis
If so, exit back to EV AI. routine.
Else, perfonn the op obtained from the top of the OS
Continue to process data in parenthesis

8 - 12

FPOPER, LLI 371
LHI026
LMA
LLI227
LHIOOI
LAM
LLA
CAL OPLOAD
LLI227
LAM
SUI 004
LMA
LLI371
LHI026
LAM
CPIOOI
JTZ FPADD
CPI002
JTZ FPSUB
CPI003
JTZ FPMULT
CPI004
JTZ FPDIV
CPI005
JTZ INTEXP
CPl011
JTZ LT
CPI012
JTZEQ
CPI013
JTZGT
CPI014
JTZ LE
CPI015
JTZGE
CPI016
JTZ NE

P ARNER, LLI 230
LHI026
LMIOOO
LAI311
LCI250
JMP ERROR

LT, CAL FPSUB
LLI126
LAM
NDA
JTS CTRUE
JMP CFALSE

Load L with address of TEMP OP storage location
* * Load H with page of TEMP OP storage location
Store OP (from top of OPERATOR STACK)
Change L to address of ARITHMETIC STACK pointer
** Load H with page of AS pointer
Fetch AS pointer value into ACC
Set L to top of ARITHMETIC STACK
Transfer number from ARITHMETIC STACK to FPOP
Restore pointer to AS pointer
Fetch the pointer value to the ACC and subtract four
To remove top value from the ARITHMETIC ST ACK
Restore the updated AS pointer to memory
Set L to address of TEMP OP storage location
** Set H to page of TEMP OP storage location
Fetch the operator token value to the ACC
Find out which kind of operation indicated
Perform addition if have plus operator
If not plus, see if minus
Perform subtraction if have minus operator
If not minus, see if multiplication
Perform multiplication if have multiplication operator
If not multiplication, see if division
Perform division if have division operator
If not division, see if exponentiation
Perform exponentiation if have exponentiation operator
If not exponentiation, see if "less than" operator
Perform comparison for "less than" op if indicated
If not "less than" see if have "equal" operator
Perform comparison for "equal" op if indicated
If not "equal" see if have "greater than" operator
Perform comparison for "greater than" op if indicated
If not "greater than" see if have "less than or equal" op
Perform comparison for the combination op if indicated
See if have "equal to or greater than" operator
Perform comparison for the combination op if indicated
See if have "less than or greater than" operator
Perform comparison for the combination op if indicated

If cannot find operator, expression is not balanced
** Set Hand L to address of F / A STACK pointer
Clear the F I A STACK pointer to re-initialize
Load ASCII code for letter I into the accumulator
And code for "(" character into register C
Go display I(for "Imbalanced Parenthesis) error msg

Subtract contents of FP ACC from FPOP to compare
Set L to point to the MSW of the FPACC (Contains
Result of the subtraction.) Fetch the MSW of the
FP ACC to the accumUlator and test to see if result is
Positive or negative. Set up the FP ACC as a function
Of the result obtained.

8 - 13

EQ, CAL FPSUB
LLI126
LAM
NDA
JTZ CTRUE
JMP CFALSE

GT, CAL FPSUB
LLI126
LAM
NDA
JTZ CFALSE
JFS CTRUE
JMP CFALSE

LE, CAL FPSUB
LLI126
LAM
NDA
JTZ CTRUE
JTS CTRUE
JMP CFALSE

GE CAL FPSUB ,
LLI126
LAM
NDA
JFS CTRUE
JMP CFALSE

NE, CAL FPSUB
LLI126
LAM
NDA
JTZ CFALSE

CTRUE, FPONE, LLI004
JMP FLOAD

CF ALSE, LLI 127
LMIOOO
JMP FPZERO

AD4DE, LAE
ADI004
LEA
RET

Subtract contents of FPACC from FPOP to compare
Set L to point to the MSW of the FP ACC (Contains
Result of the subtraction.) Fetch the MSW of the
FPACe to the accumulator and test to see if result is
Equal. Set up the FP ACC as a function
Of the result obtained.

Subtract contents of FPACC from FPOP to compare
Set L to point to the MSW of the FP ACC (Contains
Result of the subtraction.) Fetch the MSW of the
FP ACC to the accumulator and test to see if result is
Positive, Negative, or Equal. Set up the FP ACC
As a function
Of the result obtained.

Subtract contents of FP ACe from FPOP to compare
Set L to point to the MSW of the FPACC (Contains
Result of the subtraction.) Fetch the MSW of the
FP ACC to the accumulator and test to see if result is
Positive, Negative, or Equal. Set up the FPACe
As a function
Of the result obtained

Subtract contents of FPACC from FPOP to compare
Set L to point to the MSW of the FPACe (Contains
Result of the subtraction.) Fetch the MSW of the
FP ACe to the accumulator and test to see if result is
Positive or Negative. Set up the FP ACC
As a function of the result obtained

Subtract contents of FPACC from FPOP to compare
Set L to point to the MSW of the FPACC (Contains
Result of the subtraction.) Fetch the MSW of the
FP ACC to the accumulator and test to see if result is
Equal. Set up the FP ACC as a function of the result.

Load L with address of floating point value +1.0
Load FP ACC with value +1.0 and exit to caller

Load L with address of FP ACe Exponent register
Set the FP ACC Exponent to zero and then set the
Mantissa portion of the FP ACC to zero. Exit to caller.

Subroutine to add four to the value in register E.
Move contents of E to the ACe and add four.
Restore the updated value back to register E.
Return to the calling routine.

8 - 14

INTEXP, LLI 126
LHI001
LAM
LLI003
LMA
NDA
JTZ FPONE
CTS FPCOMP
CAL FPFIX
LLI 124
LBM
LLI013
LMB
LLI134
LEI014
LHI001
LDH
LBI004
CAL MOVEIT
CAL FPONE
LLI003
LAM
NDA
JTSDVLOOP

MULOOP, LLI 014
CAL FACXOP
CAL FPMULT
LLI 013
LBM
DCB
LMB
JFZ MULOOP
RET

DVLOOP, LLI 014
CAL FACXOP
CAL FPDIV
LLI013
LBM
DCB
LMB
JFZ DVLOOP
RET

Load L with address of lVfSW of FP ACC (Floating Point
** ACCumulator). Load H with page of FPACC.
Fetch MSW of the FPACC into the accumulator.
Load L with address of EXP TEMP storage location
Store the FP ACC MSW value in EXP TEMP location
Test contents of the MSW of the FPACC. If zero, then
Set FPACC equal to +1.0 (any nr to zero power = 1.0!)
If MSW indicates negative number, complement
The FP ACC. Then convert floating point number to
Fixed point. Load L with address of LSW of fixed nr
Fetch the LSW into CPU register B.
Set L to address of EXPONENT COUNTER
Place the fixed value in the EXP CNTR to indicate
Number of multiplications needed (power). Now set L
To LSW of FPOP and E to address of FP TEMP (LSW)
** Set H to floating point working area page.
Set D to same page address.
Set transfer (precision) counter. Call subroutine to move
Contents of FPOP into FP TEMP registers to save
Original value of FPOP. Now set FPACC to +1.0.
Load L with pointer to original value of FP ACC
(Stored in FP TEMP) MSW and fetch contents to ACC.
Test to see if raising to a negative power. If so, divide
Instead of multiply!

Load L with address of LSW of FP TEMP (original
Value in FPOP). Move FP TEMP into FPOP.
Multiply FPACC by FPOP. Result left in FPACC.
Load L with address of EXPONENT COUNTER.
Fetch the counter value
Decrement it
Restore it to memory
If counter not zero, continue exponentiation process
When have raised to proper power, return to caller.

Load L with address of LSW of FP TEMP (original
Value in FPOP). Move FP TEMP into FPOP.
Divide FPACC by FPOP. Result left in FPACC.
Load L with address of EXPONENT COUNTER
Fetch the counter value
Decrement it
Restore to memory
If counter not zero, continue exponentiation process
When have raised to proper power, return to caller.

8-15

forming the operation. (It is important to
note that the number in the top of the
arithmetic stack operates on the number be-
neath it in the stack. For instance, for division
the number in the top of the stack will be the
divisor, the next number down will be the
dividend. At the end of the operation, both
the divisor and dividend will be removed from
the arithmetic stack. The quotient obtained
from the division process will be on the top
of the arithmetic stack.) After cases where a
precedence test results in an operation being
performed, the precedence test is repeated
against the next entry in the OPERATOR
STACK (unless the stack is empty). Remem-
ber, since the operator for the operation just
performed will be removed from the stack,
any previous operator(s) stored in the stack
will be popped-up to place a new operator in
the top position. When a point is reached
where the precedence fails (that is, the pre-
cedence of the current operator is greater
than the sign at the top of the OPERATOR
STACK), then the current operator sign is
placed on the top of the stack. The routine
then returns to the EV AL routine which will
get the next symbol/operator pair!

The above explanation of the primary
purpose of the PARSER. routine may seem
a bit complicated when first read. Indeed,
the PARSER routine is perhaps the most
complicated portion of SCELBAL. The ac-
tual operation of the major portion of the
routine just described may be made some-
what clearer by following the evaluation of
an example expression on a step-by-step
basis.

Suppose the program is evaluating the
mathematical expression:

X l' 2 + 4 * X - 16

When the EV AL routine (presented in the
preceeding chapter) starts processing the ex-
pression from left to right it will first pick
up the symbol X and the operator " t "
which it will pass to the PARSER routine.
Since the expression is just starting to be pro-
cessed, both the ARITHMETIC STACK and

8-2

the OPERATOR STACK will be empty.

When the PARSER routine receives the
symbol X it will determine that it is a variable
name. It will calIon a routine to ascertain
the current value of X from a VARIABLES
TABLE. This value will be placed (using
floating point format) in the top of the
ARITHMETIC STACK.

The TOKEN VALUE for the operator
sign passed to the PARSER routine will
be used to assign a precedence value to the
operator using a precedence look-up table.
The precedence of the operator will then
be compared to the precedence of the
operator currently at the top of the
OPERATOR STACK. Since, at this point,
the OPERATOR STACK will be empty,
the current operator sign will be placed on the
top of the OPERATOR STACK. Thus, at this
point, the ARITHMETIC STACK and the
OPERATOR STACK would have the follow-
ing contents:

AS OS

X l'

(Remember, the value shown as being the top-
most entry on the ARITHMETIC STACK in
this discussion will actually be stored in the
floating point accumulator (FPACC). This
view simplifies the concept being explained.)

The PARSER routine at this point would
return control back to the EV AL routine
which would proceed to bring the next sym-
bol and operator in the expression into appro-
priate buffers. For the example being presen-
ted this would mean the number 2 would be
placed in the SYMBOL BUFFER. The token
value for the operator "+" would be placed in
the TOKEN VALUE register.

When the PARSER routine was again called
upon, it would proceed to convert the num-
ber 2 into floating point format and store it
as the top-most entry in the ARITHMETIC

ST ACK. 'The precedence for the "+" operator
would be obtained and compared against that
of the top-most entry in the OPERATOR
STACK. At this point the two stacks would
appear as:

AS OS

2 =====::tt t X -

The precedence of the current operator (plus
sign) would be lower than that of the expo-
nentiation sign on the top of the OPERATOR
STACK. At this point, the operation dictated
by the operator in the top of the OPERATOR
STACK is performed on the top two numbers
in the ARITHMETIC STACK (as indicated by
the arrows in the above diagram). At the com-
pletion of this operation, the numerical result
of the operation will be stored on the top of
the ARITHMETIC STACK in place of the
two original values that were operated on.
The OPERATOR STACK will now be empty
because the operator is removed from the
stack once the operation has been performed.
Since there are no more operators on the
stack to compare against, the current "+"
operator will be placed on the top of the
OPERATOR STACK. The two stacks will
now appear as shown here:

AS as
Xi 2 +

The program will then return back to the
EV AL routine to obtain the next symbol and
operator in the expression being processed.
The next time the PARSER subroutine is
entered the number 4 will be in the SYMBOL
BUFFER and the token for the operator "*,,
(multiplication) will be in the TOKEN
VALUE register. Since the precedence of the
"*" sign is higher than the "+" sign on the
top of the OPERATOR STACK, the new sign
will be placed on the top of the stack. The

8-3

two stacks will now contain:

AS OS

4
Xi2

*
+

The program will return back to the
EV AL routine which will proceed to ob-
tain the symbol X and the operator "-"
from the expression. The value for X will
be placed on the top of the ARITHMETIC
STACK by the PARSER. The two stacks
will now contain:

AS

X
4 -

Xi 2

OS

*
+

Since the minus sign operator obtained
by the routine has a lower precedence than
the multiplication sign in the top of the
OPERATOR STACK, the multiplication
operation is performed between the two
top entries in the ARITHMETIC STACK
as indicated in the above diagram. At the
completion of this operation, the two
stacks will contain:

AS OS

4 * X =====::» + X t 2 -

At this point the current operator is com-
pared with the sign which has just been
popped-up to the top of the OPERATOR
ST ACK. The current operator, being the
minus sign, has the same precedence as the
plus sign. This means the operation at the
top of the operator stack must be perfor-
med. (Remember, if the precedence test
results in the current operator being less

<

than OR EQUAL to the precedence of the
operator in the top of the stack, that the
operation is performed!) This operation is
signified by the arrows in the diagram just
presented. At the conclusion of this opera-
tion, the two stacks will hold:

AS OS

Xi2+4*X

Once again the program will return to the
EV AL routine which will proceed to pick up
the final symbol in the expression (16) and
then find the end of the expression. When the
end of the expression is found, a special token
value of zero is set up in place of an operator
sign. This special zero token value has a prece-
dence lower than any operator. When the
symbol value is placed on the ARITHMETIC
STACK by the PARSER routine the two
stacks will register:

AS OS

16 ----.... -

Since the zero token value has a lower
precedence than any operator, it means that
any operators on the OPERATOR STACK
will have to be performed to complete the
evaluation of the expression. In the example
there is only one operator left on the stack.
This operation is performed. The OPERA·
TOR STACK will then be empty. The
ARITHMETIC STACK will contain the final
value of the complete expression:

AS OS

X t 2 + 4 * X - 16 empty

The PAR SE R has performed its primary task!

8-4

In performing its primary task as just
explained' in detail, the PARSER routine
has several sUbsections that perform re-
lated tasks. One such section is able to
look-up the values of variable names in the
VARIABLES TABLE and obtain the cur-
rent value for the variable if the name is
already present in the table. If it is not
found in the table, the symbolic name is
entered in the table and the initial value
of zero is assigned to the variable.

Another subsection of the PARSER
routine is a subsection that directs the pro-
gram to perform specific mathematical
operations when the PARSER has deter-
mined that they should be executed. This
portion of the program uses the TOKEN
V ALUE assigned to the operator sign to
determine which mathematical sUbroutines
to call in order to execute the operation. The
operation is performed using the top two
entries in the ARITHMETIC STACK. Some
of these operations, such as addition, sub-
traction, multiplication and division are per-
formed by simply calling on appropriate parts
of a floating point arithmetic package which
is an integral part of SCELBAL. (This package
is discussed in a separate chapter.)

However, a special group of operations in-
volving the equal, less than, and greater than
operators, are slightly more complex and are
processed by individual routines that are pre-
sented as SUbsections in this chapter. These
special operators have a very low precedence
in the precedence heirarchy. These operators
are used to actually perform comparison
operations between the two top values
in the ARITHMETIC STACK. If the com-
parison condition specified (such as less
than, greater than etc., or combinations of
these conditions) is found to be TRUE, then
the result left in the ARITHMETIC STACK
will be the value one. If the condition is not
satisfied, the value zero will be left in the
ARITHMETIC STACK. Thus, the PARSER
is able to process conditional expressions
such as those made in IF statements!

The handling of the unary minus sign by
the EV AL and PARSER is a special case that
should be understood by the reader. The
unary minus sign is considered to be simply
the case when a number is being negated
(instead of subtracted). The EV AL and
PARSER handle the unary minus sign by
subtracting the value to be negated from zero.
For instance, the evaluation of an expression
such as:

A *-B or A t -B

because they would be processed as:

A * 0 - B or A t 0 - B

(A times zero minus B or A raised to the zero
power, with B subtracted from the result.)

Thus, when using the unary minus sign
with such operators, it is necessary to enclose
the value to be negated in parenthesis thus: A + -B

will actually be processed as: A * (-B) or A t (-B)

A + (0 - B)

The reader may review the preceeding chapter
to see that whenever the EVAL routine picks
up a unary minus sign in an expression, it will
load the SYMBOL BUFFER with the value
zero so that the PARSER will perform the
negation on the next symbol that is passed to
it. Because of the method used to handle the
unary minus case, expressions are prohibited
from containing double operators such as:

Expressions so stated can then be handled
correctly by the EV AL and PARSER sub-
routines. (The reader may review the EV AL
routine to see that incorrect use of the unary
minus sign in expressions will result in a syn-
tax error message being generated.)

The flow of operations handled by the
PARSER is illustrated by the flow chart pre-
sented on the next several pages. The source
listing starts below.

PARSER, LLI120
LHI026
LAM
NDA
JTZ PARSE
INL
LAM
CPI256
JTZ PARNUM
CPI260
JTS LOOKUP
CPI272
JFS LOOKUP

PARNUM, DCL
LAM
CPI001
JTZ NOEXPO
ADL
LLA
LAM
CPI305

Load L with starting address of SYMBOL BUFFER
** Load H with page of SYMBOL BUFFER
Fetch the (cc) for contents of SYMBOL BUFFER
Into the ACC and see if buffer is empty
If empty then no need to convert contents
If not empty, advance buffer pointer
Fetch the first character in the buffer
See if it is ASCII code for decimal sign
If yes, consider contents of buffer to be a number
If not decimal sign, see if first character represents
A decimal digit, if not, should have a variable
Continue to test for a decimal digit
If not, go look up the variable name

If SYMBOL BUFFER contains number, decrement
Buffer pointer back to (cc) and fetch it to ACC
See if length of string in buffer is just one
If so, cannot have number with scientific notation
If not, add length to buffer pointer to
Point to last character in the buffer
Fetch the last character in buffer and see if it
Represents letter E for Exponent

8-5

. B} <
• 1

•

(PARSER)

,

I
I

, SEE IF SYMBOL 1
BUFFER IS EMPTY!

NO YES •
A . ,

, ,
I

i
I

I

ISEE IF SYMBOL BUFFERI
i CONTAINS A NUMBER I ,

I

NO YES

SEE IF LAST CHARACTER I
IN THE BUFFER IS AN "E"i

I , ,

NO YES

,
PLACE THE PRESENT

CONTENTS OF THE
"FPACC" (FLOATING i

IpOINT ACCUMULATORl!
I ON THE TOP OF THE I

ARITHMETIC STACK
i

CONVERT THE CONTENTS
I OF THE SYMBOL BUFFER
I TO FLOATING POINT FORMAT I

I TOP OF ARITHMETIC STACK)
I

I

(AI
\J

8-6

\ .1

IAPPEND OPERATOR ONTOl
l THESYMBOLBUFFER :

I
0.
I EXIT
\ '---'

i
I

PLACE THE SYMBOL NAME
IN THE VARIABLES TABLE

I

I
ASSIGN AN INITIAL VALUE

OF ZERO FOR THE VARIABLE

,

A
'''--.,./

,

•

SEE IF THE NAME IN THE
SYMBOL BUFFER IS IN THE

VARIABLES LOOK-UP TABLE
!

NO YES

I
I

,

I

I
j

PLACE THE PRESENT CONTENTS
OF THE "FPACC" ON THE TOP
OF THE ARITHMETIC STACK

LOAD THE VALUE FOR THE
VARIABLE INTO THE "FPACC"

(VIRTUAL TOP OF ARITH STACK)

CLEAR THE SYMBOL BUFFER

SEE IF CURRENT OPERATOR
IS A RIGHT PARENTHESIS i

NO YES
? ,

SEE IF HEIRARCHY OF CURRENT
OPERATOR IS LESS THAN OR

EQUAL TO HEIRARCHY OF THE
OPERATOR ON THE TOP OF

THE OPERATOR STACK
•

8 - 7

'\ , C

'1./

NO YES
?
•

PLACE OPERATOR TOKEN
VALUE ON TOP OF THE

OPERATOR STACK

/'
EXIT

FETCH OPERATOR TOKEN
VALUE FROM TOP OF THE
OPERATOR ST ACK. SEE IF

IT TOKEN FOR END OF STACK

NO YES
? • EXIT

CALL SUBROUTINE TO PERFORM
OPERATION INDICATED BY THE
OPERATOR THAT WAS IN STACK

/ '\
C

FETCH OPERATOR TOKEN
VALUE FROM TOP OF THE
OPERATOR ST ACK. SEE IF

IT TOKEN FOR END OF ST ACK

8-8

NO YES

SEE IF TOKEN FOR
LEFT PARENTHESIS

NO YES

CALL SUBROUTINE TO PERFORM
OPERATION INDICATED BY THE
OPERATOR THAT WAS IN STACK

c

FPOPER

I
VIRTUAL TOP OF ARITlL\lETIC 'I

ST ACK IS IN THE "FPACe.'
POP TI JE "('TCf' I 'I'OP ','" '1"'" 1. "-i. _, r\.....J \. 1., '\ ->. .:. \ t j

IN THE ARITHMETIC STACK I0:10 I
THE "FPOP" I FLOATING POIl':T

OPERAND) REGISTERS, PERFOi\:\!i ,
THE OPEHATION [NDICATED BY I

THE OPEI;ATOH RE.MOVED FHI)i\! i
THE OPERATOR STACK J1.JST I

BEFORE THIS SUBROL:TINE WAS I
CALLED, VALUE IN THE "FPACC"

(VIRTUAL TOP OF ARITHMETIC I

STACK) OPERATES ON VALUE IN I
"FPOP" (ACTUAL TOP OF ARITH,
METIC STACK), ANSWER IS LEFT
IN THE "FPACC" (VIRTUAL TOP ,

OF THE ARITHMETIC STACK)

8-9

FUNCTION AND OPTIONAL ARRAY HANDLING ROUTINES

When a mathematical expression is being
evaluated by SCELBAL the presence of a
parenthesis sign can indicate one of three
possible conditions. The parenthesis may
simply be used to group parts of a mathe-
matical formula such as in the example:

«(X + 2) * (X - 3))!(X + 4)

When parentheses are used in this manner,
they are processed by the appropriate por-
tions of the EVAL and PARSER routines
previously described.

A second way in which parentheses may
be used is when they isolate the argument
portion of a function, such as in the examples
illustrated here:

INT(X)

or

RND(O)

or

TAB(12)

The third case in which a parenthesis may
be used is to indicate the subscripted part of
an array variable:

A(l), A(2), A(8)

such as would occur for an array that had a
DIMension of eight.

SCELBAL must be capable of distinguish-
ing the purpose of a parenthesis whenever one
is encountered and taking appropriate action
once that purpose has been ascertained.

The process of determining the purpose of
a parenthesis is handled by a subroutine to be
presented shortly referred to by the label
FUNARR (FUNction or ARRay handler).
This subroutine is called bv the EV AL routine •

9 - 1

presented previously whenever it encounters
a left hand ("(") parenthesis sign while pro-
cessing an expression. The flow chart on the
next page illustrates the basic operation of the
FUNARR subroutine.

Essentially, the subroutine first determines
whether the parenthesis is simply being used
to group mathematical terms by checking to
see if there is anything in the SYMBOL
BUFFER. If there is anything in the symbol
buffer it should either be the name of a func-
tion or the symbolic name for an array
variable. A check for a function name is made
by scanning a FUNCTION LOOK-UP table
for a match between an entry in it and the •

character string in the 8Yl\1BOL BUFFER.
Upon finding a match, a FUNCTION TOKEN
V ALUE is set up in a stack called the F fA
ST ACK. This token value for a function will
always be positive in value. (It is simoly the
position of the function name in the name
table!) If the data in the SYMBOL BUFFER
does not represent a function name, and if
the user desires to utilize the optional array
handling capability of SCELBAL, another
subroutine (labeled FUN AR2) is called upon
to see if the character in the SYMBOL
BUFFER is an array variable by looking for
a match with it in the ARRAY VARIABLES
TABLE (discussed previously in the chapter
describing the optional DIM statement). If
the name is found in the table, a negative
token value (corresponding to the position of
the array name in the table) is established and
placed in the F fA STACK.

The routine that handles the processing of
subscripted array names is left out of the
program if the user does not desire to incor-
porate the optional DIM statement and
associated capability in SCELBAL. If it is left
out, the reference instruction to it is changed
to a no-operation instruction (indicated in the
listing by the @@ notation) so that the
routine will issue an error message if the
program user attem pts to subscript a variable
when array capability is not implemented .

SQRX, LLI014
LHI001
CAL FSTORE
LLI126
LAM
NDA
JTS SQRERR
JTZ CFALSE
LLI 017
LAM
NDA
JTS NEGEXP
RAR
LBA
LAIOOO
RAL
LMA
JMP SQREXP

NEGEXP, LBA
XRA
SUB
NDA
RAR
LBA
LAIOOO
ACA
LMA
JTZ NOREMD
INB

NOREMD, XRA
SUB
LBA

SQREXP, LLI013
LMB
LLI 004
LEI 034
LDH
LBI004
CAL MOVEIT
CAL CFALSE
LLI044
CAL FSTORE

SQRLOP, LLI 034
CAL FLOAD
LLI 014
CAL OPLOAD
CAL FPDIV

Load L with address of FP TEMP registers
** Set H to page of FP TEMP. Move contents of FPACC
[Argument of SQR(X)] into FP TEMP for storage.
Load L with MSW of FPACC
Fetch the MSW into the accumulator
Check the sign of the number in the FP ACC
If number negative, cannot take square root
If number is zero, return with zero value in FPACC
Load L with address of FP TEMP Exponent register
Fetch the Exponent value into the ACC
Check sign of the Exponent
If Exponent less than zero, process negative Exponent
If Exponent positive, rotate right to divide by two
And save the result in CPU register B
Clear the accumulator without disturbing Carry bit
Rotate Carry bit into the ACC to save remainder
Store the remainder back in FP TEMP Exponent reg.
Jump to continue processing

For negative Exponent, form two's complement by
Placing the positive value in CPU register B, clearing
The accumulator, and then subtracting B from the ACC
Clear the Carry bit after the complementing operation
Rotate the value right to divide by two
Save the result in CPU register B
Clear the accumulator without disturbing Carry bit
Add Carry bit to the accumulator as remainder
Store the remainder back in FP TEMP Exponent reg
If remainder was zero skip ahead. If not, increment the
Result of the divide by two ops to compen for negative

Clear the accumulator
Subtract the quotient of the divide by two op to
Form two's complement and save the result in register B

Load L with address of TEMP register
Store Exponent quotient from above ops in TEMP
Load L with address of FP registers containing +1.0
Load E with address of SQR APPRO X working registers
Set D to same page as H
Set up register B as a number of bytes to move counter
Transfer value +1.0 into SQR APPROX registers
N ow clear the FP ACC registers
Load L with address of LAST SQR APPROX temp regs.
Initialize the LAST SQR APPRO X regs to value of zero

Load L with address of SQR APPROX working registers
Transfer SQR APPROX into the FP ACC
Load L with address of SQR ARG storage registers
Transfer SQR ARG into the FPOP
Divde SQR ARG by SQR APPRO X (Form XI A)

9 - 10

LLI034
CAL OPLOAD
CAL FPADD
LLI127
LBM
DCB
LMB
LLI034
CAL FSTORE
LLI044
CAL OPLOAD
CAL FPSUB
LLI127
LAM
CPI367
JTS SQRCNV
LLI034
LDH
LEI 044
LEI 004
CAL MOVEIT
JMP SQRLOP

SQRCNV, LLI013
LAM
LLI037
ADM
LMA
LLI034
JMP FLOAD

SQRERR, LAI323
LCI321
JMP ERROR

RNDX, LLI 064
LHI001
CAL FLOAD
LLI050
CALOPLOAD
CAL FPMULT
LLI060
CAL OPLOAD
CAL FPADD
LLI064
CAL FSTORE
LLI127
LAM
SUI 020
LMA

Load L with address of SQR APPROX registers
Transfer SQR APPROX into the FPOP
Add to form value (Xj A + A)
Load L with address of FP ACC Exponent register
Fetch Exponent value into CPU register B
Subtract one to effectively divide FP ACC by two
Restore to memory. (Now have ((XjA + A)j2)
Load L with address of SQR APPROX registers
Store contents of FPACC as new SQR APPROX
Load L with address of LAST SQR APPRO X registers
Transfer LAST SQR APPROX into the FPOP
Subtract (LAST SQR APPROX - SQR APPROX)
Load L with address of FP ACC Exponent
Fetch the Exponent into the accumulator
See if difference less than 2 to the minus ninth
If so, approximation has converged
Else, load L with address of SQR APPROX
Set D to same page as H
And E with address of LAST SQR APPROX
Set up register B as a number of bytes to move counter
Transfer SQR APPROX into LAST SQR APPROX
Continue ops until approximation converges

Load L with address of TEMP register. Fetch the
Exponenent quotient store there into accumulator.
Change L to point to SQR APPROX exponent.
Add SQR APPROX exponent to quotient value.
Store sum back in SQR APPRO X Exponent register.
Load L with address of SQR APPROX. Transfer the
SQR APPROX into FP ACC as answer and exit.

Load ASCII code for letter S into the accumulator.
Load ASCII code for letter Q into CPU register C.
Display the SQuare root (SQ) error message.

Load L with address of SEED storage registers
** Set H to page for floating point working registers
Transfer SEED into the FP ACC
Load L with address of random constant A
Transfer random constant A into the FPOP
Multiply to form (SEED * A)
Load L with address of random constant C
Transfer random constant C into the FPOP
Add to form (SEED * A) + C
Load L with address of SEED storage registers
Store [(SEED * A) + C] in former SEED registers
Load L with address of FP ACC Exponent register
Fetch Exponent value into the accumulator
Subtract 16 (decimal) to effectively divide by 65,536
Now FPACC = [((SEED * A) + C)j65,536]

9 - 11

CAL FPFIX
LLI123
LMIOOO
LLI127
LMIOOO
CAL FPFLT
LLI127
LAM
ADI020
LMA
LLI064
CAL OPLOAD
CAL FPSUB
LLI 064
CAL FSTORE
LLI 127
LAM
SUI 020
LMA
RET

Convert floating to fixed point to obtain integer part
Load L with address of FPACC Extension register
Clear the FP ACC Extension register
Load L with address of FP ACC Exponent
Clear the FPACC Exponent register
Fetch INT«(SEED * A) + C)/65,536) into the FPACC
Load L with address of FP ACC Exponent
Fetch FPACC Exponent into the accumulator
Add 16 (decimal) to effectively multiply by 65,536
(65,536 * INT[«SEED * A) + C)/65,536]) in FPACC
Load L with address of [(SEED * A) + C]
Transfer it into FPOP. Subtract FP ACC to form
[(SEED * A) + C] MOD 65,536
Load L with address of former SEED registers
Store SEED MOD 65,536 in place of [(SEED * A) + C]
Load L with address of FPACC Exponent
Fetch FPACC Exponent into the ACC and subtract
16 (decimal) to form (SEED MOD 65,536)/65,536
So that random number in FPACC is between
0.0 and +1.0 and exit to calling routine

The final routine to be discussed in this
chapter is labeled ARRAY. It is part of the
optional group of routines that are included
if SCELBAL is to be implemented with
single dimension array handling capability.
This routine is actually a special extension
of the LET statement routine. It is used to
locate the address in the ARRAY VALUES
T ABLE at which a value assigned to an ele-
ment of an array is to be stored.

The key portions of the ARRAY routine
are illustrated in the flow chart on the fol-
lowing page. The reader may wish to refer
to the description of the optional DIMension
statement routine in an earlier chapter. A
discussion of the organization of the ARRAY
V ARIABLES and ARRAY VALUES tables
is presented there which will be helpful
in following the operation of the following
routine. ,

ARRA Y, CAL RESTSY
JMP ARRAY2

ARRAYl, LLI202
JMP ARRAY3

ARRA Y2, LLI 203

ARRAY3, LHI026
LBM
INB
LLI276
LMB
LLI206
LMB

Transfer contents of AUX SYMBOL BUFFER into the
SYMBOL BUFFER. (Entry when have actual LET)

Load L with address of SCAN pointer
Proceed to process. (Entry point for IMPLIED LET)

Load L with address of LET pointer

* * Set H to pointer page
Fetch pointer to location where "(" found in statement
Line. Increment it to point to next character in the line.
Load L with address of EV AL pointer and load it with
The starting address for the EV AL routine
Change L to address of ARRAY SETUP pointer
And also store address in that location

9 - 12

"\

ARRAY

SEE IF SUBSCRIPT VALUE
PRESENT IN STATEMENT

NO YES
? •

SET UP POINTERS FOR
EV AL SUBROUTINE

LOOK FOR ARRAY NAME
IN ARRAY VARIABLES TABLE

NO
ERRO R.I----...... :---------

FIND
NAME

?

YES

EVALUATE SUBSCRIPT TO
OBTAIN ELEMENT NUMBER

FORM ADDRESS TO STORAGE
LOCATION FOR THE ELEMENT
IN THE ARRAY VALUES TABLE

SA VE THE ELEMENT STORAGE
ADDRESS FOR LATER USE

BY THE STOSYM SUBROUTINE

EXIT
./

9-13

ARRAY 4, LLI 206
CALGETCHR
CPI251
JTZ ARRAY5
LLI206
CAL LOOP
JFZ ARRAY4
LAI301
LCI306
JMP ERROR

ARRAY5, LLI 206
LBM
DCB
LLI277
LMB
LLI 207
LMIOOO

ARRAY6, LLI 207
LHI026
LBM
INB
LMB
LCI002
LLI 114
LHI027
CALTABADR
LEI 120
LDI026
CAL STRCP
JTZ ARRAY7
LLI207
LHI026
LAM
LLI075
LHI027
CPM
JFZ ARRAY6
JMP FAERR

ARRA Y7 , CAL EV AL
CAL FPFIX
LLI207
LHI026
LBM
LCI002
LLI114
LHI027
CALTABADR
INL

Load L with address of ARRAY SETUP pointer
Fetch character pointed to by ARRAY SETUP pntr
See if character is ")" ? If so, then have located
End of the subscript. If not, reset
L to the ARRAY SETUP pointer. Increment the
Pointer and test for the end of the statement line.
If not end of line, continue looking for right paren.
If reach end of line before right parenthesis than load
ASCII code for letters A and F and display message
Indicating Array Format (AF) error condition

Load L with address of ARRAY SETUP pointer
Fetch pointer (pointing to ")"sign) into register B
Decrement it to move back to end of subscript number
Load L with address of EV AL FINISH pointer location
Place the pointer value in the EV AL FINISH pointer
Load L with address of LOOP COUNTER
Initialize LOOP COUNTER to value of zero

Load L with address of LOOP COUNTER
** Load H with page of LOOP COUNTER
Fetch the counter value
Increment it
Restore the counter value to memory
Set up counter in register C for future ops
Load L with address of start of ARRAY VARIABLES
* * Table (less four). Set H to page of the table.
Calculate the address of next entry in the table
Load register E with starting address of SYMBOL BUFF
** Set D to page of SYMBOL BUFFER
Compare entry in table against contents of SYMBOL BF
If match, have found array name in the table.
Else, set L to address of the LOOP COUNTER
** Set H to page of the LOOP COUNTER
Fetch the counter value to the ACC
Change L to the counter containing number of arrays
* * Set H to the proper page
Compare number of arrays to count in LOOP CNTR
If more entries in the table, continue looking for match
If no matching name in table then have an error condx.

Call subroutine to evaluate subscript expression
Convert the subscript value obtained to fixed format
Load L with address of LOOP COUNTER
** Set H to page of the LOOP COUNTER
Fetch the value in the LOOP COUNTER into the ACC
Set up counter in register C for future ops
Load L with address of ARRAY VARIABLES
** Table (less four). Set H to page of the table.
Calculate the address of entry in the table
Advance the ARRAY VARIABLES table pointer twice

9 - 14

INL
LCM
LLI124
LHI001
LAM
SUI 001
RLC
RLC
ADC
LLI 204
LHI027
LMA
LLI201
LMI377
RET

To advance pointer over array name.
Fetch array base address in ARRAY VALUES table
Load L with address of subscript value
** Set H to page of subscript value
Fetch the subscript value into the accumulator
Subtract one from subscript value to allow for zero
Origin. Now multiply by four
Using rotates (number of bytes required for each entry
In the ARRAY VALUES table). Add in base address to
The calculated value to form final address in the
** ARRAY VALUES table. Now set H & L to TEMP
ARRAY ELEMENT storage location & store the addr.
Change L to point to ARRAY FLAG
Set the ARRAY FLAG for future use
Exit to calling routine

9 - 15

NOT A FUNCTION OR ARRAY
(SIMPLE GROUPING PAREN)

/ '\
EXIT

FUNARR

SEE IF ANYTHING IN
THE SYMBOL BUFFER

NO YES
? •

...

LOOK FOR MATCH BETWEEN
CONTENTS OF THE SYMBOL
BUFFER AND AN ENTRY IN

THE FUNCTION LOOK-UP TABLE

NO FIND
MATCH

? •

YES

PLACE TOKEN VALUE FOR THE
FUNCTION ON TOP OF F/A STACK

EXIT

LOOK FOR MATCH BETWEEN
CONTENTS OF SYMBOL BUFFER

AND AN ENTRY IN THE
ARRAY VARIABLES TABLE

NO YES FIND
MATCH

? •

PLACE NEGATIVE TOKEN VALUE
ONTOPOFTHEF/A STACK

" EXIT

9-2

FUNARR, LLI 120
LHI026
LAM
NDA
RTZ
LLI202
LHI027
LMIOOO

FUNARI, LLI 202
LHI027
LBM
INB
LMB
LCI002
LLI274
LHI026
CALTABADR
LDI026
LEI 120
CAL STRCP
JTZ FUNAR4
LLI202
LHI027
LAM
CPI010
JFZ FUNARI
LLI202
LHI027
LMIOOO
JMP FUNAR2

F AERR, LLI 230
LHI026
LMIOOO
LAI306
LCI301
JMPERROR

FUNAR4, LLI 202
LHI027
LBM
LLI230
LHI026
LCM
CALINDEXC
LMB
JMP CLESYM

Load L with starting address of SYMBOL BUFFER
** Load H with page of SYMBOL BUFFER
Fetch the (cc) for contents of buffer to the ACC
See if (cc) is zero, if so buffer is empty, return to
Caller as have simple grouping parenthesis sign
Else set L to TEMP COUNTER location
** Set H to TEMP COUNTER page
Initialize TEMP COUNTER to zero

Load L with address of TEMP COUNTER
** Load H with page of TEMP COUNTER
Fetch the counter value to register B
Increment the counter
Restore the updated value to memory
Initialize C to a value of two for future ops
Load L with starting address (less four) of FUNCTION
* * LOOK-UP TABLE. Set H to table page.
Find address of next entry in the table
** Load D with page of SYMBOL BUFFER
Load E with starting address of SYMBOL BUFFER
Compare entry in FUNCTION LOOK-UP TABLE with
Contents of SYMBOL BUFFER. If find match, go set
Up the function token value. Else, set L to the TEMP
** COUNTER and set H to the proper page. Fetch the
Current counter value and see if have tried all eight
Possible functions in the table.
If not, go back and check the next entry.
If have tried all of the entries in the table, set L
** As well as H to the address of the TEMP COUNTER
And reset it to zero. Now go see if have subscripted
@@ Array (unless array capability not in program).

Load L with address of F/A STACK pointer
** Load H with page of F / A STACK pointer
Clear the F / A STACK pointer to reset on an error
Load the ASCII code for letter F into the ACC
Load the ASCII code for letter A into register C
Go display the FA error message

Load L with address of TEMP COUNTER
** Set H to page of TEMP COUNTER
Load value in counter to register B. This is FUNCTION
TOKEN VAL UE. Change" L to F / A STACK pointer.
** Load H with page of F / A STACK pointer.
Fetch the F / A STACK pointer value into register C.
Form the address to the top of the F /A STACK.
Store the FUNCTION TOKEN VALUE in the F /A
STACK. Then exit by clearing the SYMBOL BUFFER.

9-3

TABADR,
TABAD1,

LAB
RLC
DCC
JFZ TABAD1
ADL
LLA
RFC
INH
RET

FUNAR2, LLI202
LHI027
LBM
INB
LMB
LCI002
LLI114
LHI027
CALTABADR
LDI026
LEI 120
CAL STRCP
JTZ FUNAR3
LLI202
LHI027
LAM
LLI075
CPM
JFZ FUNAR2
JMP FAERR

FUNAR3, LLI202
LHI027
XRA
SBM
LMA
JMP FUNAR4

Move the TEMP COUNTER value from B to ACC
Multiply by four using this loop to form value equal
To number of bytes per entry (4) times current entry
In the FUNCTION LOOK-UP TABLE.
Add this value to the starting address of the table.
Form pointer to next entry in table
If no carry return to caller
Else, increment H before
Returning to caller

The following routine is only installed if the user
desires to utilize single dimension array capability.
This and associated array routines, if installed, will
be in a separate area in memory apart from the
standard SCELBAL routines.

Load L with address of TEMP COUNTER
** Load H with page of counter
Fetch the counter value
Increment the value
Restore the value to memory
Initialize register C to a value of two for future ops
Load L with address of start of ARRAY VARIABLES
** TABLE (less four). Set H to page of the table.
Calculate address of start of next name in table.
** Load D with page of the SYMBOL BUFFER
Set E to starting address of the SYMBOL BUFFER
Compare name in ARRAY VARIABLES table to the
Contents of the SYMBOL BUFFER. If match, go set up
Array token value. Else, reset L to address of TEMP
** COUNTER. Set H to page of TEMP COUNTER.
Fetch the counter value into the accumulator.
Change L to number of arrays storage location.
Compare number of entries checked against number
Possible. Keep searching table if not finished.
If finished and no match than have F I A error condx.

Load L with address of TEMP COUNTER
* * Load H with page of counter.
Clear the accumulator. Subtract the value in the TEMP
COUNTER from zero to obtain two's complement.
Place this back in counter location as ARRAY TOKEN
VAL UE (negative). Go place the value on F I A STACK.

The routines just presented take care of
determining what type of purpose a paren-
thesis is being used for when the left hand
parenthesis sign is encountered in an expres-
sion. There is, of course, still more to do!

The information enclosed in a set of paren-
thesis will either be argument portion of a
function, the subscript of an array variable,
or the terms that make up a mathematical
expression when the parenthesis is used

9-4

for grouping purposes. The latter case is taken
care of between the EV AL and PARSER
routines previously described as they simply
proceed to evaluate all the terms enclosed by
the current parenthesis before proceeding
any further with the process of scanning the
expression. Handling the cases involving
functions or array variables is initiated when
the EVAL routine detects a right hand (")")
parenthesis sign and calls on the subroutine
to be described next labeled PRIGHT.

The flow chart on the following page il-
lustrates the key tasks of the PRIGHT sub-
routine and a supporting (optional) sub-
routine labeled PRIGHl. The routine por-
tion starting with the label PRIGHI is only
used if array capability is implemented in a
version of SCELBAL.

The source listings for these routines
start here:

PRIGHT, LLI230
LHI026
LAM
ADL
LLA
LAM
LMIOOO
LLI203
LHI027
LMA
NDA
RTZ
JTS PRIGHI
CPIOOI
JTZ INTX
CPI002
JTZ SGNX
CPI003
JTZ ABSX
CPI004
JTZ SQRX
CPI005
JTZ TABX
CPI006
JTZ RNDX
CPI007
JTZ CHRX
CPIOIO
JTZ UDEFX
HLT

Load L with address of F / A STACK pointer
** Load H with page of F/A STACK pointer
Fetch the pointer value into the ACC
Form pointer to top of the F / A STACK
Set L to point to top of the F /A STACK
Fetch the contents of the top of the F / A STACK into
The ACC then clear the top of the F / A STACK
Load L with address of F / A STACK TEMP storage
** Location. Set H to page of F/A STACK TEMP
Store value from top of F / A STACK into temp loco
Test to see if token value in top of stack was zero
If so, just had simple grouping parenthesis!
@@ If token value minus, indicates array subscript
For positive token value, look for appropriate function
If token value for INTeger function, go do it.
Else, see if token value for SiGN function.
If so, go do it.
Else, see if token value for ABSolute function
If so, go do it.
If not, see if token value for SQuare Root function
If so, go do it.
If not, see if token value for TAB function
If so, go do it.
If not, see if token value for RaNDom function
If so, go find a random number.
If not, see if token value for CHaRacter function
If so, go perform the function.
Else, see if token for user defined machine language
tt Function. If so, perform the User DEfined Function
Safety halt. Program should not reach this location!

The following routine is only installed if the user
desires to utilize single dimension array capability.
This and associated array routines, if installed, will
be in a separate area in memory apart from the
standard SCELBAL routines. (Starts at top of page
following the flow chart.)

9-5

E IF TOKEN VALUE AT TO
OF F ST IS

NO YES

SEE IF TOKEN VALUE AT TOP vr
F A STACK IS GREATER THAN 0

NO YES

NO YES

TO FIND ARRAY NAME IN THE

FIND STARTING ADDRESS OF
E ENTRIES FOR THE ARRA

Y V

VALUE TIM:ES FOUR AND ADD TO
ST ARTING ADDRESS FOUND IN
ARRA Y VARIABLES TABLE TO

OBTAIN THE ADDRESS OF WHEIU
DATA IS STORED FOR THE

T DATA VALUE F
THE ARRAY VALUES TABLE

"FP "

9-6

NROUT

PRIGH1, LLI126
LHI001
LAM
NDA
JTSOUTRNG
CAL FPFIX
LLI124
LAM
SUI 001
RLC
RLC
LCA
LLI203
LHI027
LAM
XRI377
RLC
RLC
ADI120
LHI027
LLA
INL
INL
LAM
ADC
LLA
LHI057
JMP FLOAD

OUTRNG, LAI317
LCI322
JMP ERROR

Load L with address of the MSW in the FPACC
** Set H to page of FP ACC
Fetch MSW of FPACC into the ACC.
Test to see if value in FP ACC is positive.
If not, go display error message.
If O.K. then convert floating point to fixed point
Load L with address of LSW of converted value
Fetch the LSW of the value into the ACC
Subtract one from the value to establish proper
Origin for future ops. Now rotate the value twice
To effectively multiply by four. Save the
Calculated result in CPU register C
Load L with address of F / A STACK TEMP
** Load H with page of F /A STACK TEMP
Fetch the value into the accumulator
Complement the value
Rotate the value twice to multiply by four (the number
Of bytes per entry in the ARRAY VARIABLES table).
Add the starting address of the ARRAY VARIABLES
** TABLE to form pointer. Set page address in H.
Point to the name in the ARRAY VARIABLES
Increment the pointer value twice to move over the
Name in the table and point to starting address for the
Array values in the ARRAY VAL UES table. Fetch this
Address to the ACC. Now add in the figure calculated
To reach desired subscripted data storage location. Set
tt The pointer to that location. Load the floating point
Value stored there into the FPACC and exit to caller.

Load the ASCII code for letter 0 into the accumulator
Load the ASCII code for letter R into register C
Go display Out of Range (OR) error message.

The reader has just observed how the
PRIGHT subroutine is used to direct the pro-
gram to a specific routine if a right paren-
thesis indicates that a FUNCTION is to be
executed.

There is one special FUNCTION to which
a name has been assigned in the FUNCTION
LOOK-UP TABLE but which will not be
presented. The name given this function
(which the user may readily alter) is UDF
for User Defined Function. The reason the
routine is not presented is because the
routine is precisely what it has been named.
The user is free to create whatever type of
machine language subroutine the user might
desire to have available in the higher level
language. (How about special I/O handling
capability or a frequently used mathematical
function?) This user created routine may be
installed wherever there is available memory
in the user's system. (Small routines may be

The capabilities of the various FUNCTION
routines were described briefly in an early
chapter. Their use will be described in more
detail in a later use. The actual implemen-
tation of these FUNCTION subroutines
are quite straightforward for the most part
and their operation can be easily followed
by studying the commented source listings
that follow.

9 - 7

placed at the end of page 31 in the assem-
bled version provided in this manual.) The
user should make sure the address to the start
of the user defined subroutine is substituted
for the dummy address provided for the jump
instruction to the label UDEFX shown in the

listing. The user defined function routine
should conclude with a RET instruction.
Typical techniques that might be used in
such a user created routine might be gleaned
from studying the listings for the function
routines that are provided as presented below.

INTX, LLI 126
LHIOOI
LAM
NDA
JFSINTI
LLI014
CAL FSTORE
CAL FPFIX
LLI123
LMIOOO
CAL FPFLT
LLI014
CAL OPLOAD
CAL FPSUB
LLI126
LAM
NDA
JTZ INT2
LLI014
CAL FLOAD
LLI024
CAL FACXOP
CAL FPADD

INTI, CAL FPF IX
LLI123
LMIOOO
JMP FPFLT

INT2, LLI014
JMP FLOAD

ABSX, LLI126
LHIOOI
LAM
NDA
JTS FPCOMP
RET

Load L with address of MSW of the FPACC
** Load H with the page of the FP ACC
Fetch the MSW of the FP ACC into the accumulator
Test the sign of the number in the FP ACC. If
Positive jump ahead to integerize
If negative, load L with address of FP TEMP registers
Store the value in the FP ACC in FP TEMP
Convert the value in FP ACC from floating point to
Fixed point. Load L with address of FP ACC
Extension register and clear it.
Convert fixed binary back to FP to integerize
Load L with address of FP TEMP registers
Load the value in FP TEMP into FPOP
Subtract integerized value from original
Set L to address of MSW of FPACC
Fetch the MSW of the FPACC into the accumulator
See if original value and integerized value the same
If so, have integer value in FP TEMP
Else, load L with address of FP TEMP registers
Restore FP ACC to original (non-integerized) value
Set L to register containing small value
Set up to add small value to original value in FPACC
Perform the addition

Convert the number in FPACC from floating point
To fixed point. Load L with address of FP ACC
Extension register and clear it. Now convert the number
Back to floating point to integerize it and exit to caller.

Load L with address of FP TEMP registers. Transfer
Number from FP TEMP (orig) to FPACC and return.

Load L with address of MSW of the FPACC
** Set H to page of the FPACC
Fetch the MSW of the FPACC into the accumulator
Test the sign of the number to see if it is positive.
If negative, complement the number before returning.
Else, just return with absolute value in the FP ACC.

9 - 8

SGNX,

CHRX,

TABX,
TABl,

TABC,

TABLOP,

BACKSP,

LLI 126
LHIOOI
LAM
NDA
RTZ
JFS FPONE
LLI 024
JMP FLOAD

CAL FPFIX
LLI124
LAM
CAL ECHO
LLII77
LHI026
LMI377
RET

CAL FPFIX
LLI124
LAM
LLI 043
SUM
LLII77
LHI026
LMI377
JTS BACKSP
RTZ

LCA
LAI240

CAL ECHO
DCC
JFZ TAB LOP
RET

LAI215
CAL ECHO
CAL ECHO
LLI043
LHIOOI
LMIOOI
LLI 124
LAM
NDA
RTS
RTZ
JMP TABI

Load L with address of l\JfSW of the FPACC
** Load H with the page of the FP ACC
Fetch the MSW of the FP ACC into the accumulator
Test to see if the FP ACC is zero
Return to caller if FP ACC is zero
If FP ACC is positive, load +1.0 into FP ACC and exit
If FP ACC is negative, set up to load -1.0 into the
FP ACC and exit to caller

Convert contents of FP ACC from floating point to
Fixed point. Load L with address of LSW of fixed
Value. Fetch this byte into the accumulator.
Display the value.
Set L to address of the TAB FLAG
** Set H to page of the TAB FLAG
Set TAB FLAG (to inhibit display of FP value)
Exit to caller.

Convert contents of FP ACC from floating point to
Fixed point. Load L with address of LSW of fixed
Value. Fetch this byte into the accumulator.
Load L with address of COLUMN COUNTER
Subtract value in COLUMN COUNTER from desired
TAB position. Load L with address of the TAB FLAG.
** Set H to page of the TAB FLAG.
Set TAB FLAG (to inhibit display of FP value)
If beyond TAB point desired, simulate back spacing
Return to caller if at desired TAB location

Else, put difference count in register C
Place ASCII code for space in ACC

Display space on output device
Decrement displacement counter
If have not reached TAB position, continue to space
Else, return to calling routine.

Load ASCII code for carriage-return into the ACe
Display the carriage-return
Repeat to provide extra time if TTY
Load L with address of COLUMN COUNTER
** Set H to page of COLUMN COUNTER
Set COLUMN COUNTER to first column
Set L to address containing desired TAB position
Fetch the desired TAB position value
Test to see if it is
Negative or zero
In which case return to caller
Else, proceed to perform the TAB operation.

9 - 9

APPENDIX A - SCELBAL LABELS

The following is a list of the names used as CLRNX3 23067 10-19
labels to identify routines and subroutines in CLROPL 21 203 10-10
SCELBAL. The list is arranged in alphabetical COMPEN 25010 10-25
order. The first column shows the name, the COMPLM 22150 10-14
second column shows the address of the label CONCTA 02264 5-7
in the assembled version of the program pro- CONCTE 02327 5-7
vided in the book, and the last column indi- CONCTN 02276 5-7
cates the chapter and page within the chapter CONCTS 02310 5-7
where the label appears in the source listing. CONCT1 02314 5-7

CONTIN 12073 4-9
CPHLDE 12277 4-11

ABSX 07346 9-8 CRLF 03141 5-10
ACCSET 20166 10-4 CROUND 21307 10-11
ACNONZ 20143 10-4 CTRLC 12313 4-11
ACZERT 20120 10-4 CTRUE 06242 8-14
ADBDE 12305 4-11
ADDER 22127 10-14 DEC 03164 5-10
ADDEXP 21051 10-8 DECBIN 24056 10-22
ADDMOR 22130 10-14 DECEXD 24336 10-25
ADOPPP 21270 10-10 DECEXT 24277 10-25
ADV 02377 5-8 DECNO 03172 5-10
ADVDE 13064 4-12 DECOUT 24360 10-25
AD4DE 06256 8-14 DECRDG 25112 10-26
AHEAD1 24220 10-24 DECREP 24327 10-25
AHEAD2 25333 10-28 DIM 55365 6-42
ARRAY 55145 9-12 DIM1 55377 6-42
ARRAY1 55153 9-12 DIM2 56017 6-42
ARRAY2 55160 9-12 DIM3 56032 6-42
ARRAY3 55162 9-12 DIM4 56036 6-42
ARRAY4 55174 9-14 DIM5 56157 6-46
ARRAY5 55225 9-14 DIM6 56211 6-46
ARRAY6 55240 9-14 DIM7 56224 6-46
ARRAY7 55312 9-14 DIM8 56271 6-47

DIM9 56301 6-47
BACKSP 31 217 9-9 DIM10 56320 6-47
BIGERR 02222 5-6 DIMERR 56337 6-47
BRING 1 21007 10-6 DINPUT 23046 10-19

DIRECT 13211 6-4
CFALSE 06247 8-14 DIVIDE 21351 10-12
CHRX 07377 9-9 DVERR 12357 4-11
CINPUT 03221 5-10 DVEXIT 22070 10-13
CKDECP 25137 10-26 DVLOOP 06362 8-15
CKEQEX 20242 10-5
CKSIGN 21166 10-9 ECHO 03202 5-10
CLESYM 02255 5-7 ENDINP 23311 10-21
CLRNEX 21175 10-10 EQ 06136 8-14
CLRNX1 21207 10-10 ERROR 02226 5-6
CLRNX2 23055 10-19 EVAL 03224 7-2

A-I

EXEC 10266 4-2 GETAUO 11211 4-7
EXEC 1 10275 4-4 GETAU1 11 242 4-7
EXECSP 31330 13-2 GETAU2 11 267 4-8
EXMLDV 21146 10-9 GETAUX 11177 4-7
EXOUTN 25324 10-28 GETCHP 12123 4-9
EXPINP 23241 10-20 GETCHR 02240 5-6
EXPOK 24000 10-22 GETINP 22365 10-18
EXPOUT 25300 10-28 GOSERR 16347 6-25

GOSUB 16236 6-21
FACXOP 22277 10-16 GOSUB1 16255 6-21
FAERR 07172 9-3 GO TO 15174 6-14
FINERR 12322 4-11 GOT01 15211 6-14
FINER1 12351 4-11 GOT02 15240 6-14
FININP 23327 10-21 GOT03 15250 6-16
FIXERR 12366 4-11 GOT04 15261 6-16
FLOAD 22244 10-16 GOT05 15270 6-16
FNDEXP 23221 10-20 GOT06 15315 6-16
FOR 17164 6-29 GOT07 15340 6-16
FORI 17246 6-29 GOTOER 16020 6-17
FOR2 17262 6-31 GT 06153 8-14
FOR3 17304 6-31
FOR4 17317 6-31 IF 16027 6-19
FOR5 31246 6-31 IF1 16102 6-20
FORERR 17237 6-29 IF2 16143 6-20
FORNXT 30121 6-36 IF3 16166 6-20
FPO 17157 6-28 IF4 16200 6-20
FPADD 20211 10-5 IFERR 16073 6-20
FPCOMP 20202 10-5 INCLIN 12255 4-10
FPD10 24033 10-22 INDEXB 03174 5-10
FPDIV 21322 10-11 INDEXC 23036 10-19
FPFIX 20000 10-3 INPUT 16365 6-25
FPFIXL 20033 10-3 INPUT1 16377 6-27
FPFLT 20064 10-4 INPUT2 17037 6-27
FPMULT 21 046 10-8 INPUT3 17042 6-27
FPNORM 20066 10-4 INPUT4 17063 6-27
FPONE 06242 8-14 INPUTN 17140 6-28
FPOPER 05364 8-13 INPUTX 17104 6-27
FPOUT 24165 10-24 INSERT 12205 4-10
FPX10 24010 10-22 INSER1 12231 4-10
FPZERO 20051 10-3 INSER3 12255 4-10
FRAC 14 350 6-11 INSTR 13012 4-12
FSHIFT 21002 10-6 INSTR1 13016 4-12
FSTORE 22255 10-16 INSTR2 13061 4-12
FSUB 21032 10-7 INTI 07327 9-8
FUNARI 07115 9-3 INT2 07341 9-8
FUNAR2 55054 9-4 INTEXP 06263 8-15
FUNAR3 55124 9-4 INTX 07243 9-8
FUNAR4 07207 9-3
FUNARR 07 100 9-3 LE 06173 8-14

LET 15031 6-13
GE 06213 8-14 LETO 15013 6-13

A - 2

LET1 15042 6-13 NOLIST 10354 4-5
LET2 15053 6-13 NONZAC 20235 10-5
LET3 15113 6-13 NOREMD 32057 9-10
LET4 15222 6-13 NOSAME 12005 4-8
LET5 15141 6-13 NOSCR 11 071 4-6
LETERR 15132 6-13 NOTO 23010 10-18
LINEUP 20303 10-6 NOTDEL 03045 5-9
LIST 10333 4-5 NOTEND 11 336 4-8
LOOKO 20124 10-4 NOTPLM 23120 10-20
LOOKU1 05061 8-10 NUMERR 12375 4-11
LOOKU2 05111 8-10 NXTLIN 13116 6-3
LOOKU4 05201 8-11
LOOKUP 05033 8-10 OPLOAD 22266 10-16
LOOP 03003 5-8 OPSGNT 21230 10-10
LT 06121 8-13 OUTDGS 25045 10-26

OUTDGX 25105 10-26
MINEXP 24033 10-22 OUTDIG 25032 10-26
MORACC 20313 10-6 OUTFIX 24271 10-24
MORCOM 22155 10-14 OUTFLT ?,4 253 10-24
MOROP 20330 10-6 OUTNEG 24207 10-24
MOVEC 12046 4-9 OUTRNG 55136 9-7
MOVECP 10261 6-51 OUTX10 25223 10-27
MOVEIT 21013 10-7 OUTZER 25104 10-26
MOVEPG 12050 4-9
MOVOP 20222 10-5 PARNER 06104 8-13
MROUND 21302 10-11 PARNUM 04356 8-5
MULOOP 06341 8-15 PARSE 05231 8-11
MULTIP 21 066 10-9 PARSE1 05307 8-12

PARSE2 05332 8-12
NE 06230 8-14 PARSEP 31300 7-8
NEGEXP 32041 9-10 PARSER 04324 8-5
NEGFPA 21251 10-10 PCOM1 15003 6-11
NEXT 30013 6-35 PCOMMA 14357 6-11
NEXT1 30030 6-35 PERIOD 23 201 10-20
NEXT2 30045 6-36 PFPOUT 14314 6-10
NEXT3 30071 6-36 POSEXP 23365 10-21
NEXT4 30130 6-36 PRIGHT 07003 9-5
NEXT5 30300 6-37 PRIGH1 55000 9-7
NEXT6 30351 6-38 PRINT 13345 6-5
NEXT7 31 005 6-38 PRINT1 13366 6-5
NEXT8 31027 6-38 PRINT2 14002 6-5
NEXT9 31042 6-38 PRINT3 14043 6-8
NEXT10 31143 6-39 PRINT4 14075 6-8
NEXT11 31170 6-39 PRINT5 14114 6-8
NEXT12 31177 6-39 PRINT6 14125 6-8
NINPUT 23115 10-19 PUSHIT 25131 10-26
NODECP 25154 10-27
NOEXCO 20100 10-4 QUO ROT 21377 10-13
NOEXPO 05005 8-10 QUOTE 14203 6-10
NOEXPS 23244 10-20 QUOTE 1 14220 6-10
NOGO 21376 10-13 QUOTE2 14263 6-10

A - 3

QUOTER 14246 6-10 SQRERR 32217 9-11
SQREXP 32062 9-10

REMOVE 12144 4-9 SQRLOP 32107 9-10
REMOV1 12167 4-10 SQRX 32000 9-10
RESIGN 20175 10-4 STOSY1 10100 6-49
RESTHL 22337 10-17 STOSY2 10126 6-50
RESTSY 10252 6-50 STOSY3 10156 6-50
RETERR 16356 6-25 STOSY5 10227 6-50
RETURN 16304 6-23 STOSYM 10055 6-49
RNDX 32240 9-11 STRCP 02332 5-7
ROTATL 22177 10-15 STRCPC 02370 5-S
ROTATR 22211 10-15 STRCPE 02356 5-S
ROTL 22200 10-15 STRCPL 02344 5-7 •
ROTR 22212 10-15 STRIN 03014 5-S
RUN 13070 6-3 STRIN1 03016 5-S

STRINF 03102 5-9
SAMLIN 13156 6-3 SUB12 25341 10-2S
SAVEHL 22317 10-16 SUBBER 22223 10-15
SAVESY 10240 6-50 SUBEXP 21334 10-11
SCAN1 03254 7-5 SUBHL 03113 5-9
SCAN2 03300 7-5 SUBTRA 22224 10-15
SCAN3 03345 7-5 SWITCH 22356 10-17
SCAN4 03357 7-5 SYNERR 11152 4-6
SCAN5 03373 7-5 SYNTAX 02000 5-5
SCAN6 04007 7-5 SYNTOK 11161 4-6
SCAN7 04033 7-6 SYNTX1 02015 5-5
SCANS 04064 7-6 SYNTX2 02044 5-5
SCAN9 04100 7-6 SYNTX3 02061 5-5
SCAN10 04301 7-7 SYNTX4 02067 5-5
SCAN11 04143 7-6 SYNTX5 02124 5-6
SCAN12 04206 7-7 SYNTX6 02171 5-6
SCAN13 04251 7-7 SYNTX7 02210 5-6
SCAN14 04260 7-7 SYNTXS 02215 5-6
SCAN15 04267 7-7 SYNTXL 02137 5-6
SCAN16 04276 7-7
SCANFN 03351 7-5 TAB1 10022 9-9
SCRLOP 11 060 4-6 TABAD1 07231 9-4
SETDCT 21345 10-12 TABADR 07230 9-4
SETIT 22272 10-16 TABC 10042 9-9
SETMCT 21062 10-S TABLOP 10045 9-9
SETSUB 22101 10-13 TABX 10017 9-9
SGNX 07360 9-9 TEXTC 03121 5-9
SHACOP 20341 10-6 TEXTCL 03125 5-9
SHIFTO 20327 10-6 TOMUCH 25353 10-2S
SHLOOP 20374 10-6
SKPNEG 20264 10-5 ZERO 14336 6-11
SQRCNV 32203 9-11 ZERODG 25165 10-27

A-4

